(Supplementary) A. Static Phase Selective
Convolution

As a follow up on static PSC (sPSC) in Section 3.1, in
this section, we present a more details regarding how to sys-
tematically split weights between positive and negative pre-
activations.

Let x* £ ReLU(x) and x~ = —ReLU(—x) denote the
positive and the negative inputs, respectively. In conven-
tional networks using ReLU as activation functions, only
x7T is selected for further processing of subsequent layers.
To improve the expressiveness of the network, it is desirable
to also use the native activations x~. One naive way to in-
corporate x~ in the computation is to split the downstream
operation into a positive branch and a negative branch, and
concatenate their corresponding output:
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where W has dimension of pM x N and W~ has di-
mension of (1 — p)M x N so that the overall dimension
(number of output nodes in MLP or number of channels in
Convnet) of the concatenate output is M. In other words, p
determines the split of output dimension between the posi-
tive branch and the negative branch. The problem, then, is
how to find the optimal split. The naive approach of exhaus-
tively search all possible p values would be computationally
prohibitive. Next, we propose a gating approach where p is
optimized during training and fixed for inference.

For ease of explaining the gating approach, let us rewrite
the above Equation as the following, with W+ and W—
denoting matrices with dimension M x N.

y=GTWtxt + G~ W x", (19)

where G~ = diag{g1,92,...,9m} and GT = diag{1 —
g1,---,1 — ga} denotes the diagonal gating matrix. Each
diagonal element g; is a binary switch that controls whether
the i" output dimension is derived from the positive or
the negative branch. The value of g; is in turn defined as
gi & >j<iSj» where's = {s1,..., 80, 5SMm41} 7 is a one-
hot vector whose location of one delimits the boundary of
positive and negative branch. We can then train this one-hot
vector with standard relaxation methods [19, 28, 12]. Note
that the value of s can be either data-dependent or data-
invariant. In the latter case, after training is converged, we
can simply remove connections in the two branches that are
deactivated and achieve same complexity compared with
the positive branch only case.

TThe size of s has to be larger than the output dimension by 1 to prop-
erly characterize the delimiter of the two branches.

Another way to normalize the number of parameters
when using the negative branch is to apply SVD compres-
sion [43] on W+ and . With input dimension of N and
output dimension of M, we can decompose each of W+ and
W~ into the product of two matrices with dimension M x r
and X N, where r < min{M, N} denotes the rank after
the compression. The detailed procedure is shown below.
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To equalize the total number of parameters to N x M,
we may set the rank to r = % This could be
deemed undesirable compared with the gating approach
(Equation (19)), as the sum degrees of freedom reduces to
2r = NM /(N + M) and is strictly less than that of the gat-
ing approach, which is min{N, M }. We intend to continue

developments with static PSC in our future study.

(Supplementary) B. Proof of the L,-Loss
Lower Bound

As a follow up from the discussion in Section 3.1, we
provide a proof for the lower bound of £(f,g) when f is
the absolute value function on [—1, 1] and g is the baseline
computational model followed by the pooling unit. (See (2)
for the definition of the baseline model.) Specifically, g is
defined as

g(z) £ (wy +ws) x ReLU(x) + (by + by)
= w x ReLU(z) + b,

where w £ w; + wy and b = by + by. We have

L(f,g9) = /Ol(x—wx—b)zd:c—i-/o (z + b)*dx

_ /01 [((1 —w)z =)’ + (z — b)ﬂdaz.

If we now set
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and differentiate under the integral, we get the system of

equations
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which gives w = b = 2. Therefore
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