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Figure 1: Our model predicts object heights and vector fields mapping surface features to ground level, enabling feature

rectification and occlusion mapping. Darker shades of gray have larger height values, red arrows map surface features to

ground level, and occluded pixels are blue.

Abstract

Current methods for Earth observation tasks such as se-

mantic mapping, map alignment, and change detection rely

on near-nadir images; however, often the first available im-

ages in response to dynamic world events such as natural

disasters are oblique. These tasks are much more difficult

for oblique images due to observed object parallax. There

has been recent success in learning to regress an object’s

geocentric pose, defined as height above ground and ori-

entation with respect to gravity, by training with airborne

lidar registered to satellite images. We present a model

for this novel task that exploits affine invariance properties

to outperform state of the art performance by a wide mar-

gin. We also address practical issues required to deploy this

method in the wild for real-world applications. Our data

and code are publicly available 1.

1. Introduction

The ability to accurately estimate 3D scene geometry

from a single satellite image can dramatically improve auto-

mated scene understanding for Earth observation tasks such

as urban development monitoring and damage assessment

1https://github.com/pubgeo/monocular-geocentric-pose

after natural disasters. Most methods for feature mapping

[8], map alignment [4], and change detection [9] require

near-nadir images for good performance. Geospatially lo-

calizing features in more oblique images is challenging due

to above-ground image parallax and occlusion [40]. These

issues can be addressed explicitly with known 3D scene ge-

ometry, but such information is generally not known in ad-

vance. Until recently, methods for predicting this 3D ge-

ometry from a single satellite image also relied on near-

nadir imaging geometry for good performance [38, 29, 27].

Christie et al. [6] recently proposed a method to address

this challenge with oblique images by regressing geocentric

pose, defined as an object’s height above ground and ori-

entation with respect to gravity [14]. Their method, super-

vised by lidar, represents geocentric pose with pixel-level

object heights and vector fields mapping surface pixels to

ground level. While they demonstrated promising initial

results, their model fails to reliably predict heights for tall

buildings. In this work, we present a solution that exploits

affine invariances to outperform state of the art by a wide

margin (Fig. 2). Our model produces accurate heights and

vector fields even for very tall buildings and produces ac-

curate occlusion maps (Fig. 1). We also explore practical

issues required to deploy our method for real-world appli-

cations. Specifically, we make the following contributions:



(1) We review affine imaging geometry and exploit invari-

ances to explicitly model the relationship between object

heights and the vector field that maps surface features to

ground level in an image. (2) To improve prediction of taller

building heights, we propose a novel strategy for fast aug-

mentations to synthetically increase the heights of objects

by inverting geocentric pose vector fields. (3) We outper-

form state of the art for height prediction [38, 29, 27, 19, 43]

and geocentric pose [6] and demonstrate accurate predic-

tions even for orthorectified images that violate our affine

assumptions. (4) We present the first demonstration of su-

pervising this task without lidar, using only geometry de-

rived from images that can be produced anywhere on Earth.

(5) We extend the public dataset from [6] to increase geo-

graphic diversity and produce consistent train and test sets

for public leaderboard evaluation. We make our code avail-

able as a strong baseline to promote further research.

Figure 2: State of the art FLOW-HA from Christie et al.

[6] under-predicts heights and vector field magnitudes for

tall buildings. Our model and augmentations exploit affine

invariances to produce accurate predictions. Darker gray is

taller, and red arrows map surface features to ground level.

2. Related Work

2.1. Monocular Height Prediction

Deep networks for monocular depth prediction [12, 42,

13, 23] have been very successful for applications such as

autonomous vehicles where the observed scene is tens of

meters from the sensor. Inspired by these successes, recent

work has demonstrated similar methods to predict height

above ground for Earth observation images where the scene

can be hundreds of kilometers from the sensor [29].

Height and semantic category are complementary intrin-

sic object attributes. Knowledge of semantic category can

constrain height predictions. Trivial examples for remote

sensing are ground and water that have no height. Other fea-

tures such as trees and buildings have known distributions

of physically plausible heights. Kunwar [19] and Zheng et

al. [43] leveraged semantic cues as priors for height predic-

tion to win the 2019 Data Fusion Contest (DFC19) single-

view semantic 3D challenge track [20]. Srivistava et al.

[38] proposed to learn semantics and height jointly with a

multi-task deep network. Mahmud et al. [27] proposed an

especially intriguing model that jointly learns to perform

semantic segmentation, height above ground, and a signed

distance function from building boundaries. This method

in particular relies on near-nadir views where building foot-

prints are consistent with observed roof appearance.

In our work, we explicitly account for oblique imaging

geometry, making no assumption of near-nadir views. We

do not explicitly reason about semantics, but we still find the

height estimates from our geocentric pose model are more

accurate than those produced by these state of the art height

prediction models that do (Sec. 5.2). We expect that finer-

grained semantic labels for buildings (e.g., commercial vs.

residential) or other attributes such as building footprint size

may provide more useful complementary information to im-

prove our model. We leave these questions for future work.

2.2. Geocentric Pose

Geocentric pose, defined as height above ground and ori-

entation with respect to gravity, was originally proposed by

Gupta el al. [14] and used as a feature for object recogni-

tion and scene classification. They also proposed a three-

channel geocentric pose representation called HHA that

encodes horizontal disparity (equivalent to depth), height

above ground, and orientation with respect to gravity [15].

This representation has since been used by many works fo-

cused on scene understanding [5, 32, 24, 31, 39, 26, 36, 25].

Inspired by the success of the this representation,

Christie et al. [6] proposed learning geocentric pose for rec-

tifying oblique monocular satellite images and produced the

first public dataset for this task, including satellite images

over three cities in the United States. Their model (Fig. 4)

relates height as a prior for vector field magnitude without

an adequate mechanism to learn the true relationship, re-

sulting in poor estimates for tall buildings. In our work, we

explicitly model this relationship based on the geometry of

affine projection, resulting in more accurate predictions for

tall objects. We are currently not aware of any other pub-

lished work on this topic. To promote further research and

enable a public leaderboard for evaluation, we extend the

dataset from [6] to include a challenging city outside the

United States and to address inconsistencies in the original

dataset (Sec. 5.1).

3. Affine Geocentric Pose

Satellite pushbroom sensors are well-approximated lo-

cally (e.g., for processing image tiles) as affine cameras [7],

so we define our geocentric pose representation explicitly

for an affine camera. Depth variations for objects in the

scene are much smaller than depth from the sensor, angu-

lar field of view is narrow for a local sub-image, and the

sensor maintains approximately the same attitude and speed

throughout image acquisition. Fig. 3 illustrates the invariant
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properties of affine projection compared to the more general

perspective projection model, as described in detail in [16].

We exploit the invariant property of parallelism to define a

single angle of parallel projection θ for each image. Un-

like [6], we also exploit preservation of the ratio of lengths

on parallel lines to relate object heights with magnitudes of

vectors mapping surface features to ground level.

We now define the mathematical assumptions in our

model. Given image I with 2x3 affine projection matrix

A, we define geocentric pose g (I) = {s, θ,h}, where the

vector h is height above ground level (AGL) for each pixel

in image I , θ is the angle of parallel projection in the im-

age plane, and s is the scale factor relating lengths of lines

along those parallel projections in world coordinates and

their corresponding lengths in image coordinates.

First we define affine projection A of any two vertically

aligned world coordinates P1 and P2 to their image coordi-

nates p1 and p2 observed in image I .

p1 =
(

x1 y1
)T

= AP1 (1)

p2 =
(

x2 y2
)T

= AP2 (2)

P1 =
(

X Y Z1

)T
(3)

P2 =
(

X Y Z2

)T
;Z2 > Z1 (4)

We then define height h as the distance between P1 and

P2 (meters) and magnitude m as the distance between p1
and p2 (pixels).

h = Z2 − Z1;m = ‖p2 − p1‖ (5)

Given these two image coordinates p1 and p2, height h (me-

ters), and corresponding projected magnitude m (pixels),

we determine the angle of parallel projection θ (radians) and

scale factor s (pixels/meter). Observe that scale s is zero for

local nadir imaging geometry.

θ = atan2 (y2 − y1, x2 − x1) ; s = m/h (6)

Without loss of generality, we constrain all points P 1 to be

at ground level and we define the vector field ṗ mapping

surface features p
2

to ground level p
1

in the image plane.

ṗ = m

(

cosθ
sinθ

)

= sh

(

cosθ
sinθ

)

(7)

This representation for geocentric pose is valid for satel-

lite images with locally affine imaging geometry; however,

often satellite images are distributed in orthorectified form.

Orthorectification for a single image is a pixel remapping

that approximates orthographic, z-axis aligned, projection

with fixed pixel scale (meters) and minimizes terrain re-

lief displacement using a ground-level elevation model [28].

For an affine camera, we define orthorectification as the

Figure 3: Affine projection A maps world coordinates P

to image coordinates p, preserving invariant properties of

parallelism and ratio of lengths on parallel lines.

pixel remapping wZ acquired by inverting 2x3 affine matrix

A with elevation model z0 and scaling by K = diag(k, k)
defined by the desired pixel scale.

wZ (p; z0) = K

(

a11 a12
a21 a22

)

−1 [

p−

(

a13
a23

)

z0

]

(8)

This function is invertible given the elevation model and

camera metadata. For scenes with little terrain relief such

that z0 is approximately a constant or linear function, the

orthorectified projection is approximately affine with equiv-

alent scale and angle values for estimating geocentric pose.

We demonstrate only a modest reduction in accuracy for our

model applied to orthorectified images (Tab. 8).

4. Methods

4.1. Model and Optimization

We estimate geocentric pose g (I) = {s, θ,h} with scale

prediction defined by the known relationship between mag-

nitude and height defined in (6). We parameterize our model

in a multi-task deep network with a ResNet-34 encoder [17]

and U-Net decoder [34] and supervise training with known

height AGL values derived from lidar and multi-view stereo

(MVS). We attach independent output heads for height and

vector field magnitudes to the decoder, with consistency en-

couraged by solving for image-level scale as described be-

low and shown in Fig. 4. This overcomes one of the most

significant weaknesses of [6] which relates height as a prior

for magnitude with an insufficient mechanism to learn the

known relationship.

We represent vector fields with magnitude m and an-

gle θ encoded as the vector (cosθ, sinθ) to avoid ambiguity

at zero. We explicitly supervise learning of both magni-

tude m and height h as orthogonal observations to enrich

the features embedded in the encoder and decoder layers.

We also explicitly supervise learning of scale which pro-

vides a gradient for learning to predict consistent magni-

tude and height values from images with or without explicit

height labels. For some applications, scale will be avail-
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Figure 4: Christie et al. [6] relate height as a prior for vector

magnitude. Our model explicitly encodes the known affine

relationship with a custom least squares solver layer.

able in metadata, so in addition to helping enforce consis-

tency during training, having it as a prediction at test time

can help identify regions where the model is performing

poorly. Scale is predicted in the model with a custom least

squares solver layer implemented using the pseudo-inverse,

s =
(

hTh
)

−1

hTm.

The total loss L minimized in training is a weighted

sum of mean squared error (MSE) losses for all terms,

L = fθLθ+fsLs + fhLh + fmLm. For height and mag-

nitude, MSE is implemented as the mean of MSE values

for each labeled image in a batch to both reduce sensitivity

to unlabeled pixels and allow for training images without

height labels to directly supervise height and magnitude; in

the latter case, height and magnitude MSE losses are zero

and only the scale loss is back-propagated through those

layers. We set weighting factors fθ=10, fs=10, fh=1, and

fm=2 to normalize value ranges. To improve training effi-

ciency and allow for a larger batch size, we down-sample

input images by a factor of two. Our batch size b=8 speeds

convergence for angle prediction since each training image

provides only a single target sample. We use the Adam op-

timizer [18] with a learning rate of 1e-4 which we found

to improve convergence. For all experiments, we trained

models for 200 epochs.

4.2. Augmentation

The distributions for angle of parallel projection θ, scale

factor s relating height and magnitude, and object height h

are all heavily biased. Angle and scale are biased by the lim-

ited viewing geometries from satellite orbits, and very tall

objects are rare. We encourage generalization and address

bias with image remap augmentations wθ, ws, and wh.

wθ

(

p; θ̇
)

=

(

cosθ̇ sinθ̇

−sinθ̇ cosθ̇

)

p (9)

ws (p; ṡ) =

(

ṡ 0
0 ṡ

)

p (10)

wh

(

p; ḣ
)

= p+ ṁ

(

cosθ
sinθ

)

(11)

ṁ = − s
(

h+ ḣ
)

(12)

While image augmentations for rotation wθ and scale ws

are commonly applied to regularize training in deep net-

works and depend only on image coordinates, our height

augmentation wh inverts geocentric pose vectors to synthet-

ically increase building heights (Fig. 5). Note that shadows

are not adjusted by this simple but effective augmentation.

This does not appear to be an impediment, and we believe

that over-reliance on shadows should not be encouraged in

learning because they are very often not observed.

Figure 5: Affine geocentric pose enables height augmenta-

tions to address the long-tailed nature of height distributions

in the data. For this example, we remap above-ground fea-

tures in the original image (left) with 2.3x height (right) for

RGB images (top) and geocentric pose values (bottom).

4.3. MVS Supervision

The geocentric pose method presented in [6] relies en-

tirely on normalized digital surface model (nDSM) products

derived from airborne lidar to define height above ground

for supervising learning; however, lidar is not available or

practical to collect in many world regions. MVS methods

for satellite images [10, 41, 37, 30, 33, 35] offer a more

widely available alternative to lidar for training our model,

and accuracy for these methods is comparable for larger fea-

tures relevant to mapping applications [3, 22, 20]. To ex-

plore this, we adapted the Urban Semantic 3D (US3D) ren-

dering pipeline [2] to produce labeled datasets using height

derived from MVS. In our experiments, we demonstrate that

models trained with lidar and commercially acquired MVS

derived heights both perform well (Tab. 9).
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5. Experiments

5.1. Datasets

We demonstrate our methods with the US3D public

dataset [2], first developed for the 2019 IEEE GRSS Data

Fusion Contest (DFC19) [21] and later extended by Christie

et al. [6] to explore the geocentric pose regression task.

US3D includes satellite images and lidar-derived reference

labels covering Jacksonville, Florida (JAX), Omaha, Ne-

braska (OMA), and Atlanta, Georgia (ATL). US3D images

are 2048x2048 pixels except for those over ATL with off-

nadir angle greater than 35 degrees. Those images were

cropped much smaller, making them inconsistent with the

rest of the dataset. Far off-nadir commercial satellite im-

ages are uncommon and often undesirable, as described by

[40]. For better consistency, we excluded the cropped im-

ages for training and testing our models.

We further extended the public US3D dataset to include

satellite images of San Fernando, Argentina (ARG) from

the 2016 Multi-View Stereo 3D Mapping Challenge [3].

Until now, US3D was limited to cities within the United

States with Western architecture. ARG presents additional

challenges, with fewer tall buildings and increased diversity

in architectural styles, including very closely spaced build-

ings. Our current model does not perform as well for ARG

as for the other sites, and we hope that publicly releasing

this data will encourage further research to improve perfor-

mance. Our extended dataset is illustrated in Fig. 6. Data

statistics are provided in a supplement [1].

5.2. Results

State of the Art for Geocentric Pose: We first demon-

strate that our model dramatically improves upon the state

of the art method presented by Christie et al. [6] which,

to the best of our knowledge, is the only published work

on this task. Their FLOW-H model was trained without

augmentations and FLOW-HA with rotation augmentations.

We present results for our model trained with and without

augmentations and trained with only the DFC19 train set

including Jacksonville and Omaha, with only the ATL train

set, and with the train sets from all four cities. Results are

shown in Tab. 1 and Fig. 7 for the DFC19 test set and in

Tab. 2 for the ATL test set. We report root mean square er-

ror (RMSE) values for magnitude (pixels), angle (degrees),

height (meters), and endpoint error (pixels). Mean absolute

error (MAE) was reported by [6], so we also demonstrate

our improvements in terms of MAE in a supplement [1].

Observe that our model design and augmentations each im-

prove performance and reduce over-fitting for DFC19 but

that augmentations sometimes harm performance for ATL.

We believe this is because both train and test ATL images

were drawn from a much less diverse single pass, same day

satellite collection over a single city. Also note that training

Method Train Mag Angle Endpoint Height

FLOW-HA [6] DFC19 7.08 29.05 7.57 6.12

FLOW-H [6] DFC19 6.12 21.84 7.09 5.61

Ours-NoAug DFC19 5.06 16.53 5.58 4.81

Ours DFC19 4.07 13.73 4.31 4.00

Ours-NoAug All Cities 5.19 20.51 5.91 4.86

Ours All Cities 4.14 11.79 4.29 3.89

Table 1: Our method improves on state of the art RMSE for

the DFC19 test set.

Method Train Mag Angle Endpoint Height

FLOW-HA [6] ATL 7.53 20.54 8.19 10.58

FLOW-H [6] ATL 5.62 14.41 5.88 8.95

Ours-NoAug ATL 3.50 11.00 3.93 4.88

Ours ATL 3.45 13.19 3.88 4.89

Ours-NoAug All Cities 3.46 10.67 3.83 4.84

Ours All Cities 3.50 10.67 3.72 4.95

Table 2: Our method improves on state of the art RMSE for

the ATL test set.

Method Mag Angle Endpoint Height

FLOW-HA [6] 3.82 31.96 4.21 3.09

Ours-NoAug 3.97 19.89 4.14 3.52

Ours 3.32 23.28 3.56 3.00

Table 3: Our method improves on state of the art RMSE for

the challenging new ARG test site. All models were trained

on all four sites.

on additional cities consistently improves angle predictions

for both test sets.

For both test sets, our model outperforms FLOW-HA

even with no augmentations. We believe a primary con-

tributing factor to [6] underestimating heights for taller

buildings is its inadequate modeling of the relationship be-

tween height and vector field magnitude. As evidenced by

our metric results and visually in Fig. 7, our model that more

directly relates height and magnitude with an image-level

scale factor produces more accurate predictions.

To evaluate FLOW-HA performance for our new ARG

test set, we trained it from scratch with all four cities and

compared to our model both with and without augmenta-

tions (Tab. 3). Since very few buildings in this region are

tall, FLOW-HA is more competitive with our model trained

without augmentations; however, our model trained with

augmentations provides a significant improvement.

State of the Art for Height Prediction: We also com-

pare our results with methods for pixel-level height predic-

tion using both our full geocentric pose model and the same

model with only a height prediction head. For fair compari-
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Figure 6: US3D includes satellite images from WorldView 2 and WorldView 3 and covers a variety of geographic location,

season, viewpoint, and resolution. We added data for San Fernando, Argentina which presents new challenges, with fewer

tall buildings and increased architectural diversity. Example images are shown. Statistics are provided in a supplement [1].

Figure 7: AGL heights and vector magnitudes are compared

to reference values for the DFC19 test set. Pixel inten-

sity indicates count. Our model significantly improves upon

FLOW-HA [6], particularly for infrequent tall buildings.

son with [27, 29, 38, 6], we retrained and tested our models

and [6] using the custom DFC19 train and test sets used in

[27]. For comparison with [19, 43, 6], we tested against

the DFC19 test set used for [20]. Results are reported in

Tab. 4 and Tab. 5, respectively. Both models achieve state

of the art accuracy, with our single-task model outperform-

ing the multi-task model. We attribute this improvement to

our augmentations that address biases in the data.

Geographic Diversity: We assess model performance

for geographically diverse cities shown in Fig. 6. Results

are shown in Tab. 6 for our full model, the same model

trained without augmentations, a version with only a height

regression head, and our model fine tuned for twenty epochs

on each individual city. We report RMSE for angle, scale,

height, and vector field endpoints. Here we see a mod-

Method MAE RMSE

Srivastava et al. [38] 3.74 5.85

Mou and Zhu [29] 3.62 5.40

Mahmud et al. [27] 3.34 5.02

Christie et al. [6] 2.76 4.33

Ours (Height) 2.52 3.89

Ours (Full) 2.78 4.07

Table 4: Our pixel-level building height predictions im-

prove on state of the art MAE and RMSE (meters) for the

custom DFC19 test set used by [27].

Method All MAE All RMSE Bldgs MAE Bldgs RMSE

Kunwar [19] 2.69 9.26 8.33 19.65

Zheng et al. [43] 2.94 9.24 8.72 19.32

Christie et al. [6] 2.98 8.23 7.73 16.87

Ours (Height) 2.31 5.46 5.75 10.69

Ours (Full) 2.44 5.76 6.14 11.35

Table 5: Our pixel-level height predictions improve on state

of the art MAE and RMSE (meters) for the DFC19 test set

used for [20].

est improvement in height prediction with our full model,

though not for ATL which includes only images from a sin-

gle pass as discussed above.

We might expect fine tuning our model for each site to

notably improve performance given unique geographic ap-

pearance and differences in the image resolutions among

sites. After fine tuning, we see similar or modestly im-

proved performance for all sites except for OMA which has

limited appearance diversity.

In a supplement [1], we also report the R2 metric for

height and endpoint and discuss its value for comparing

performance among cities. Height prediction is especially

challenging for ARG due to both closely spaced residential
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Prediction City Full NoAug Height Tuned

Angle (deg) JAX 12.48 20.40 N/A 10.26

OMA 11.31 20.58 N/A 17.90

ATL 10.67 10.67 N/A 9.89

ARG 23.28 19.89 N/A 20.48

Scale (pix/m) JAX 0.11 0.17 N/A 0.11

OMA 0.11 0.16 N/A 0.11

ATL 0.10 0.12 N/A 0.08

ARG 0.16 0.19 N/A 0.13

Height (m) JAX 3.33 3.69 3.67 3.23

OMA 4.15 5.51 4.20 4.32

ATL 4.86 4.84 4.73 4.67

ARG 3.00 3.52 3.27 3.06

Endpoint (pix) JAX 3.61 3.69 N/A 3.53

OMA 4.63 6.80 N/A 5.19

ATL 3.66 3.83 N/A 3.45

ARG 3.56 4.14 N/A 3.58

Table 6: RMSE is compared with our full model, without

augmentations, with only a height prediction head, and with

the full model fine tuned for each city.

housing and the infrequency and relative uniqueness of the

taller buildings. While RMSE is low relative to other sites

due to the predominance of low height buildings, the R2

metric, which is normalized by the value range, is poor due

to inaccurate predictions for rare tall structures.

Test-time Augmentations: To better understand our

model’s ability to generalize, we tested models trained with

and without augmentations on all cities with random ro-

tation, scale, and height augmentations. Results in Tab. 7

show significant improvement in generalization to account

for a broader range of conditions than observed in the lim-

ited test sets. Our height augmentations help overcome the

issue of long-tailed height distributions in the training data

by significantly improving height estimation both with and

without test-time height augmentations; however, it does

not learn to generalize for these appearance changes as well

as for scale and rotation angle. Also note that angle pre-

dictions are more accurate for images with test-time height

augmentations because angles are more observable when

vector magnitudes are larger.

Orthorectified Images: As discussed in Sec. 3, satellite

images are often orthorectified for convenient dissemination

and georeferencing on a Cartesian grid. This orthorectifi-

cation distorts images such that our affine assumptions are

violated. To evaluate the impact on model performance, we

applied orthorectification to all test images and compared

accuracies to the original test images as shown in Tab. 8.

Angle prediction is improved due to a smaller value range,

but scale accuracy is degraded significantly. We then or-

thorectified the training images and fine tuned the model for

Prediction Test Aug Ours NoAug

Angle (deg) None 17.73 17.72

Scale 19.00 34.93

Angle 20.18 87.72

Height 14.61 17.92

Scale (pix/m) None 0.13 0.17

Scale 0.18 0.28

Angle 0.15 0.29

Height 0.17 0.17

Height (m) None 3.84 4.67

Scale 4.24 5.34

Angle 4.20 8.17

Height 6.18 7.27

Endpoint (pix) None 3.84 4.84

Scale 5.05 7.17

Angle 4.17 9.76

Height 5.47 7.07

Table 7: Test-time augmentations demonstrate improved

RMSE over a range of conditions not observed in the test

set. Results are for test images from all four cities.

twenty epochs. The resulting predictions are only modestly

less accurate than their affine counterparts, indicating that

our model can produce accurate predictions when applied

to typical orthorectified images. Rare high terrain slopes

(meters) are not present in our data set but can induce more

significant rectification errors (pixels) in orthorectified im-

ages. We believe modest changes to our model implemen-

tation can address this issue, and we plan to pursue this in

future work.

Building Segmentation: We compare performance with

non-building above-ground feature heights set to zero in

train and test sets (Tab. 8). Performance is comparable for

this narrowly-defined task, suggesting that our method can

be used for building segmentation and rectification when

semantic labels are available for training.

Rectification to Ground Level: Rectifying building

segmentation labels into footprints is one of the appli-

cations of our work. We demonstrate the ability of our

model to perform this task by plotting instance-level

intersection over union (IoU) as a function of maximum

vector magnitude inside each instance for both unrectified

building labels and our rectified outputs compared to

building footprints. We also show RMS IoU as a function

of a maximum magnitude threshold for building instances

included in the calculation (Fig. 8). In both cases, we

evaluate a subset of the building test instances where

warping with reference geocentric pose values achieves a

minimum IoU of 0.9. This helps eliminate instances where

occlusion prevents accurate geocentric pose regression.
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Test Set Tuned Angle Scale Height Endpoint

All pixels No 17.73 0.13 3.84 3.84

All pixels ortho No 12.99 0.26 4.32 5.41

All pixels ortho Yes 10.65 0.19 3.95 4.57

Building pixels No 17.81 0.14 3.48 3.41

Buildings ortho No 10.00 0.19 4.78 5.42

Buildings ortho Yes 10.70 0.13 3.94 4.17

Table 8: Predictions for orthorectified images where affine

assumptions are violated are only modestly less accurate

than their affine counterparts after fine tuning. Metrics

shown are RMSE. All pixels results are for all four cities.

Results for only building pixels do not include ARG.

Figure 8: Instance-level building IoU improvement with

rectification is shown versus max vector magnitude inside

the instance (bottom), and RMS IoU is shown for instances

with max magnitude above a threshold (top).

MVS Supervision: For experiments to supervise learn-

ing with MVS instead of lidar, discussed in Sec. 4.3, we

used commercial Vricon MVS products that overlap the

DFC19 Jacksonville and Omaha train and test sets. While

our current MVS dataset is limited to a subset of the DFC19

images (1461/225 train/test images), MVS data can be pro-

duced over large scales anywhere in the world from satellite

images. We believe this is important for providing sufficient

diversity in training to promote generalization.

We trained our model separately with lidar and MVS and

then tested against both lidar and MVS reference values. As

shown in Tab. 9, both models achieved comparable accura-

Train Test Angle Scale Height Endpoint

Lidar Lidar 13.72 0.13 4.56 5.01

Lidar MVS 13.72 0.13 5.49 5.96

MVS Lidar 19.23 0.15 5.06 5.64

MVS MVS 19.23 0.15 4.52 4.94

Table 9: RMSE for models supervised with MVS are com-

parable to those supervised with lidar.

cies for both heights and vector field endpoints across both

evaluation types. Models trained using one source of ref-

erence data performed better when evaluating against the

same source (e.g., train and test with lidar), but both models

performed well. Angle and scale predictions appear surpris-

ingly less accurate for the model trained with MVS; how-

ever, these are image-level predictions, so the differences

for only 225 test images are unlikely to be significant.

6. Discussion

Geocentric pose regression from oblique monocular re-

mote sensing images has the potential to dramatically im-

prove the utility of oblique images for mapping applica-

tions. In this work, we presented our method that exploits

invariant properties of affine imaging geometry to achieve

state of the art performance for this task and also for pixel-

level height prediction. Our affine approximation is very

accurate for the 2048 x 2048 pixel sub-images we extract

from large satellite images. For efficient processing of full

images, our method can be applied in parallel to overlap-

ping image tiles.

We also addressed challenges that must be overcome

to deploy a solution in the real world, including super-

vising learning without lidar, reducing bias in training to

enable generalization, and ensuring good performance for

orthorectified images which are commonly available but

which violate affine assumptions. Results rectifying im-

ages, building labels, and heights to ground level indicate

the value of our approach for a range of mapping tasks.

Our open source code provides a strong baseline for pub-

lic leaderboard evaluation. In a supplement [1], we provide

additional details of the public dataset [11] and metrics for

evaluation as well as examples of common failure cases to

motive further research.
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