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Abstract

In autonomous driving, radar systems play an important

role in detecting targets such as other vehicles on the road.

Radars mounted on different cars can interfere with each

other, degrading the detection performance. Deep learning

methods for automotive radar interference mitigation can

successfully estimate the amplitude of targets, but fail to re-

cover the phase of the respective targets. In this paper, we

propose an efficient and effective technique based on un-

folded robust Principal Component Analysis (RPCA) that is

able to estimate both amplitude and phase in the presence

of interference. Our contribution consists in introducing

residual overcomplete auto-encoder (ROC-AE) blocks into

the recurrent architecture of unfolded RPCA, which results

in a deeper model that significantly outperforms unfolded

RPCA as well as other deep learning models. We also show

that our approach achieves a faster processing time com-

pared to state-of-the-art fully convolutional networks, thus

being a suitable candidate to be deployed on devices em-

bedded on vehicles.

1. Introduction

Road safety is a key issue in autonomous driving sys-

tems, requiring vehicles to perceive their surroundings. One

of the most common proposals made by automotive com-

panies is to employ radar sensors in order to build systems

that allow cars to scan the surrounding environment. Usu-

ally, the radar senors used in the automotive industry are

frequency modulated continuous wave (FMCW) / chirp se-

quence radars, which transmit sequences of linear chirp sig-

nals. The signals transmitted and received by such sensors

provide the means to estimate the distance and the velocity

of nearby targets (e.g., vehicles, pedestrians or other obsta-

cles).

The rapidly increasing number of radar sensors [11] un-

avoidably leads to a higher probability of radio frequency

interference (RFI), which generates corrupted and unusable

signals. The most common RFI effect involves raising the

noise floor by a large margin, to the point where poten-

tial targets are completely hidden by noise, thus reducing

the sensitivity of target detection methods [3]. In order to

be able to accurately detect targets from signals affected

by RFI, the interference has to be mitigated. To address

this problem, researchers have proposed various techniques

ranging from handcrafted approaches [2, 9, 13, 12, 22, 23]

to deep learning methods [5, 6, 15, 16, 17].

There are many classical RFI mitigation methods [2, 9,

13, 12, 22, 23], which are usually classified in accordance

with the domain in which the interference is mitigated:

time, polarization, frequency, code and space. A detailed

analysis of these methods is presented in [12]. When the

transmitted signal is a linear chirp waveform, one of the

most common method to mitigate interference is to detect,

in various ways, the samples of the beat signal affected by

interference [13] and convert them to zeroes in the time do-

main. This is commonly known as the zeroing technique.

While this approach is fairly simple, it removes part of the

useful signal and can become ineffective when the interfer-

ence has a long duration.

A series of recent methods [5, 6, 16, 17] rely on deep

learning models to mitigate RFI. Rock et al. [17] proposed a

convolutional neural network (CNN) to address RFI, aiming

to reduce the noise floor while preserving the signal com-

ponents of detected targets. The authors reported promising

results, but they still had concerns regarding the generaliza-

tion capacity on real data. Another approach that relies on

CNNs is proposed in [6]. The method is based on the U-

Net architecture [18], performing interference mitigation as

a denoising task directly on the range-Doppler map. Fuchs

et al. [6] surpassed classical approaches, but their method

fails to fully preserve the phase information. Similarly, Fan

et al. [5] proposed a method based on CNNs, their contri-

bution being that of adding residual connections, inspired

by the ResNet model [8], into the architecture. In another

recent work, Ristea et al. [16] proposed fully convolutional



networks (FCNs) trained on synthetic data samples. The

FCNs, as well as other deep models, can estimate the ab-

solute value of range profiles, but are not able to obtain the

phase information.

Different from the related works presented above, we

employ a decomposition algorithm based on unfolded ro-

bust Principal Component Analysis (RPCA) [19], introduc-

ing residual overcomplete auto-encoder blocks in order to

obtain an efficient RFI approach. Our model can decom-

pose the radio signal acquired from sensors as a sum of

a low-rank matrix (interference signal) and a sparse signal

(clear signal with targets). Convergence is achieved by solv-

ing a convex minimization problem to retrieve the clear sig-

nal, which leads to an iterative principal component pursuit

[4]. Moreover, as we combine iterative algorithms, which

provide a natural recurrent architecture, with residual over-

complete auto-encoders based on convolutional layers, we

exploit the benefits of both recurrent and convolutional ar-

chitectures in order to attain better results. In the exper-

iments, we show that our approach surpasses both FCN

models of Ristea et al. [16]. Unlike other deep models,

which only predict the amplitude, our approach is also able

to estimate the phase.

2. Method

2.1. Problem Formulation

For a continuous-time signal x(t), let x[n] denote the

discrete-time signal computed by sampling x(t), x[n] =
x(n · TS), where TS is the sampling period.

In FMCW radar, the antenna transmits a signal sTX(t),
which is a chirp sequence, whose frequency usually follows

a saw-tooth pattern. The receive antenna collects sRX(t),
which, in the presence of interference from another vehicle,

is a mixture of two signals: the signal reflected by targets

(having the chirp modulation rate identically with the trans-

mitted signal) and the interference signal (having the chirp

modulation rate different from the transmitted signal). Con-

sequently, the received signal is defined as:

sRX(t) =

Nt∑

p=0

Ap · sTX(t− td,p) + schirp,RFI(t), (1)

where Ap and td,p are the complex amplitude and the prop-

agation delay of target p, respectively, Nt is the number of

targets, and schirp,RFI(t) is the interfering signal.

The received signal, sRX(t), is mixed with the transmit-

ted signal, sTX(t), low-pass filtered and sampled, resulting

in the beat signal sb[n]. Therefore, sb[n] consists in a sum

of complex sinusoids (representing the targets) and an un-

correlated interference sb,RFI [n], which is a chirp signal

that is obtained by mixing two chirp signals with different

modulation rates. Hence, the beat signal in the presence of

uncorrelated interference is written as:

sb[n] =

Nt∑

p=0

Ap · exp(2π · j · fp · n) + sb,RFI [n], (2)

where j2 = −1, fp = (α · td,p) · TS is the beat fre-

quency of target p and α denotes the slope of the transmit-

ted chirp. The uncorrelated interference appears as a highly

non-stationary component on the beat signal’s spectrogram,

being spread across multiple frequency bins, as opposed to

the signal received from targets, which is present only at

some frequency values fp [1]. Hence, we can consider the

signals received from targets as narrow band components

and the interference as a wide band signal.

We propose to mitigate the interference in the Fourier do-

main. Therefore, we first apply the Fast Fourier Transform

(FFT) to the signal defined in Eq. (2), obtaining the beat sig-

nal spectrum. We consider the FFT of the signal received

from targets (the sum in Eq. (2)) as a sparse signal, because

there is a limited number of targets, which translates to a

few amplitudes on the range profile. The interference sig-

nal, sb,RFI [n], is considered a type of noise, because its

spectrum contains multiple frequency bins with higher am-

plitudes. In order to obtain a matrix representation, which is

commonly used in deep learning methods, the FFT of each

discrete signal is represented as a matrix of shape NFFT×2,

where NFFT is the number of FFT points, and 2 comes

from the real and imaginary parts of FFT, which are viewed

as independent vectors. Consequently, we propose a data

model composed of a matrix L (the FFT of the interference

signal) plus a sparse matrix S (the FFT of the signal re-

ceived from targets). Our data model is described in a ma-

trix formulation as:

D = L+ S, (3)

where D is the received data, L is the interference data and

S is the clean data with targets. The matrices D, L and S

have the same dimension, namely NFFT × 2.

2.2. Unfolded Robust PCA

Unfolding [14], or unrolling an iterative algorithm, was

first suggested by Gregor et al. [7] to accelerate conver-

gence. They showed that by considering each iteration of

an iterative algorithm as a layer in a deep network and by

concatenating a few such layers, it is possible to train un-

folded networks to achieve a dramatic improvement in con-

vergence, significantly reducing the number of training it-

erations. In the context of RPCA, a principled way to con-

struct learnable pursuit architectures for structured sparse

and robust low-rank models was introduced in [20]. The

proposed networks, derived from the iteration of proximal

descent algorithms, were shown to faithfully approximate



Figure 1. Convolutional layer (left) used in the unfolded RPCA of

[19] versus our residual overcomplete auto-encoder block (right).

The parameters are defined as follows: k is the kernel size, n is

the number of filters, s is the stride and p is the padding.

the solution of RPCA, but the approach was based on a non-

convex formulation in which the rank of L was assumed

to be known a-priori. This poses a network design limita-

tion, as the rank can vary between different applications or

even different realizations of the same application, i.e. the

number of targets from two signals acquired from the same

radio sensor may be different. In contrast, we employ the

approach proposed in [19], which does not require a-priori

knowledge of the rank.

Unfolding an algorithm can be envisioned as a recurrent

neural network, in which the kth iteration is regarded as the

kth layer in a feed-forward network. Following [19], the L

and S matrices for a certain step k are computed as follows:

Lk+1 = SV Tλk

1

{gk5 (L
k) + gk3 (S

k) + gk1 (D)},

Sk+1 = τλk

2

{gk6 (L
k) + gk4 (S

k) + gk2 (D)},
(4)

where the operator SV T refers to singular value thresh-

olding and the operator τ and the regularization parame-

ters λ1, λ2 are described in [19]. Each function gi, ∀i ∈
{1, 2, ..., 6} is a transformation, which, in [19], takes the

form of a convolution with a learnable kernel, and, in our

approach, takes the form of a more complex function based

on residual auto-encoder blocks. The parameters of each

gi are learned independently for each layer k. Although, in

theory, L is supposed to be a low-rank matrix, we empiri-

cally observed that for most data samples, its rank is max-

imum, i.e. equal to 2. Nevertheless, our empirical results

show that unfolded RPCA works well, even if the theoreti-

cal constraint regarding the rank of L is not met. For more

details about unfolded RPCA, the reader is referred to [19].

2.3. Residual Overcomplete Auto­Encoder Blocks

In the deep formulation of unfolded RPCA, the recur-

rent network is based on convolutional layers. Following

recent works [8, 21] showing that deeper models provide

better results, we propose to replace the convolutional lay-

ers in the deep unfolded RPCA with residual overcomplete

auto-encoder (ROC-AE) blocks. Our block is formed of

two convolutional layers with 32 filters each, and a third

convolutional layer with two filters. In a set of preliminary

experiments, we observed that some weights converged to

NaN values, a problem that is caused by vanishing or ex-

ploding gradients. In order to avoid this issue, we insert

a skip connection from the input to the third convolutional

layer. Our novel block is illustrated in Fig. 1, in compari-

son with the approach proposed in [19], which is based on

a single layer of convolution. Both architectures use ten-

sors of 1 × 2048 × 2 components as input and output, re-

spectively. We note that the first two convolutional layers

in our block have 32 filters, generating activation maps of

1× 2048× 32 components. Hence, our residual blocks are

designed like overcomplete auto-encoders (the latent space

is higher than the input space). In the experiments, we show

that our residual overcomplete auto-encoder blocks signif-

icantly outperform residual undercomplete auto-encoder

(RUC-AE) blocks with equivalent depth.

3. Experiments

3.1. Data Set

The automotive radar inference mitigation (ARIM) data

set [16] is a large scale database consisting of 48,000 ra-

dio signal samples, synthetically generated while trying to

replicate realistic automotive scenarios with one source of

interference. The data set is split into a training set of

40,000 samples and a test set of 8,000 samples. We split the

training data into two disjunctive sets for training (32,000

samples) and validation (8,000 samples), according to Ris-

tea et al. [16].

Each sample is generated using randomly selected val-

ues for the following parameters: signal-to-noise ratio

(SNR), signal-to-interference ratio (SIR), relative interfer-

ence slope, number of targets, amplitude, phase and dis-

tance of each target. One of the biggest advantages that are

provided by the ARIM data set is that we have access to

clean and perturbed signal pairs. Therefore, we are able to

use the model described in Section 2, as it requires access

to both interference and clean target signals during training.

To our knowledge, ARIM [16] is the only large scale

data set that is publicly available for the radar interference

mitigation task. Therefore, we evaluate our deep learning

method against other competing approaches only on ARIM.



Table 1. Validation and test results on the ARIM data set attained by various versions of unfolded RPCA versus an oracle based on true

labels, zeroing and state-of-the-art FCN models [16], respectively. The best results (excluding the oracle) are highlighted in bold. The

symbol ↑ means higher values are better and ↓ means lower values are better.

Validation set Test set Inference time

Method ∆SNR ↑ AUC↑ MAE↓ MAE↓ ∆SNR ↑ AUC↑ MAE↓ MAE↓ CPU GPU NX

(dB) (degrees) (dB) (degrees) (ms) (ms) (ms)

Oracle 12.92 0.978 0 0 13.08 0.978 0 0 - - -

Zeroing 5.27 0.951 1.26 6.80 5.44 0.951 1.27 6.79 <1 <1 -

Shallow FCN [16] 10.34 0.965 2.20 - 10.49 0.965 2.21 - 471 62 -

Deep FCN [16] 12.90 0.972 1.21 - 13.06 0.972 1.22 - 8400 66 -

Unfolded RPCA [19] 12.14 0.968 1.47 5.58 12.33 0.970 1.47 5.56 55 45 273

Unfolded RPCA RUC-AE 9.58 0.967 2.83 5.04 9.83 0.966 2.76 5.71 76 35 242

Unfolded RPCA ROC-AE (ours) 10.15 0.975 0.53 2.45 10.46 0.976 0.55 2.55 122 40 299

Figure 2. The influence of the number of neural network layers

(from 1 to 13) on the phase MAE measured in degrees.

3.2. Evaluation Metrics

Typically, the goal in radar signal processing is to max-

imize the target detection performance. Therefore, an in-

tuitive metric is the area under the receiver operating char-

acteristics curve (AUC), which describes the ability to dis-

entangle targets from noise at various thresholds. Another

performance indicator is the mean absolute error (MAE) in

decibels (dB) between the range profile amplitude of targets

computed from label signals and the amplitude of targets

from predicted signals. In radar signal processing, recov-

ering the phase of targets is equally important, because it

is essential in estimating other mandatory parameters, e.g.

target velocity. Thus, we also report the MAE in degrees

between the range profile phase of targets computed from

label signals and the phase of targets from predicted signals.

In our evaluation, we additionally report the mean SNR im-

provement (∆SNR), which is computed for the target with

the highest amplitude in a signal, as the difference between

SNR before and after interference mitigation.

3.3. Hyperparameter Tuning

In order to minimize the chance of overfitting in hyperpa-

rameter space, we tune our hyperparameters on the valida-

tion set. The number k of unfolded network layers was vali-

dated on the evaluation set, considering values from 1 to 13.

As shown in Fig. 2, the optimal value is k = 8. Regarding

the training process, we trained our network for 100 epochs

with mini-batches of 20 samples using the Adam optimizer

[10] with a learning rate of 5 · 10−4 and a weight decay of

10−6. We also added a learning rate scheduler with a step

of 30 epochs and a decay factor of 0.5.

3.4. Quantitative Results

We compare the unfolded RPCA models based on ROC-

AE or RUC-AE blocks with the most common classical

approach, called zeroing, two FCNs described in [16], the

unfolded RPCA approach proposed in [19] and an oracle

computed from the ground-truth labels. We present the cor-

responding results in Table 1. Our unfolded RPCA model

based on ROC-AE blocks outperforms the zeroing method

by a large margin, in terms of all performance measures.

When comparing the model based on standard (undecom-

plete) AE blocks with the one based on overcomplete AE

blocks, we observe that the latter model attains superior re-

sults, regardless of the metric. The unfolded RPCA based

on undercomplete AE blocks attains lower scores even com-

pared with the unfolded RPCA [19]. This clearly shows the

necessity to use overcomplete AE blocks in order to obtain

performance improvements. In terms of AUC and ampli-

tude MAE, the unfolded RPCA [19] is below the FCN mod-

els [16]. The introduction of the ROC-AE blocks brings

significant performance gains to the unfolded RPCA model,

surpassing all models in terms of AUC, amplitude MAE and

phase MAE. Even if our approach attains inferior results in

terms of ∆SNR compared with both FCN models [16], the

latter models cannot estimate the phase of targets. This is



Figure 3. The beat signal spectrum for RFI mitigation results with

our unfolded RPCA based on ROC-AE blocks versus the zeroing

method on a real beat signal spectrum. For reference, we also

added the input signal captured by the NXP TEF810X 77 GHz

radar transceiver.

a major drawback of the FCN models. We emphasize that

neither version of unfolded RPCA suffers from this prob-

lem.

Additionally, we observe that our model obtains lower

performance in terms of the mean SNR improvement,

because of the data samples having a small signal-to-

interference ratio (SIR). A small SIR implies that the FFT

of the signal does not meet the sparsity condition, because

the targets are close to the noise floor. Having targets near

or in the noise floor at training time may interfere with the

proposed data modeling.

3.5. Running Time

In the radar signal domain, a key element is the capa-

bility of an algorithm to process data in real-time on low-

power processing units, e.g. embedded devices. Therefore,

we analyze the inference time of each method, i.e. the aver-

age time required to process a time domain signal and out-

put the corresponding beat signal spectrum.

The CPU and GPU times reported in Table 1 were mea-

sured on a machine with Intel Core i7 CPU and NVIDIA

RTX 2080Ti GPU. As expected, the zeroing method has the

best inference time, but its accuracy levels are much lower

compared to our deep learning approach. Moreover, we ob-

serve that our unfolded RPCA based on ROC-AE blocks

is quicker than both FCNs, especially on CPU, while also

offering better results. The algorithm proposed in [19] is

slightly faster than our approach because of its shallower

architecture.

In addition, we measured the running times of the three

unfolded RPCA models on an Nvidia Jetson Xavier NX em-

bedded system. The corresponding time measurements are

reported in the last column of Table 1. We observe that our

unfolded RPCA based on ROC-AE blocks requires about

22 extra milliseconds on the lower-end GPU with respect

to the baseline unfolded RPCA. We conclude that our un-

folded RPCA based on ROC-AE blocks provides the op-

timal trade-off between accuracy and speed. With the re-

ported times, our approach is a viable candidate to be de-

ployed on embedded devices placed on board road vehicles.

3.6. Qualitative Results

In addition to the results on ARIM, we assessed the gen-

eralization capacity of our approach on real data, by testing

it on samples provided by the NXP company, which were

captured with the NXP TEF810X 77 GHz radar transceiver,

in real-world scenarios. In Fig. 3, we show an exam-

ple of interference mitigation performed by our unfolded

RPCA based on ROC-AE blocks on a real radar signal in

comparison with the zeroing algorithm. We underline that

the shown example contains three close-range targets, at

roughly 0, 2 and 3 meters. Both models seem capable of

reducing the noise floor, but our approach is better at esti-

mating the targets. More precisely, the amplitude around

the targets is higher for our approach compared to zeroing.

4. Conclusion

In this paper, we introduced an unfolded robust PCA

model based on residual overcomplete auto-encoder blocks

for automotive radar interference mitigation, which is capa-

ble of estimating both the magnitude and the phase of auto-

motive radar signals. We compared our model with several

baseline approaches in a comprehensive experiment, show-

ing that our model provides superior results in terms of ac-

curacy and time. We also showed the real-time processing

capability of our approach, as well as its generalization ca-

pacity on real data. In future work, we aim to analyze the

scenario with multiple interference sources.
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