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Figure 1: Overview visualization of one of the over 32000 samples in EarthNet2021.

Abstract

Satellite images are snapshots of the Earth surface. We

propose to forecast them. We frame Earth surface forecast-

ing as the task of predicting satellite imagery conditioned

on future weather. EarthNet2021 is a large dataset suitable

for training deep neural networks on the task. It contains

Sentinel 2 satellite imagery at 20 m resolution, matching

topography and mesoscale (1.28 km) meteorological vari-

ables packaged into 32000 samples. Additionally we frame

EarthNet2021 as a challenge allowing for model intercom-

parison. Resulting forecasts will greatly improve (> ×50)

over the spatial resolution found in numerical models. This

allows localized impacts from extreme weather to be pre-

dicted, thus supporting downstream applications such as

crop yield prediction, forest health assessments or biodi-

versity monitoring. Find data, code, and how to participate

at www.earthnet.tech.

∗Joint first authors. {crequ,vbenson}@bgc-jena.mpg.de

1. Introduction

Seasonal weather forecasts are potentially very valuable

in support of sustainable development goals such as zero

hunger or life on land. Spatio-temporal deep learning is ex-

pected to improve the predictive ability of seasonal weather

forecasting [52]. Yet it is unclear, how exactly this expec-

tation will materialize. One possible way can be found by

carefully thinking about the target variable. The above men-

tioned goals illustrate that ultimately it will not directly be

the seasonal meteorological forecasts but rather derived im-

pacts (e.g. agricultural output and ecosystem health) that

are of most use to humanity. Such impacts, especially those

affecting vegetation, materialize on the land surface. Mean-

ing, they can be observed on satellite imagery. Thus, high-

resolution impact forecasting can be phrased as the pre-

diction of satellite imagery [15, 24, 29, 38, 73]. Predic-

tion of future frames is also the metier of video prediction

[2, 22, 37, 43, 46]. Yet, satellite image forecasting can also

leverage additional future drivers, such as the output of nu-

merical weather simulations with earth system models. The
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Figure 2: Video prediction could be unguided, weakly

guided or strongly guided. EarthNet2021 is the first

dataset specifically designed for the development of spatio-

temporal strongly guided video prediction methods.

general setting of video prediction with additional drivers

is called guided video prediction. We define Earth sur-

face forecasting as the prediction of satellite imagery con-

ditioned on future weather.

Our main contributions are summarized as follows:

• We motivate the novel task of Earth surface forecast-

ing as guided video prediction and define an evaluation

pipeline based the EarthNetScore ranking criterion.

• We introduce EarthNet2021, a carefully curated large-

scale dataset for Earth surface forecasting conditional

on meteorological projections.

• We start model intercomparison in Earth surface fore-

casting with a pilot study encouraging further research

in deep learning video prediction models.

2. Related work

Earth surface forecasting lays in the intersection of video

prediction and data-driven Earth system modeling.

Video prediction. In Fig. 2 we classify video prediction

tasks into three types depending on the input data used.

Traditionally video prediction models are conditioned on

past context frames and predict future target frames (i.e.

unguided, [17, 18, 22, 25, 31, 36, 40, 43, 60]). The used

models inherit many characteristics known the be useful in

modeling Earth surface phenomena: short-long term mem-

ory effects [35, 55], short-long range spatial relationships

[53], as well as, the ability to generate stochastic predictions

[2, 23, 37], ideal to generate ensemble forecasts of Earth

surface for effective uncertainty management [72]. Guided

video prediction is the setting where on top of past frames

models have access to future information. We further differ

between weak and strong guiding (Fig. 2). Weakly guided

models are provided with sparse information of the future,

for example robot commands [22]. In contrast strongly

guided models leverage dense spatio-temporal information

of the future. This is the setting of EarthNet2021. Some past

works resemble the strongly guided setting, however either

the future information are derived from the frames them-

selves, making the approaches not suitable for prediction

[67] or they use the dense spatial information but discard

the temporal component [42, 53].

Modelling weather impact with machine learning. Both

impact modeling and weather forecasting have been tack-

led with machine learning methods of different complex-

ity. One string of literature has focused on forecasting im-

agery from weather satellites [29, 38, 62, 70] while an-

other one has focused on predicting reanalysis data or em-

ulating general circulation models [50, 51, 57, 68]. For

localized weather, statistical downscaling has been lever-

aged [5, 44, 64, 65] (Fig. 3A). Direct impacts of extreme

weather have been predicted one at a time (Fig. 3B), ex-

amples being crop yield [1, 9, 32, 48, 58], vegetation index

[15, 26, 49, 69], drought index [47] and soil moisture [19].

3. Motivation

While satellite imagery prediction is an interesting task

for video prediction modelers, it is similarly important for

domain experts, i.e., climate and land surface scientists. We

focus on predicting localized impacts of extreme weather.

This is highly relevant since extreme weather impacts very

heterogeneously at the local scale [34]. Very local factors,

such as vegetation, soil type, terrain elevation or slope, de-

termine whether a plot is resilient to a heatwave or not. For

example, ecosystems next to a river might survive droughts

more easily than those on south-facing slopes. However, the

list of all possible spatio-temporal interactions is far from

being mechanistically known; hence, it is a source of con-

siderable amount of uncertainty and an opportunity for pow-

erful data-driven methods.

Predicting localized weather impacts can be tackled in

three main ways (Fig. 3). All approaches make use of sea-

sonal weather forecasts [8, 10](2 – 6 months ahead). The

classical approach (Fig. 3A), attempts the hyper-resolution

of the weather forecast for particular geolocations using sta-

tistical [7, 66] or dynamical [39] downscaling, that is, corre-

lating the past observed weather with past mesoscale model

outputs and using the estimated relationship. The down-

scaled weather can then be used in mechanistic models (e.g.



Figure 3: Three ways of extreme weather impact predic-

tion are A) downscaling meteorological forecasts and sub-

sequent impact modeling (e.g. runoff models), B) acquiring

target data at high-resolution and using supervised learn-

ing or C) leveraging Earth surface forecasting: This gives

directly obtainable impacts (e.g. NDVI) while still allow-

ing for impact modeling. Compared to A) and B), large

amounts of satellite imagery are available, thus together

with self-supervised (i.e. no labeling required) deep learn-

ing large-scale impact prediction becomes feasible.

of river discharge) for impact extraction. However, weather

downscaling is a difficult task because it requires ground ob-

servations from weather stations, which are sparse. A more

direct way (Fig. 3B) is to correlate a desired future impact

variable, such as crop yields or flood risk, with past data

(e.g., weather data and vegetation status, [48]). Yet again,

this approach requires ground truth data of target variables,

which is scarce, thus limiting the global applicability of the

approach.

Instead, by defining the task of Earth surface forecasting

we propose to use satellite imagery as an intermediate step

(Fig. 3C). From satellite imagery, multiple indices describ-

ing the vegetation state such as the normalized differenced

vegetation index (NDVI) or the enhanced vegetation index

(EVI) can be directly observed. These give insights on veg-

etation anomalies, which in turn describe the ecosystem im-

pact at a very local scale. Because of satellite imagery’s

vast availability, there is no data scarcity. While technically

difficult, forecasting weather impacts via satellite imagery

prediction is feasible. Additionally, satellite imagery is also

used to extract further processed weather impact data prod-

ucts, such as biodiversity state [21], crop yield [58], soil

moisture [19] or ground biomass [49]. In short, Earth sur-

face prediction is promising for forecasting highly localized

climatic impacts.

4. EarthNet2021 Dataset

4.1. Overview

Data sources. With EarthNet2021 we aim at creating

the first dataset for the novel task of Earth surface fore-

casting. The task requires satellite imagery time series at

high temporal and spatial resolution and additional climatic

predictors. The two primary public satellite missions for

high-resolution optical imagery are Landsat and Sentinel 2.

While the former only revisits each location on Earth ev-

ery 16 days, the latter does so every five days. Thus we

choose Sentinel 2 imagery [41] for EarthNet2021. The ad-

ditional climatic predictors should ideally come from a sea-

sonal weather model. Obtaining predictions from a global

seasonal weather model starting at multiple past time steps

is computationally very demanding. Instead, we approx-

imate the forecasts using the E-OBS [14] observational

dataset, which essentially contains interpolated ground truth

observed weather from a number of stations over Europe.

This also makes the task easier as uncertain weather fore-

casts are replaced with certain observations. Since E-OBS

limits the spatial extent to Europe, we use the appropriate

high-resolution topography: EU-DEM [3].

Individual samples. After data processing, EarthNet2021

contains over 32000 samples, which we call minicubes. A

single minicube is visualized in Fig. 1. It contains 30 5-

daily frames (128 × 128 pixel or 2.56 × 2.56 km) of four

channels (blue, green, red, near-infrared) of satellite im-

agery with binary quality masks at high-resolution (20 m),

150 daily frames (80×80 pixel or 102.4×102.4 km) of five

meteorological variables (precipitation, sea level pressure,

mean, minimum and maximum temperature) at mesoscale

resolution (1.28 km) and the static digital elevation model

at both high- and mesoscale resolution. The minicubes re-

veal a strong difference between EarthNet2021 and classic

video prediction datasets. In the latter, the objects move in

a 3d space, but images are just a 2d projection of this space.

For satellite imagery, this effect almost vanishes as the Earth

surface locally is very similar to a 2d space.

4.2. Generation

Challenges. In general, geospatial datasets are not analysis-

ready for standard computer vision. While the former often

contain large files together with information about the pro-

jection of the data, the latter requires many small data sam-
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Figure 4: The dataset generation scheme of EarthNet2021.

ples on an Euclidean grid. With EarthNet2021 we aim to

bridge the gaps and transform geospatial data into analysis-

ready samples for deep learning. To this end, we had to

gather the satellite imagery, combine it with additional pre-

dictors, generate individual data samples and split these into

training and test sets – challenges which are described in

the following paragraphs and lead to our dataset generation

scheme, see Fig. 4.

Obtaining Sentinel 2 satellite imagery. Downloading the

full archive of Sentinel 2 imagery over Europe would re-

quire downloading Petabytes, rendering the approach un-

feasible. Luckily pre-filtering is possible as the data is split

by the military grid reference system into so-called tiles and

for each tile metadata can be obtained from the AWS Open

Data Registry1 before downloading. We pre-filter and only

download a random subset of 110 tiles with at least 80%
land visible on the least-cloudy day and minimum 90% data

coverage. For each tile we download blue, green, red, near-

infrared and scene-classification bands over the time series

corresponding to the 5-day interval with the lowest off-nadir

angle. We use the sentinel-hub library2 to obtain an archive

of over 30 TB raw imagery from November 2016 to May

2020. In it we notice spatial jittering between consecutive

Sentinel 2 intakes, possibly due to the tandem satellites not

being perfectly co-registered. We try to compensate this ar-

tifact by co-registering the time series of each tile. We use

the global co-registration from the arosics library3 [56] in-

side a custom loop.

Data fusion with E-OBS and EU-DEM. For each of the

110 tiles we fuse their time series with additional data.

More particularly we gathered E-OBS4 weather variables

(daily mean temperature (TG); daily minimum tempera-

ture (TN ); daily maximum temperature (TX); daily pre-

cipitation sum (RR); and daily averaged sea level pressure

(PP )) at 11.1 km resolution and the EU-DEM5 digital sur-

face model at 25 m resolution. We re-project, resample and

1https://registry.opendata.aws/sentinel-2/
2https://sentinelhub-py.readthedocs.io/
3https://pypi.org/project/arosics/
4https://surfobs.climate.copernicus.eu/
5eea.europa.eu/data-and-maps/data/eu-dem/

Figure 5: Spatial distribution of the samples in Earth-

Net2021.

cut them to two data windows. The high-resolution win-

dow has 20 m ground resolution, matching the Sentinel 2

imagery, and the mesoscale window has 1.28 km ground

resolution.

Generation of minicubes. Given the fused data, we create

a target minicube grid, cutting each tile into a regular spatial

grid and a random temporal grid. Spatially, high-resolution

windows of minicube do not overlap, while mesoscale win-

dows do. Temporally, minicubes at the same location never

overlap. For each location in the minicube grid, we extract

the data from our fused archive, generate a data quality (i.e.

cloud) mask based on heuristic rules (similar to [45]) and

save the minicube in a compressed numpy array [28]. We

also generate data quality indicators; these will be useful for

selecting cubes during dataset splitting.

Creating the dataset split. In the raw EarthNet2021 corpus

are over 1.3 million minicubes. Unfortunately, most of them

are of very low quality, mainly because of clouds. Now just

taking minicubes above a certain quality threshold creates

another problem: selection bias. To give an intuitive ex-

ample: most frequently, high-quality (cloud-free) samples

are found during summer on the Iberian Peninsula, whereas

there barely are 4 consecutive weeks without clouds on the



British Islands. We address this trade-off by introducing an

iterative filtering process. Until 32000 minicubes are col-

lected, we iteratively loosen quality restrictions for select-

ing high quality cubes and filling them up to obtain balance

among starting months and between northern and southern

geolocations. In a similar random-iterative process we sep-

arate 15 tiles from all downloaded tiles to create a spatial

out-of-domain (OOD) test set (totalling 4214 minicubes)

and randomly split the remainder tiles into 23904 minicubes

for training and 4219 for in-domain (IID) testing.

4.3. Description

Statistics. The EarthNet2021 dataset spans across wider

Central and Western Europe. Its training set contains 23904
samples from 85 regions (Sentinel 2 tiles) in the spatial

extent. Fig. 5 visualizes the spatial distribution of sam-

ples. 71% of the minicubes in the training set lay in the

southern half, which also contains more landmass. In the

northern half we observe a strong clustering in the vicin-

ity of the Oslofjord, which is possibly random. Tempo-

rally most minicubes cover the period of May to October

(Fig. 6a). While this certainly biases the dataset, it might

actually be desirable because some of the most devastating

climate impacts (e.g., heatwaves, droughts, wildfires) occur

during summer. Fig. 6b shows the bias-quality trade-off,

observe that most high quality minicubes are from summer

in the Mediterranean. Also, it shows that EarthNet2021

does not contain samples covering winter in the northern

latitudes. This is possibly an effect of our very restrictive

quality masking wrongly classifying snow as clouds.

Comparison to other datasets. Earth surface forecasting is

a novel task, thus there are no such datasets prior to Earth-

Net2021. Still, since it also belongs to the broader set of

analysis-ready datasets for deep learning, we can assert that

it is large enough for training deep neural networks. In sup-

plementary table 3 we compare a range of datasets using ei-

ther satellite imagery or being targeted to video prediction

models. By pure sample size, EarthNet2021 ranks solid,

yet, the number is misleading since individual samples are

different. By additionally comparing the size in gigabytes,

we assert that EarthNet2021 is indeed a large dataset.

Limitations. Clearly, EarthNet2021 limits models to work

solely on Earth surface forecasting in Europe. Additionally,

the dataset is subject to a selection bias; therefore, there are

areas in Europe for which model generalizability could be

problematic. Furthermore, EarthNet2021 leverages obser-

vational products instead of actual forecasts. Thus, while

this certainly is practical for a number of reasons, Earth sur-

face models trained on EarthNet2021 should be viewed as

experimental and might not be plug-and-play into produc-

tion with seasonal weather model forecasts.

Figure 6: Monthly bias of samples. (a) Shows the monthly

number of minicubes and (b) shows the data quality mea-

sured by the percentage of masked (mainly cloudy) pixels

over both, months and latitude.

5. EarthNet2021 Challenge

5.1. Overview

Model intercomparison. Modeling efforts are most use-

ful when different models can easily be compared. Then,

strengths and weaknesses of different approaches can be

identified and state-of-the-art methods selected. We pro-

pose the EarthNet2021 challenge as a model intercompar-

ison exercise in Earth surface forecasting built on top of

the EarthNet2021 dataset. This motivation is reflected in

the design of the challenge. We define an evaluation proto-

col by which approaches can be compared as well as pro-

vide a framework, such that knowledge between modelers

is easily exchanged. There is no reward other than scien-

tific contribution and a publicly visible leaderboard. Eval-

uating Earth surface forecasts is not trivial. Since it is a

new task, there is not yet a commonly used criterion. We

design the EarthNetScore as a ranking criterion balancing

multiple goals and center the evaluation pipeline around it

(see Fig. 7). Moreover, we motivate four challenge tracks.

These allow comparison of models’ validity and robustness

and applicability to extreme events and the vegetation cycle.
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Figure 7: Evaluation pipeline for models on EarthNet2021.

For predicting the tT target frames, a model can use satel-

lite images from the tC context frames, the static DEM and

mesoscale climatic variables including those from the target

time steps.

EarthNet2021 framework. To facilitate research we pro-

vide a flexible framework which kick-starts modelers and

removes double work between groups. The evaluation

pipeline is packaged in the EarthNet2021 toolkit and lever-

ages multiprocessing for fast inference. Additionally, chal-

lenge participants are encouraged to use the model inter-

comparison suite. It shall give one entry point for running

a wide range of models. Currently it features model tem-

plates in PyTorch and TensorFlow and additional graphical

output useful for debugging and visual comparison.

5.2. EarthNetScore

Components. Evaluating Earth surface predictions is non-

trivial. Firstly, because the topological space of spectral im-

ages is not a metric space, secondly, because clouds and

other data degradation hinder evaluation, and, thirdly, be-

cause ranking simply by root mean squared error might

lead to ordinal rankings of imperfect predictions that ex-

perts would not agree to. Instead of using a single score,

we define the EarthNetScore ENS by combining multiple

components. As the first component, we use the median ab-

solute deviation MAD. It is a robust distance in pixel-space

which is justified by the goal that predicted and target values

should be close. Secondly, OLS, the difference of ordinary

least squares linear regression slopes of pixelwise Normal-

ized Difference Vegetation Index (NDVI) timeseries, gives

an indicator as to whether the predictions are able to repro-

duce the trend in vegetation change. This together with the

Earth mover distance EMD between pixelwise NDVI time

series over the short span of 20 time steps is a good proxy

of the fit (in the distribution and direction) of the vegetation

time series. The time series based metrics OLS and EMD

are also largely robust to missing data points, which poses a

consistency constraint on model predictions at output pixels

for which no target data is available. Finally, the structural

similarity index SSIM is a perceptual metric imposing pre-

dicted frames to have similar spatial structure to the target

satellite images. All component scores are modified to work

properly in the presence of a data quality mask, rescaled to

match difficulty and transformed to lay between 0 (worst)

and 1 (best).

Computation. Combining these components is another

challenge. We would like to define the EarthNetScore as:

ENS =
4

( 1

MAD
+ 1

OLS
+ 1

EMD
+ 1

SSIM
)
. (1)

This is the harmonic mean of the four components, so it

lays strongly to the worst performing component. Yet, com-

puting ENS over a full test set requires further clarifica-

tion. Earth surface forecasting is a stochastic prediction

task, models are allowed to output an ensemble of predic-

tions. Thus, for each minicube in the test set there might

multiple predictions (up to 10). In line with what is com-

monly done in video prediction, we compute the subscores

for each one of them but, only take the prediction for which

equation 1 is highest for model intercomparison. In other

words, the evaluation pipeline only accounts for the best

prediction per minicube. This is superior to average predic-

tions as it allows for an ensemble of discrete, sharp, plausi-

ble outcomes, something desired for Earth surface forecast-

ing given its highly multimodal nature. Still, this evaluation

scheme, suffers severely from not being able to rank models

according to their modeled distribution. Once the compo-

nents for the best predictions for all minicubes in the dataset

are collected, we average each component and then calcu-

late the ENS by feeding the averages to equation 1. Then,

the ENS ranges from 0 to 1, where 1 is a perfect prediction.

5.3. Tracks

Main (IID) track. The EarthNet2021 main track checks

model validity. It uses the IID test set, which has minicubes

that are very similar (yet randomly split) as those seen dur-

ing training. Models get 10 context frames of high res-

olution 5-daily multispectral satellite imagery (time [t-45,

t]), static topography at both mesoscale and high resolu-

tion, and mesoscale dynamic climate conditions for 150

past and future days (time [t-50, t+100]). Models shall

output 20 frames of high-resolution sentinel 2 bands red,

green, blue and near-infrared for the next 100 days (time

[t+5,t+100]). These predictions are then evaluated with the

EarthNetScore on cloud-free pixels from the ground truth.

This track follows the assumption that, in production, any

Earth surface forecasting model would have access to all



IID OOD

ENS MAD OLS EMD SSIM ENS MAD OLS EMD SSIM

Persistence 0.2625 0.2315 0.3239 0.2099 0.3265 0.2587 0.2248 0.3236 0.2123 0.3112

Channel-U-Net 0.2902 0.2482 0.3381 0.2336 0.3973 0.2854 0.2402 0.3390 0.2371 0.3721

Arcon 0.2803 0.2414 0.3216 0.2258 0.3863 0.2655 0.2314 0.3088 0.2177 0.3432

Table 1: Models performance on EarthNet2021. See supplementary material for Extreme and Seasonal test sets.

prior Earth observation data, thus the test set has the same

underlying distribution as the training set.

Robustness (OOD) track. In addition to the main track,

we offer a robustness track. Even on the same satellite data,

deep learning models might generalize poorly across geolo-

cations [6], thus it is important to check model performance

on an out-of-domain (OOD) test set. This track has a weak

OOD setting; in which minicubes solely are from differ-

ent Sentinel 2 tiles than those seen during training, which

is possibly only a light domain shift. Still, it is useful as a

first benchmark to check applicability of models outside the

training domain.

Extreme summer track. Furthermore, EarthNet2021 con-

tains two tracks particularly focused on Earth system sci-

ence hot topics, which should both be understood as more

experimental. The extreme summer track contains cubes

from the extreme summer 2018 in northern Germany [4],

with 4 months of context (20 frames) starting from Febru-

ary and 6 months (40 frames) starting from June to evaluate

predictions. For these locations, only cubes before 2018

are in the training set. Being able to accurately downscale

the prediction of an extreme heat event and to predict the

vegetation response at a local scale would greatly benefit

research on resilience strategies. In addition, the extreme

summer track can in some sense be understood as a tempo-

ral OOD setting.

Seasonal cycle track. While not the focus of Earth-

Net2021, models are likely able to generate predictions for

longer horizons. Thus, we include the seasonal cycle track

covering multiple years of observations; hence, including

vegetation full seasonal cycle. This track is also in line

with the recently rising interest in seasonal forecasts within

physical climate models. It contains minicubes from the

spatial OOD setting also used for the robustness tracks, but

this time each minicube comes with 1 year (70 frames) of

context frames and 2 years (140 frames) to evaluate pre-

dictions. For this longer prediction length, we change the

EarthNetScore OLS component to be calculated over dis-

joint windows of 20 frames each.

6. Models

As first baselines in the EarthNet2021 model intercom-

parison, we provide three models. One is a naive averaging

persistence baseline while the other two are deep learning

models slightly modified for guided video prediction. Per-

formance is reported in Tab. 1.

Persistence baseline The EarthNet2021 unified toolkit

comes with a pre-implemented baseline in NumPy. It sim-

ply averages cloud-free pixels over the context frames and

uses that value as a constant prediction. Performance is

shown in table 1.

Autorregressive Conditional video prediction baseline

The Autorregressive Conditional video prediction baseline

(Arcon) is based on Stochastic adversarial video prediction

(SAVP, [37]) that was originally was used as an unguided

or weakly guided video prediction model. We extend SAVP

for EarthNet2021 by stacking the guiding variables as extra

video channels. To this end, climatic variables had to be

resampled to match imagery resolution. In addition, SAVP

cannot make use of the different temporal resolution of pre-

dictors and targets (daily vs. 5 daily) so predictors were

reduced by taking the 5-daily mean, these steps resulted in

guiding information loss. Since there is no moving objects

in satellite imagery, but just a widely variable background,

all SAVP components specifically designed for motion pre-

diction were disabled. Image generation from scratch and

reuse of context frames as background was enabled. Dif-

ferent to traditional video input data, EarthNet2021 input

satellite imagery is defective, as a model shall not forecast

clouds and other artifacts. Thus, different to the original im-

plementation, we train Arcon just with mean absolute error

over non-masked pixels; in particular, this means no adver-

sarial loss was used.

Arcon outperforms the persistence baseline in every test

set except the full seasonal cycle test (see table 1 for IID

and OOD results), where, possibly the model breaks down

when fed a context length higher than 10. The model shows

degrading forecasting performance at the longer temporal

horizon (see Fig. 8). These results give us two hints. First,

it is necessary to overhaul and adapt current video predic-

tion models to make them capable of tackling the strongly

guided setting. Second, since the slightly adapted SAVP
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Figure 8: Worst, median and best samples predicted by Ar-

con according to EarthNetScore over the full IID test set.

Yellow line marks the beginning of the predicted frames.

shows skill over the persistence baseline, we can anticipate

current video prediction models to be a useful starting point.

Channel-U-Net baseline

This architecture is inspired by the winning solution to

the 2020 Traffic4cast challenge [12]. Traffic map forecast-

ing is to a certain degree similar to the proposed task of

Earth surface forecasting. The solution used a U-Net ar-

chitecture [54] with dense connections between layers. All

available context time step inputs were stacked along the

channel dimension and fed into the network. Subsequently

the model outputs all future time steps stacked along the

channel dimension, which are then reshaped for proper

evaluation. We call such an approach a Channel-U-Net.

Here we present a Channel-U-Net with an ImageNet [16]

pre-trained DenseNet161 [30] encoder from the Segmenta-

tion Models PyTorch library6. As inputs we feed the center

2x2 meteorological predictors upsampled to full spatial res-

olution, the high-resolution DEM and all the satellite chan-

nels from the 10 context time steps, resulting in 191 input

channels. The model outputs 80 channels activated with a

sigmoid, corresponding to the four color channels for each

of the 20 target time steps. We trained the model for 100

Epochs on a quality masked L1 loss with Adam [33], an

initial learning rate of 0.002, decreased by a factor 10 after

40, 70 and 90 epochs. We use a batch size of 64 and 4 x

V100 16GB GPUs. For the extreme and the seasonal tracks

we slide the model through the time series by feeding back

its previous outputs as new inputs after the initial prediction,

which uses the last 10 frames of context available.

6https://smp.readthedocs.io/

Channel-U-Net is the overall best performing model,

even though it does not model temporal dependencies ex-

plicitly. This model also underperforms the persistence

baseline on the seasonal test set, possibly due to the slid-

ing window approach used for the much longer prediction

length.

7. Outlook

If solved, Earth surface forecasting will greatly benefit

society by providing seasonal predictions of climate im-

pacts at a local scale. These are extremely informative

for implementing preventive mitigation strategies. Earth-

Net2021 is a stepping-stone towards the collaboration that

is necessary between modelers from Computer Vision and

domain experts from the Earth System Sciences. The

dataset requires developing guided video prediction mod-

els, a unique opportunity for video prediction researchers

to extend their approaches. Since the guided setting allows

modeling in a more controlled environment, there is the pos-

sibility, that gained knowledge can also be transferred back

to general (unguided) video prediction. Eventually, numer-

ical Earth System Models [20] could benefit from the data-

driven high-resolution modelling by Earth surface forecast-

ing models. In so-called hybrid models [52], both compo-

nents could be combined.

EarthNet2021 is the first dataset for spatio-temporal

Earth surface forecasting. As such, it comes with a num-

ber of limitations, including some that will be discovered

during model development. Through the EarthNet2021

framework, especially the model intercomparison suite, we

hope to create a space for communication between differ-

ent stakeholders. Then, we could remove pressing issues

iteratively. We hope EarthNet2021 will serve as a starting

point for community building around high-resolution Earth

surface forecasting.
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Sylvain Lamprier, and Patrick Gallinari. Stochastic latent

residual video prediction. In International Conference on

Machine Learning, pages 3233–3246. PMLR, 2020.

[24] Feng Gao, Jeff Masek, Matt Schwaller, and Forrest Hall. On

the blending of the landsat and modis surface reflectance:

Predicting daily landsat surface reflectance. IEEE Transac-

tions on Geoscience and Remote sensing, 44(8):2207–2218,

2006.



[25] Hang Gao, Huazhe Xu, Qi-Zhi Cai, Ruth Wang, Fisher Yu,

and Trevor Darrell. Disentangling propagation and genera-

tion for video prediction. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), Octo-

ber 2019.

[26] Andrea Gobbi, Marco Cristoforetti, Giuseppe Jurman, and

Cesare Furlanello. High resolution forecasting of heat waves

impacts on leaf area index by multiscale multitemporal deep

learning. arXiv preprint arXiv:1909.07786, 2019.

[27] Ritwik Gupta, Bryce Goodman, Nirav Patel, Ricky Hosfelt,

Sandra Sajeev, Eric Heim, Jigar Doshi, Keane Lucas, Howie

Choset, and Matthew Gaston. Creating xbd: A dataset for

assessing building damage from satellite imagery. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition Workshops, pages 10–17, 2019.

[28] Charles R Harris, K Jarrod Millman, Stéfan J van der
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