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Abstract

In deep learning-based object detection on remote sens-

ing domain, nuisance factors, which affect observed vari-

ables while not affecting predictor variables, often matters

because they cause domain changes. Previously, nuisance

disentangled feature transformation (NDFT) was proposed

to build domain-invariant feature extractor with with knowl-

edge of nuisance factors. However, NDFT requires enor-

mous time in a training phase, so it has been impractical.

In this paper, we introduce our proposed method, A-NDFT,

which is an improvement to NDFT. A-NDFT utilizes two

acceleration techniques, feature replay and slow learner.

Consequently, on a large-scale UAVDT benchmark, it is

shown that our framework can reduce the training time of

NDFT from 31 hours to 3 hours while still maintaining the

performance. The code will be made publicly available on-

line1.

1. Introduction

Nuisance factors matter everywhere in deep learning-

based object detection in remote sensing field. In imagery

obtained from an unmanned aerial vehicle (UAV), shooting

height, shooting angle, and shooting time significantly in-

fluence the appearance of scene and objects [4, 44]. In im-

agery obtained from satellites, the type of satellite, ground

sample distance, azimuth/altitude angle of the satellite, az-

imuth/altitude angle of the sun, and various environmen-

tal factors work in the same way [1, 34]. These nuisance

variables are marginally independent from target variables,

but affect observation variables [37, 30, 17]. Therefore, the

learned representation in the deep object detector can be de-

pendent on nuisance variables. It induces over-fitting biased

towards frequently appearing nuisance variables.

*Work done as intern at SI Analytics.
†Corresponding author.
1https://github.com/2-Chae/A-NDFT

(a) Baseline

(b) A-NDFT

Figure 1: Detection examples and comparison with Faster

R-CNN baseline and the corresponding A-NDFT. Red

boxes denote new correct detections where the baseline

failed to detect, but A-NDFT did.

In the perspective of domain shift, the issue of nuisance

factors in object detection has been addressed from various

domain adaptation approaches. [13] addressed the domain

adaptation problem from the perspective of noise-resistant

robust learning. [6, 5, 31] leveraged image composition be-

tween seen object instances and unseen scenes. [39] pro-

posed a novel graphical framework on category-level do-

main alignment. [16] adopted multiple experts to capture

variations of the object appearance better. Each of these

https://github.com/2-Chae/A-NDFT


methodologies has revealed its strengths, but most of them

are not suitable to deal with the nuisance factors appear-

ing in the remote sensing field described above. This is

because these methods cannot handle massive numbers of

fine-grained domains.

Instead, in this paper, we focus on the target method,

nuisance disentangled feature transformation (NDFT) [35].

Motivated from privacy-preserving visual recognition [36]

and disentangled feature learning [19], NDFT makes use

of an adversarial learning framework to build a domain-

robust object detector. Unlike many of the previously men-

tioned methodologies, it is suitable for dealing with the

massive number of nuisance factors. Moreover, to the best

of our knowledge, NDFT’s original literature is the pioneer-

ing work to show the effectiveness of fine-grained domain-

invariant learning in UAV images. [35] reported that in

the UAVDT benchmark accompanying the Faster R-CNN

model, the introduction of NDFT had increased mAP by

over 2%. It results from using only meta-data that can be

obtained for free without any additional labeling work. For

this reason, NDFT is expressed as ’free lunch’ in their pa-

per.

Contrary to this attraction, in this paper, we point out that

the domain robustness obtained with NDFT is not actually

a free lunch. In other words, the use of NDFT requires a lot

of training time. We analyze the causes of these phenom-

ena and suggest alternative strategies to train NDFT models.

Specifically, our contributions in this paper are as follows:

• We pointed out the problem of slow training of NDFT

and analyzed the causes of it.

• Based on the problem analysis, we present an alterna-

tive learning methodology for NDFT. One is the fea-

ture replay, and another is the slow learner.

• The experiment results in the UAVDT benchmark

show that our proposed A-NDFT can significantly re-

duce the training time while maintaining the perfor-

mance of the existing NDFT.

2. Related Works

2.1. Domain Shift of Remote Sensing

Domain shift problem is ubiquitous in remote sensing

applications. Several works have reported that machine

learning models on remote sensing suffered domain shift

caused by various nuisance factors, e.g., viewpoint geom-

etry, atmospheric effect, temporal variability, and sensor

properties [2]. In [34], it was discussed that most of the

existing satellite datasets were collected with only the ”at

nadir” data and thus showed inferior performance in off-

nadir observation data. [14, 35] observed the performance

drop of object detector according to the view angle, which

is trained on VisDrone dataset [44] and UAVDT dataset [4].

[29] observed the phenomenon that the model performance

deteriorated due to the change in color distribution even

when sensing different regions with the same satellite.

Under awareness of the problem, a great deal of research

has dealt with domain adaptation problem in remote sensing

[27, 21, 3, 15, 28, 29]. Most of the existing work has dealt

with domain adaptation for classification or semantic seg-

mentation. Moreover, these studies have assumed a multi-

source domain adaptation situation in which the source do-

main and the target domain are entirely separated. On the

contrary, our study is based on the NDFT model, so we

aim to construct a robust object detector in fine-grained do-

mains.

2.2. Adversarial Learning for Domain Invariance

There are quite a number of studies using adversarial

frameworks to impart domain invariance to deep learning

models [8, 38, 42, 11, 12, 41, 32]. [8] introduced domain-

adversarial neural network (DANN), an adversarial frame-

work between domain predictor and feature extractor. In

DANN, the feature extractor is trained to decrease the task

loss in the source domain and increase the loss of the do-

main predictor. In [38], adversarial learning for training the

feature extractor was performed in the form of maximizing

the entropy of the domain predictor’s output. In addition,

studies on domain invariance through adversarial learning

have been dealt with in various aspects such as neural net-

work architecture [12], extension to multiple domains [42],

stabilization techniques of training [11, 41], and methods of

dealing with continuous domains [32].

Similarly, our study explores the NDFT model that

acquires domain invariance through adversarial learning.

Therefore, it can be seen that this study also deals with this

category of topics. Nevertheless, at the same time, our work

only focuses on convergence speed and acceleration tech-

niques of the NDFT model. Therefore, our research has a

point that is differentiated from the viewpoint of the existing

researches.

3. Problem Formulation and Motivations

3.1. Domain­invariant Feature for Object Detection

Let X be the domain of the input image and X̃ be the

space of the intermediate features. The domain to repre-

sent localization and classification results of each possi-

ble region obtained by the detection task is denoted as P .

The backbone network fT (·; θT ) : X 7→ X̃ takes the in-

put image X ∈ X and produces an intermediate feature

fT (X; θT ). The detection task network fO(·; θO) : X̃ 7→ P
receives this feature and calculates classification and local-

ization for all possible region candidates. When the two

networks are combined (i.e. fO(fT (·; θT ); θO) : X 7→ P),

it can be interpreted as a generic object detector. By abuse



Algorithm 1: NDFT: Nuisance Disentangled Feature Transform

Input : fT (·; θT ) : X 7→ X̃ , a backbone network

fO(·; θO) : X̃ 7→ P , a module for object detection task branch

{fN,i(·; θN,i)}
k
i=1 : X̃ 7→ YN , an ordered set of k modules for the nuisance prediction branches

D, M -size training dataset consisting of each triplet (X,YO, YN )
Required: {γi}

k
i=1, an ordered set of weight coefficients

T , a number of training iterations

α, a threshold value for nuisance prediction performance

ψ, a hyper-parameter indicating restart cycle of nuisance predictor

ηU and ηN , two scalar values for learning rate

Defined : θU ← θT ∪ θO and θN.U ← θN,1 ∪ · · · ∪ θN,k

Output : fO(fT (·; θT ); θO) : X 7→ P , domain-invariant object detector

1 for t in range(T ) do

2 Sample a mini-batch of n data {(Xj , Y j
O, Y

j
N )}nj=1 from D;

3 θU ← θU − ηU∇θU
1

n

n
∑

j=1

[

LO(fO(fT (X
j)), Y j

O) +

k
∑

i=1

γiLne(fN,i(fT (X
j)))

]

;

4 while min1≤i≤k

[

1

n

n
∑

j=1

[1(argmax(fN,i(fT (X
j))) = Y j

N,i)]
]

≤ α do

5 θN,U ← θN,U − ηN∇θN,U

1

n

n
∑

j=1

k
∑

i=1

LN (fN,i(fT (X
j)), Y j

N,i);

6 end

7 if t%ψ = 0 then

8 Re-initialize θN,U ;

9 end

10 end

of notation, we do not consider the difference between one-

stage [18, 43] and two-stage detectors [23] for simplicity.

In addition, the model parameter is omitted when it is ob-

vious enough that it is not necessary to specify it, e.g.,

fT (·; θT ) = fT (·). The loss function for training this object

detector is denoted as LO(·, ·) : P × YO 7→ R, and LO is

often defined as the weighted sum of the localization loss

and the classification loss.

In our setup, we have D, M -size dataset as the train-

ing data. Every single instance of D is composed of triplet

(X,YO, YN ). X ∈ X , YO ∈ YO, and YN ∈ YN are infor-

mation about image data, object detection labeling, and nui-

sance factors, respectively. For YN to be a nuisance factor,

YO and YN must be marginally independent. This means

that the generation process for the observation of X is de-

pendent on YO and YN , but YO and YN are independently

generated. For example, in object detection on an outdoor

UAV image, the location and scale of the detection target are

usually independent of whether it is day or night at the time

of shooting. However, the appearance of the image may de-

pend on the object in the image and the photographed time.

Typically, the object detector fO(fT (·)) is trained to map

from the image X to the object label YO. It can over-fit be-

cause of X’s dependence on YN . The variation of X due

to the change in YN is expressed as X ′, and fO(fT (X))

may be different from fO(fT (X
′)). If the vast majority

of image data included in the training dataset were taken

during the day, this model might perform poorly on im-

ages taken at night. This intuition motivates the feature ex-

tractor’s domain-invariant properties. In other words, we

would like to make the backbone network fT (·) to have the

domain-invariant property fT (X) = fT (X
′).

3.2. Nuisance Disentangled Feature Transform

For building a domain-invariant object detector, [35] for-

mulated fine-grained cross-domain object detection as an

adversarial training framework [9]. Motivated by privacy-

preserving visual recognition [36], they proposed three-

party game among where three players, a backbone network

fT (X; θT ), a detection task network fO(·; θO), and a nui-

sance predictor fN (· : θN ) : X̃ 7→ YN .

The nuisance predictor fN is usually a softmax classifier

that predicts YN by receiving features from the backbone

network. Therefore, the nuisance predictor fN is trained

to minimize the loss LN , which is the surrogate of the

nuisance prediction performance, e.g., multi-class cross-

entropy loss. Conversely, the backbone network fT and the

detection task network fO are trained to maximize the nui-

sance prediction loss LN while minimizing the object de-

tection task loss LO. When considering multiple nuisance



prediction tasks, the training procedure of the three mod-

ules is formulated with an alternative optimization of the

following two objectives:

argmin
θO,θT

LO(fO(fT (X)), YO)−

k∑

i=1

γiLN (fN,i(fT (X)), YN,i),

argmin
θN,1,··· ,θN,k

LN (fN,i(fT (X)), YN,i) (1)

where k denotes the number of nuisance factors, and the i-

th elements related to them are denoted as (·)N,i. γi ∈ R≥0

is weight coefficient for balancing LO and LN .

To avoid convergence problems in GAN training [7], the

authors of [35] designed a sophisticated training strategy.

This novel training strategy includes the use of negative en-

tropy loss [20], performance monitoring of nuisance predic-

tors, and re-starting tricks [36]. They named the fT (·; θT )
learned by the training loop, including this modification as

the Nuisance Disentangled Feature Transform (NDFT). Al-

gorithm 1 depicts the main training loop of NDFT, and the

three essential details described in each line are:

1. Line 3: Instead of using gradient reversal trick [8] (i.e.,

using −LN ), the negative entropy of the softmax vec-

tor, Lne, are adopted as the adversarial loss. This op-

tion was also introduced in other works [20, 41].

2. Line 4-6: To prevent each fN,i from becoming too

weak, the training performances of all k nuisance pre-

diction tasks are monitored. In a single alternative op-

timization, θN,U is updated until the prediction accu-

racy of all nuisance tasks is greater than α.

3. Line 7-9: To help prevent falling into bad local min-

ima, we reinitialize θN,U every ψ iterations. It is moti-

vated from [36].

The original work of NDFT reported that by using (almost

free) meta-data, the performance of the standard Faster R-

CNN [23] in the UAVDT benchmark dataset [4] could in-

crease mAP above 2%. For more details on NDFT, refer to

its original work [35].

3.3. Slow Convergence of NDFT

Although several UAV object detection benchmarks re-

vealed NDFT’s effectiveness, we point out its serious is-

sue for practice usage. That is, NDFT requires enormous

training time. In our early experiments, we tried to run

the author’s official code of NDFT2, and we found that the

training time of NDFT on UAVDT dataset was above 30

hours. In contrast, we also found that training their baseline,

a standard Faster R-CNN model, required only about three

hours. This training time difference indicates that NDFT is

2https://github.com/VITA-Group/UAV-NDFT

not truly ’free lunch’ in the aspect of computation and time

cost.

We point to several causes of NDFT’s slow training

speed. First, the nuisance prediction parameters θN,U is

updated with the backbone network parameters θU fixed.

Thus, repeated feed-forward operations through the back-

bone network (i.e., fT (X
j)) in Line 5 result in computa-

tional inefficiency. Second, in the object detection network,

it usually needs a lot of training iteration to fine-tune spe-

cific predictors with the parameters of the backbone net-

work fixed [33]. Considering the periodic parameter ini-

tialization heuristics in Line 7-9 together, the strict perfor-

mance monitoring policy (Line 4) can significantly reduce

the overall training speed. As mentioned in Section 3.2,

they control the over-fitting and under-fitting of the nui-

sance predictor. Therefore, it is not easy to achieve both this

adjustment and fast training by simply controlling hyper-

parameters α and ψ. We may need another strategy to

achieve rapid training while adjusting them appropriately.

4. Our Approach for Acceleration of NDFT

4.1. Feature Replay

NDFT [35] extracts features two times during each train-

ing iteration when training (1) NDFT module and object de-

tection module and (2) nuisance prediction modules. It uses

different mini-batches of examples, respectively. However,

we point out that the NDFT module’s feature extraction pro-

cess is computationally expensive and time-consuming. So

here we introduce feature replay, which avoids this redun-

dancy and guarantees faster learning.

We implement feature replay as a pooling queue con-

taining features from the past steps. During each training

iteration, features are extracted from the feature extractor,

and they are used as an input of the object detection branch

and the nuisance prediction branches, respectively. Before

moving on to the next step, we store these features in the

pooling queue (Figure 2). Note that we store features as

many as a batch size at once; the computational gain is also

dependent on the batch size. When training the nuisance

prediction branches, we do not extract features but use the

top element of the queue, thereby cutting down on train-

ing time. However, in this way, the nuisance prediction

branches might lose information about past inputs as they

only learn mini-batches at that point. We train the nuisance

prediction branches with all the elements in the queue for

every k iterations to learn without losing (Figure 3, Right).

Our feature replay can be seen as similar to ’image his-

tory’ in SimGAN [26] or ’experience replay’ in reinforce-

ment learning [22] and continual learning [25]. These are

intended to avoid catastrophic forgetting [24] of neural net-

works and stabilize the training process. However, unlike

other studies, our feature replay focuses on the redundancy

of computation and stores data points in feature space X̃ ,

https://github.com/VITA-Group/UAV-NDFT


Figure 2: Our proposed framework (A-NDFT). We have added a pooling queue used for feature replay to the original NDFT

framework. The encoded feature will be used for object detection and nuisance prediction, just as NDFT. Not only that, we

store the feature in the pooling queue to avoid an additional feed-forward process of the backbone network.

Figure 3: Training procedure of nuisance prediction branches. We adopt exponential moving average on parameters to avoid

forgetting past information while accepting current information. Here, sg means stop gradient (Left: slow runner). When

training nuisance branches for each iteration, we use features extracted and stored in the pooling queue when we learned

object detection branches from the previous step (Right: feature replay).

not in data space X .

4.2. Slow Learners

We notice that the nuisance prediction branches’ perfor-

mances keep fluctuating when training because, for every

iteration, we train the branches with the top element of the

queue of which the nuisance attributes may not be evenly

distributed. As a result, they continue to forget past infor-

mation while accepting the current ones. We want them to

learn slowly to make sure they are sufficiently trained, so

we adopt exponential moving average (EMA) of parame-

ters. We use EMA operation on nuisance predictors’ pa-

rameters to keep the average representation and accept new

data simultaneously, which slowly trains the model.

As in the left of Figure 3, we have model parameters be-

fore an update. We clone and annotate them as θ. These pa-

rameters θ are not updated during training; for that reason,

we denote stop-gradient (sg) operation [10] in that figure.

Let the current model parameters be ξ which have equiva-

lent to θ at this moment. Now we compute the parameters

of the next step as:

ξ ← βξ + (1− β)θ (2)

where β is a decay rate between 0 and 1.

Although this update method has almost the same con-

text as decreasing the learning rate in finding the center

point between the current and historical parameters, we

can still reduce the effort of finding the appropriate hyper-

parameters. Moreover, our slow learner is closely related to

the EMA-GAN [40]. However, unlike EMA-GAN, which



Algorithm 2: A-NDFT: Our Modified Version of Nuisance Disentangled Feature Transform

Input : Same with Algorithm 1

Required: {γi}
k
i=1, an ordered set of weight coefficients

T , a number of training iterations

Qs, a s-size FIFO queue for restoring intermediate features

β, the degree of weighting decrease for slow learning

φ, a hyper-parameter to indicate training cycle using Qs

ηU and ηN , two scalar values for learning rate

Defined : θU ← θT ∪ θO and θN,U ← θN,1 ∪ · · · ∪ θN,k

Output : fO(fT (·; θT ); θO) : X 7→ P , domain-invariant object detector

1 for to in range(T ) do

2 Sample a mini-batch of n data {(Xj , Y j
O, Y

j
N )}nj=1 from D;

3 F← {fT (X
j)}nj=1 and Qs.enqueue(F);

4 θU ← θU − ηU∇θU
1

n

n
∑

j=1

[

LO(fO(Fj), Y
j
O) +

k
∑

i=1

γiLne(fN,i(Fj))
]

where Fj = fT (X
j);

5 θN,U ← βθN,U + (1− β)
{

θN,U − ηN∇θN,U

1

n

n
∑

j=1

k
∑

i=1

LN (fN,i(Fj), Y
j
N,i)

}

;

6 if t%φ = 0 then

7 for ti in range(floor(Qs.num of items/n)) do

8 Sample a mini-batch of n features {F j}nj=1 from Qs where each F j ∈ X̃ ;

9 θN.U ← θN,U − ηN∇θN,U

1

n

n
∑

j=1

k
∑

i=1

LN (fN,i(F
j), Y j

N,i);

10 end

11 end

12 end

aims to increase the stability and performance of the gener-

ative model, we show that slow learning of the adversarial

predictors is also effective in fine-grained domain adapta-

tion.

4.3. Overall Algorithm

Here, we present an overall training procedure of our

proposed algorithm, A-NDFT. We handle the model train-

ing process delicately so that there is no performance differ-

ence from the existing technique NDFT but shorten training

times. This procedure is summarized in Algorithm 2 and

explained below.

As our A-NDFT is a faster version of the original NDFT,

we follow almost all the steps from them. Just like NDFT

[35], we jointly optimize the backbone model and object de-

tection branch by minimizing the same objective equation

as NDFT does. At this point, we store extracted features

in the pooling queue to avoid the redundant feed-forward

process of the backbone network. After that, NDFT tried

to keep monitoring nuisance prediction branches so that

their performance does not go down. With its performance

monitoring strategy, we observed the fluctuation of these

branches’ performance while training. We assumed that

this comes from an imbalance of mini-batch examples and

oblivion of past information. To overcome this, we decided

to train nuisance prediction branches with the top element

of the queue and apply the slow learner technique, the expo-

nential moving average update on module weights. By up-

dating weights to average points of current and past weights,

modules slowly forget less and learn new information (Al-

gorithm 2 Line 5). Besides, to guarantee the adequate per-

formances of branches, we retrain the modules with whole

elements of the pooling queue every φ iterations (Algorithm

2 Line 6-11).

5. Experiments

5.1. Experiment Settings

Dataset: UAVDT [4] The Unmanned Aerial Vehicle De-

tection and Tracking (UAVDT) is large-scale object detec-

tion and tracking benchmark dataset obtained by UAVs.

The objects of interest in this benchmark are vehicles an-

notated over 2,700 with 0.84 million bounding boxes. This

benchmark dataset has about 80k frames consisted of 100

video sequences captured from UAVs in various scenar-

ios. Moreover, it provides fully-annotated 14 kinds of at-

tributes for each frame. We use only three categories of

them for evaluating our model on the object detection track

on UAVDT; flying altitudes, weather conditions, and cam-

era views.



Baseline [23] A V W A+V A+W V+W A+V+W A+V+W (NDFT) A+V+W [35]

Flying Altitude

Low 54.19 55.06 52.48 55.17 46.68 55.27 55.64 56.91 57.46 74.84

Med 39.48 43.04 39.13 44.74 34.76 45.16 38.62 46.20 46.60 56.24

High 7.54 10.10 5.82 11.06 5.65 11.15 11.42 8.42 10.10 20.55

Camera View

Front 47.10 48.03 46.58 48.07 39.24 48.40 47.51 52.86 53.26 64.88

Side 37.87 39.33 37.29 39.16 30.44 38.90 36.79 39.56 40.11 67.50

Bird 73.35 66.40 61.55 68.44 58.58 67.57 76.30 72.89 86.71 28.79

Weather Condition

Day 45.50 47.39 41.30 47.45 38.14 48.43 45.39 49.24 49.40 45.91

Night 49.18 49.19 43.79 50.51 41.53 48.14 49.40 51.13 53.07 64.16

Overall 45.59 46.51 43.90 46.82 37.90 47.00 45.43 48.12 48.37 47.91

Table 1: Performance of A-NDFT-Faster-RCNN with multiple attribute disentanglement. Note, A+V+W (NDFT) is the

result of reproduced NDFT with our settings and A+V+W [35] is the original result from [35].

(a) Baseline (b) NDFT (c) A-NDFT

Figure 4: Examples of the proposed A-NDFT that performs object detection on the UAVDT benchmark. Our A-NDFT

framework performs better than the baseline and shows comparable performance to NDFT. Best viewed in color at high-

resolution (black rectangles in figures are ignored regions provided by UAVDT benchmark itself).

Flying Altitudes have three levels; low, medium, and

high. Weather conditions include daylight, night, and fog.

Nevertheless, we did not use fog examples just as NDFT

because of its small size. Camera views have three different

views, i.e., front-view, side-view, and bird-view. In addition

to these three views, there are examples with a front-side

view in the dataset. These are frames taken at the border

between front and side. The processing of them is not spec-

ified in [35], so we decide to merge them into side-view

category. By merging frames with front-side view attribute

into side-view frames, the number of frames belonging to

each attribute can differ from NDFT as a whole, which can

raise a discrepancy with NDFT’s performance. We will de-

note these three nuisances as A, W and V, respectively.

Implementation Details We used the same codebase of

the NDFT’s official repository2, a Faster-RCNN model us-

ing ResNet-101 as a backbone model. γ1, γ2, and γ3 denote

the coefficients for altitude, view, and weather nuisances,

respectively. To maintain their official setting as unchanged



as possible, we initially tried to train the model for five

epochs and size-up the batch to 32 and the learning rates

ηU and ηO to 0.08. However, we only report the NDFT’s

performance up to three epochs because it takes more than

two days to train NDFT for five epochs and NDFT showed

a tendency to converge at three epochs. In the case of A-

NDFT, we trained the model for five epochs and set the size

of the pooling queue as s = 256. Nevertheless, even in this

setting, A-NDFT ends up 10x faster compared to NDFT.

We set hyper-parameters indicating the degree of weighting

β decrease for slow learning and a training cycle φ using the

entire pooling queue as 0.99 and 325, respectively. Also, we

trained A-NDFT and baseline using the same batch size and

learning rate as NDFT.

When training the baseline by setting all γs as 0, we ob-

tained an AP of 45.59% (using IoU threshold = 0.7), similar

to 45.64%, which is reported in [35]. Since this model is

equivalent to the standard Faster R-CNN model, it is indi-

cated as the baseline.

5.2. Detection Performance of A­NDFT

We perform the experiments on UAVDT for object de-

tection. First, we study the impact of just using each nui-

sance type (A, V, and W) and then combine those into

two or three nuisance types. As [35] reported, applying

γ = 0.01 results in the best performance; we also apply

all the values of γi as 0.01 in this experiment. Table 1

shows the overall results by incrementally adding adversar-

ial losses to training. A, V, and W are when the branch

corresponding to flying altitude, camera view, and weather

condition nuisance is used for training. For example, A is

when set γV , γW to 0 and γA not to 0. A+V+W represents

the experiment when all three nuisance branches are used in

training, which means all γs are not 0.

When training with only one nuisance module, the per-

formance was the best when using W, and in the case of

two branches, the performance was the best when using

A+W. Their improvements over the baseline are +1.23%

and +1.41%, respectively. When all the branches were used,

we could see that the performance was the best in all cases.

For a detailed comparison, we added the performance of

NDFT from [35], and a reproduced NDFT to the rightmost

side of the table. The discrepancy with the value in [35]

could arise from the differences in the data preprocessing as

mentioned in 5.1. Precisely, the number of frames belong-

ing to each attribute may not match [35]’s setting, so there

are some differences in per-nuisance performances. How-

ever, the overall case has a similar result to the performance

of [35] because it trains using all data without considering

attributes. Consequently, the performance difference be-

tween A-NDFT and NDFT is not significant, which means

that A-NDFT maintains the performance of NDFT. Figure

4 shows some visual examples for a qualitative comparison.

Figure 5: A comparison of mAP over training time for A-

NDFT and NDFT. Note that the NDFT was trained for three

epochs, whereas our A-NDFT was trained for five epochs.

5.3. Convergence Speed: A­NDFT versus NDFT

In this section, we give a comparison of convergence

speeds of A-NDFT and NDFT. We use the same architec-

ture specified in 5.1. In training NDFT, based on the imple-

mentation of [35], we increased the batch size by 10x and

reduced the epochs proportionally to make the most of GPU

resources and cut down on the learning time. NDFT took

about 31 hours to train, while A-NDFT finished in about

3 hours. We visualize their performance over time in Fig-

ure 5. By utilizing the feature replay and the slow learner,

A-NDFT significantly reduces training time and speeds up

convergence than NDFT.

6. Conclusion

In this paper, we present A-NDFT, which uses a fea-

ture replay and a slow learner to accelerate the training

of NDFT. The proposed method saves ten times as much

time as and still maintains performance analogous to NDFT.

We conducted vehicle detection on the UAVDT dataset, a

large-scale benchmark, and showed that it performs better

than baseline, not using nuisance factor predictions, and

performs comparably with NDFT. In the future, we in-

tend to carry out further analyses of various remote-sensing

datasets such as and VisDrone [44] and use the other back-

bone architectures.
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