
Point2color: 3D Point Cloud Colorization Using a Conditional Generative

Network and Differentiable Rendering for Airborne LiDAR

Takayuki Shinohara1,Haoyi Xiu2
,Masashi Matsuoka3

Tokyo Institute of Technology

Yokohama, Japan

{shinohara.t.af1,xiu.h.aa2,matsuoka.m.ab3}@m.titech.ac.jp

Abstract

Airborne LiDAR observations are very effective for pro-

viding accurate 3D point clouds, and archived data are be-

coming available to the public. In many cases, only geomet-

ric information is available in the published 3D point cloud

observed by airborne LiDAR (airborne 3D point cloud),

and geometric information alone is not readable. Thus, it is

important to colorize airborne 3D point clouds to improve

visual readability. A scheme for 3D point cloud colorization

using a conditional generative adversarial network (cGAN)

was proposed, but it is difficult to apply to airborne LiDAR

because the method is for artificial CAD models. Since air-

borne 3D point clouds are spread over a wider area than

simple CAD models, it is important to evaluate them spa-

tially in two-dimensional (2D) images. Currently, the dif-

ferentiable renderer is the most reliable method to bridge

3D and 2D images. In this paper, we propose an airborne

3D point cloud colorization scheme called point2color us-

ing cGAN with points and rendered images. To achieve air-

borne 3D point cloud colorization, we estimate the color

of each point with PointNet++ and render the estimated

colored airborne 3D point cloud into a 2D image with a

differentiable renderer. The network is then trained by min-

imizing the distance between real color and colorized fake

color. The experimental results demonstrate the effective-

ness of point2color using the IEEE GRSS 2018 Data Fusion

Contest dataset with lower error than previous studies. Fur-

thermore, an ablation study demonstrates the effectiveness

of using a cGAN pipeline and 2D images via a differentiable

renderer. Our code will be available at GitHub.

1. Introduction

3D measurement by airborne LiDAR can acquire 3D

point clouds quickly and accurately over a wide area and

is widely used to create digital terrain maps (DTMs) [6]

and digital surface maps (DSMs) [11]. The 3D point cloud

Estimated RGB value

Estimated RGB value

x

y

z

Input
3D Point Cloud

Output
RGB value corresponding to each point

x

y

z

Colorization

R, G, B	=113, 172, 73

R, G, B	=91, 156, 213

Figure 1. 3D point cloud colorization. The output is the color

(RGB) corresponding to each point.

obtained by aircraft LiDAR (airborne 3D point cloud) can

be used not only for 3D visualization but also for generat-

ing 3D maps by adding semantic information to each point.

The process of assigning semantic information requires vi-

sual readability, and color information of the airborne 3D

point cloud is necessary to improve the visual readability.

Additionally, automatic analysis of 3D point clouds using

deep learning methods such as PointNet [46] and Point-

Net++ [47] has been studied in recent years, and the color

information of points has been reported to be effective in

deep learning methods by benchmarks [15, 9]. However,

airborne 3D point clouds that can be used for open data of-

ten do not have color information [1, 52, 56]. Therefore,

to make effective use of the airborne 3D point cloud avail-

able in open data, we need to develop a point colorization

method (Figure 1).

Image colorization has always been a research focus in

the field of computer vision and computer graphics. At

present, image colorization methods can be roughly divided

into two categories: convolutional neural network (CNN)-

based colorization [7, 25, 19] and conditional generative ad-

versarial network (cGAN)-based colorization [23, 42, 3].

They both solve the same regression task of minimizing

the RGB value of each pixel estimated by the deep learning

model and the true RGB value. CNN-based colorization [7],

which solves only the regression task, has the disadvantage

that it can intrinsically only estimate the gray average color.

Therefore, an image colorization method using cGAN [42]

was proposed. The cGAN allows for more advanced learn-

ing by trying to judge whether the fake data colored by the

model or real data are given as ground truth. cGAN over-

comes the disadvantage of CNN-based colorization. Some

image colorization methods were applied to 3D point cloud

colorization for a simple 3D CAD model [35, 4]. These

3D point cloud colorization methods use a PointNet [46]-

based model with cGAN. Although PointNet is effective

for simple 3D shapes, it is difficult to apply these previous

studies to airborne 3D point clouds because it is difficult to

apply PointNet to data containing various objects, such as

airborne 3D point clouds. Comparing 3D point cloud col-

orization with image colorization, 3D point cloud coloriza-

tion is a difficult task because images have grayscale hints,

while points have only geometric information. Therefore,

we need to devise a new method to color 3D point clouds.

Since the placement of color in the airborne 3D point cloud

viewed from above is important, it is necessary to train the

model by projecting the airborne 3D point cloud in two di-

mensions as well as the points.

In recent years, many methods for projecting 3D data,

such as meshes, voxels, and 3D point clouds, to 2D images

using differentiable rendering have been studied in the field

of computer vision. OpenDR [38] and neural mesh ren-

dering (NMR) [28] compute conventional rasterization in

the forward computation and approximate gradients in the

backward computation. Recently, a soft rasterizer [36] and

a differentiable interpolation-based renderer (DIB-R) [5]

have proposed a differentiable renderer by viewing raster-

ization as a stochastic process in which the color of each

pixel depends on multiple mesh faces. Differentiable ray

tracing methods provide a more photorealistic image at the

expense of increased computational complexity [32, 43].

Differentiable 3D point cloud rendering stores points in a

voxel grid that is explored using ray termination probabili-

ties and limits the resolution [20]. Differentiable rendering

allows a deep learning model to render a colored 3D point

cloud into an image, and errors in the loss function can be

computed without interruption by backpropagation.

We propose an airborne 3D point cloud colorization

schema (point2color) using conditional generative adver-

sarial networks (cGANs) [40]-based pix2pix [23] and dif-

ferentiable renderers. Point2color performs airborne 3D

point cloud colorization using pairs of geometric informa-

tion and its ground truth color. Point2color does not neces-

sarily restore the original color information of the object to

improve visibility but creates a reasonable color that con-

forms to the real world. Point2Color consists of a genera-

tor that performs colorization, a differentiable renderer that

converts the colored points into a 2D image, and discrimina-

tors that judge whether the color from the generator is fake

or a ground truth real color. Our generator respects Point-

Net++ [47], a renderer is based on a soft rasterizer [36],

and the discriminators are a PointNet [47]-based model for

points and a simple CNN model for rendered images. The

major contributions of this research can be summarized as

follows:

• We show the airborne 3D point cloud colorization

schema (point2color) using a conditional generative

adversarial network (cGAN) and differentiable render-

ing.

• The airborne 3D point cloud not only evaluates the

color point-by-point but also trains to minimize the

loss function for each image by projecting it in 2D

with a differentiable renderer, given the characteristics

of spatially distributed objects.

• Point2color obtains a lower MAE than previous stud-

ies on the GRSS 2018 Data Fusion Contest dataset.

2. Related Study

2.1. 3D Deep Learning

As a pioneering work that directly applies deep learning

models to 3D point clouds, PointNet [46] employs MLP

to learn the features of individual points and a symmet-

ric function (e.g., max pooling) to extract global features.

PointNet cannot capture the relationship between the local

and global structure of the points. To solve this problem,

PointNet++ [47] was developed by constructing a hierarchi-

cal neural network that applies convolutional operations via

sampling layers and grouping layers. Following these two

models, many researchers proposed various deep learning

models for 3D point clouds based on PointNet-like archi-

tectures [34, 24, 49].

In the field of airborne 3D point clouds, recent studies

have applied deep learning models. A 1D fully convolu-

tional network was proposed to directly handle 3D coor-

dinates and three corresponding spectral features extracted

from 2D georeferenced images for each point [57]. Further-

more, a PointNet++-based deep neural network for airborne

3D point clouds was proposed [54]. In addition, some pre-

vious works explore dealing with graph structure [55], local

and global information of points using attention [53] or con-

text encoding [33].

2.2. Colorization

Traditional colorization methods often require human

hints such as scribbles and reference images as guidance.

These methods [18, 22, 39, 37, 14] mainly used handcrafted

features, including low-level handcrafted features or edges

and high-level scene or location categories. The limitation

of these works is that they do not have the generalization

ability of images in different scenes.

Recently, deep learning-based methods have been uti-

lized to address this problem. They are based on CNN

to learn mapping from grayscale images to color images.

The initial method used was a deep learning method that

colors the image based on features extracted from differ-

ent patches [7]. Recently, some conditional generative ad-

versarial network (cGAN) [40]-based models have been

proposed for image colorization. The cGAN is based on

GAN [12] proposed to generate fake data in an unsuper-

vised manner. The GAN contains a generator that learns to

produce realistic fake data and a discriminator that judges

whether data are fake data generated by the generator or real

data sampled from the training data. The objective of GAN

is training to minimize the Jensen–Shannon (JS) divergence

between fake and real data. To stabilize convergence during

GAN training, some advanced divergences between fake

data and real data were proposed, such as Wasserstein dis-

tance [2] and Wasserstein distance with a gradient penalty

[13]. The cGAN is a method of inputting conditional data to

GANs. In the case of image colorization, a grayscale image

is input as a condition, and a generator attempts to make a

colored image. Compared to traditional colorization meth-

ods with CNN, the cGAN-based image colorization meth-

ods [42] minimize the various divergences between the col-

orized fake images and the real images in the ground truth,

leading to a substantial improvement in the results. Ad-

ditionally, pix2pix [23] proposed a cGAN-based pipeline

to archive not only image colorization but also a general

image-to-image translation problem. The experimental re-

sults demonstrated that the vividness of colorized images

was enhanced due to GAN.

Moreover, two methods to achieve 3D point cloud col-

orization using deep learning-based methods were pro-

posed [35, 4]. These methods are based on the pix2pix [23]

pipeline using cGAN. The generator attempts to predict the

color of each point using PointNet [46], and the PointNet-

based discriminator attempts to judge fake color from the

generator or real ground truth color. These methods can be

used to colorize simple CAD models. However, these meth-

ods assume that only one simple 3D object, such as a table,

chair, or teapot, is input. Therefore, it is difficult to apply

these methods when various objects, such as roads, build-

ings, and vegetation, are mixed, as in the case of airborne

3D point clouds.

2.3. Differential Rendering

Currently, it is not a realistic option to prepare a large

quantity of 3D ground truth data. Therefore, deep learn-

ing methods for 3D structures that use only 2D images to

train a model are being explored [28, 27, 50, 48]. From

the 3D structure output by the model, it is easy to generate

a 2D image (called rendering) and calculate the difference

between the generated image and the ground truth image. In

this case, we assume that the camera parameters are known

from which position and direction the ground truth image

data are taken, and when rendering, we set a virtual cam-

era similar to that position and direction to generate the im-

age. The neural network of the prediction model is trained

by backpropagation of the difference in the output image,

but the error cannot be backpropagated unless the render-

ing is differentiable. For example, if the 3D structure is

represented by a triangular mesh, the output image should

change smoothly. For example, when a 3D structure repre-

sented by a triangular mesh is rendered using a rasterization

technique, the pixel values change discontinuously depend-

ing on whether the mesh is placed in the center of the pix-

els. The output does not change smoothly in response to

changes in the position of the mesh, so it is not differen-

tiable, as in [28]. Thus, a differentiable renderer needs to be

developed for 2D supervised learning. Recent deep learn-

ing methods show differentiable rendering for 3D data. In

the case of mesh representation [28, 27], the most common

approach is to assume some initial shape and to reconstruct

the 3D structure by deforming it (e.g., by first assuming a

sphere as the mesh structure and then continuously deform-

ing it into the desired object). The disadvantage of this ap-

proach is that it is difficult to reconstruct objects with dif-

ferent topologies (e.g., holes, multiple objects). Another

drawback of mesh representation is that it is not easy to

handle data with complex structures consisting of vertices

and faces in a deep learning framework. Another drawback

of DRC [50], which uses voxel representation, is that the

memory requirement increases with the cube of the reso-

lution as the resolution increases. The previous works of

[21, 30, 41] show the differentiable rendering method for

3D point clouds. These methods project reconstructed 3D

point clouds using a differentiable renderer to obtain 2D

images during supervision. In recent years, some libraries

for differentiable renderers [26, 45, 51] have emerged that

are capable of performing the differentiable rendering de-

scribed above.

3. Proposed Method

To the best of our knowledge, our point2color is the first

work on airborne 3D point cloud colorization. We use a

conditional generative adversarial network (cGAN) to es-

timate the color of each point and the differentiable ren-

dering to assist the colorization ability. The details of the

point2color are described below.

3.1. Problem Statement

Figure 2 illustrates our colorization problem definition.

Our model takes an airborne 3D point cloud P ∈ R
N×3 as

input and estimates its missing color (fake color) Cfake ∈
R

N×3. First, we estimate fake color Cfake corresponding

to an input set of points P using generator (G). Here, each

P has geometric information (x, y, z), and Cfake has color

information (RGB). Next, we feed Cfake into a differen-

tiable renderer to project into a 2D fake image (I fake ∈
R

H×W×3). Finally, we employ two discriminators. The

first is the point discriminator to judge fake color Cfake with

P or real color (Creal ∈ R
N×3) with P . The second is the

image discriminator to judge fake image I fake or real image

(Ireal ∈ R
H×W×3).

Input:
3D Point Cloud

𝑷 ∈ ℝ!×#

Generator

3

𝑥, 𝑦, 𝑧

𝑁

Output:
Fake Color
𝑪$%&' ∈ ℝ

!×#

3

𝑅, 𝐺,𝐵

𝑁

Real Color
𝑪('%) ∈ ℝ

!×# 𝑁

Fake Image
𝑰$%&' ∈ ℝ

*×+×#

Real Image
𝑰('%) ∈ ℝ

*×+×#

𝑊

𝐻

𝑊

𝐻

Fake Color
𝑪$%&' ∈ ℝ

!×#

Real Color
𝑪('%) ∈ ℝ

!×#

Fake Image
𝑰$%&' ∈ ℝ

*×+×#

Real Image
𝑰('%) ∈ ℝ

*×+×#

fake
or

real

fake
or

real

Point
Discriminator

Image
Discriminator

Differentiable
Renderer

3

𝑅, 𝐺,𝐵

Input:
3D Point Cloud

𝑷 ∈ ℝ!×#

Input:
3D Point Cloud

𝑷 ∈ ℝ!×#

Figure 2. Problem statement of our point2color. Our generator

estimates the fake color (Cfake) of the input airborne 3D point

cloud (P). Then, Cfake are fed into a differentiable renderer to

project 2D fake image I fake. Finally, two discriminators called a

point discriminator and an image discriminator judge whether the

image is fake or real.

3.2. Proposed Network

An overview of point2color is shown in Figure 3.

Point2color is based on a cGAN that estimates the color cor-

responding to the input airborne 3D point cloud. It consists

of three components: the main generator for colorization, a

differentiable renderer, and two discriminators. All compo-

nents are trained end-to-end. Each component is described

in detail below.

3.2.1 Generator

To solve the problem of airborne 3D point cloud coloriza-

tion, we use the generator to map the points with geometric

coordinates (P) into fake colors (Cfake). Since it is nec-

essary to obtain an output that corresponds one-to-one to

the input P , we use an autoencoder [17]-based network in

which the input and output have a one-by-one correspon-

dence. As an autoencoder-based architecture to deal with

the 3D coordinates of input P , we use the PointNet++ [47]-

based model. Additionally, in the image processing field,

some previous works [58] solved the image colorization

problem using an autoencoder-based architecture.

First, we show the encoder that extracted features from

the input airborne 3D point cloud (P). In an encoder, the

input is passed through a series of layers that progressively

downsample until a bottleneck layer. In the downsampling

layer, the representative point is determined by furthest

point sampling (FPS), and the information of the points

around the representative point is collapsed. By stacking

these downsampling layers, the encoder can extract features

hierarchically.

Next, we show the decoder that predicts the color of each

point from extracted features from the encoder. The decoder

performs upsampling three times on the features extracted

by the encoder and adds color information corresponding to

each input P . Due to the limitation of downsampling in the

encoder, much low-level or high-frequency information is

lost. For many image colorization problems, a large amount

of low-level information is shared between input and output,

and it would be desirable to shuttle this information directly

across the network. To bypass low-level information from

the encoder into the decoder, we use a skip connection. It

combines the upsampled features with the features assigned

by skip connections and performs feature extraction using

MLP on the combined features. In the above structure, the

decoder estimates the fake color (Cfake) corresponding to

each point.

The generator network architecture is shown in Figure 3.

The encoder architecture uses the coordinates (x, y, z) of

input P and consists of three downsampling layers. The

numbers of points for each downsample are 8,192, 4,046,

and 2,028 from the shallow to deep layers. The convolu-

tional filter size is 1 × 1, and the numbers of filters are 64,

128, and 256. The decoder architecture consists of three up-

sampling layers to the encoder. After the upsampling layers,

the final layer uses the fully connected layer to estimate the

color information (RGB) of each point. In this case, the

RGB value is normalized in [0, 1] by the sigmoid function.

3.2.2 Differentiable renderer

The 3D point cloud differentiable renderer first projects

onto a 2D image under the given transformation matrix. A

point with color is projected and added into an image. Al-

though the projection process is not differentiable, we ap-

proximate derivatives using the subderivative. Therefore,

we use the differentiable rendering method proposed in the

soft renderer [36] to produce a fake image (I fake) and a real

image (Ireal).

3.2.3 Discriminators

We use two discriminators to enforce the natural coloriza-

tion result. The aim of discriminators is to determine

W

H
Input
Patch

Convolution

Prob.
Real

x,y,z,R,G,B

N
Input
Patch

Prob.
Real

8
,1

9
2

4
,0

9
6

2
,0

4
8

1DCNN

Downsampling ()
Sampling
Grouping

3

N
Input
Patch

3

N
Skip connection

8
,1

9
2

4
,0

9
6

2
,0

4
8

8,192

4,096

2,048

1DCNN

Upsampling (Interpolation)

Fake
Color

Downsampling ()
Sampling
Grouping

Generator

Point Discriminator

Image Discriminator

Figure 3. Network overview. Given an airborne 3D point cloud P as input, our model starts with color estimation of each point using a

PointNet++ [47]-based generator. The generator has an encoder-decoder architecture that includes downsampling and convolution-based

encoders and decoders estimating colors corresponding to input points. We then project the estimated fake color of the input 3D point

cloud Cfake into fake image I fake via a differentiable renderer. Finally, the point discriminator judges fake color Cfake or real color Creal,

and the image discriminator judges fake images I fake or real images Ireal. The point discriminator is based on PatchGAN [23] with

PointNet++ [47], and the image discriminator is based on PatchGAN [23] with a simple CNN. All networks train end-to-end.

whether the data is real (ground truth) or fake and colored

by the generator. In the original GAN, the effect of the dis-

criminator is defined as matching the real and fake proba-

bility distributions. As a result, the fake data from the gen-

erator can maintain the same color distribution as the real

ground truth. We use two discriminators as shown as be-

low.

Point Discriminator The point discriminator (DP) net-

work architecture is shown in Figure 3. The point dis-

criminator uses the PointNet++ [47]-based PatchGAN ar-

chitecture that judges the fake color by the generator Cfake

and real color Creal by the ground truth. We use Point-

Net++ [47] with three downsampling layers and a fully con-

nected layer to judge fake or real. The point discriminator

evaluates three-dimensional color relationships.

Image Discriminator The image discriminator (DI)

network architecture is shown in Figure 3. The image dis-

criminator uses the simple CNN-based PatchGAN [23] ar-

chitecture. The image discriminator judges the colorized

image (I fake) by the generator and ground truth color im-

age (Ireal). Based on pix2pix [23], we use a 70×70 Patch-

GAN architecture. The image discriminator evaluates the

placement of the objects as seen from above, such as aerial

photos.

3.3. Loss Formulation

We use four loss functions: pointwise loss, pixelwise

loss, point GAN loss, and image GAN loss.

Pointwise loss The pointwise loss emphasizes the point-

wise fidelity of the estimated color by the generator. We use

the L1 distance between fake color and real color defined as:

L
point
L1 = E[||Cfake −Creal||1], (1)

where Cfake and Creal represent the estimated fake color

and ground truth real color.

Pixelwise loss The pixelwise loss emphasizes the ren-

dered image fidelity of the estimated color by the generator.

The loss uses the L1 distance between fake and real defined

as:

L
image
L1 = E[||I fake − Ireal||1], (2)

where I fake and Ireal represent the rendered image from

the estimated color by generator Cfake and the ground truth

colorful rendered image from Creal.

Point GAN loss We use a point discriminator (DP(∗))
that judges fake color (Cfake) or real color (Creal). As the

loss function between fake color and real color, we use the

Wasserstein distance [2] defined as:

L
point
G = −E[DP(Cfake)], (3)

L
point
D = E[DP(Cfake)]− E[DP(Creal)]. (4)

Image GAN loss We use an image discriminator (DI(∗))
that judges fake images (I fake) or real images (Creal). As

the loss function between a fake image and a real image, we

use the Wasserstein distance [2], defined as:

L
image
G = −E[DI(I fake))], (5)

L
image
D = E[DI(I fake)]− E[DI(Ireal)]. (6)

Total loss The total loss function of the generator in-

cludes Equation 1, 2, 3, and 5, which is given by:

LG = λL
point
L1 + λL

image
L1 + L

point
G + L

image
G . (7)

Here, the λ is weight for L1 loss. Moreover, the total loss

function of the discriminator includes Equations 4 and 6,

which is given by:

LD = L
point
D + L

image
D . (8)

To preserve the Lipschitz continuity, we fix the weights of

each discriminator to a small fixed range [−0.01, 0.01] after

every gradient update on the discriminators.

4. Experimental Result

4.1. Experimental Setup

The weight in total loss (λ) in Equation 7 was set to

100 in pix2pix [23]. In the training processes, we used the

ADAM optimizer [29] with β1 = 0.99 and β2 = 0.999.

During the training process, we set the rendering image size

to 128 × 128. PyTorch [44] was used to implement the

training process and image discriminator, PyTorch Geomet-

ric [10] was used to implement PointNet++-based a genera-

tor and a point discriminator, and PyTorch3D [26] was used

to implement differentiable rendering for airborne 3D point

clouds.

4.2. Dataset

We used the pair of airborne 3D point clouds and aerial

photos of an outdoor scene called the 2018 IEEE GRSS

Data Fusion Contest (DFC2018) [16] to conduct our exper-

iments (Figure 4). DFC2018 contains a wide variety of ob-

jects, such as houses, ground, trees, roads, and an American

football field (Figure 4 (a)). DFC2018 (Figure 4 (b)) was

acquired by the National Center for Airborne Laser Map-

ping using an Optech Titan MW with an integrated cam-

era, and the density was approximately 5 points/m2. Since

DFC2018 contains aerial photos of the same area as the air-

borne 3D point cloud, aerial photos were used to add color

to each point to create the real ground truth color. PDAL [8]

was used to create the real color of each point from the aerial

photo. Additionally, the real color values of the points were

normalized to 0-1. The original DFC2018 data were sep-

arated by hundreds of meters. Due to its large size, it had

to be split into small patches to be computed by the GPU.

In this study, we split the airborne 3D point cloud with real

color into 30 m2. The target for the actual loss calcula-

tion is the central 25 m2 and the outside area was used to

provide context information for colorization. In addition,

because this airborne 3D point cloud contained noise, such

as points under the ground, we removed isolated points as

noise, and we subsampled points in each patch into 20, 000
using open3D [59]. We normalized the geometric value of

patches to [−0.5, 0.5]. To train and evaluate the model, we

divided all patch data into two datasets: the training data

used to train our model and the test data used for evalua-

tion. The test area is shown in the blue rectangle in Figure 4.

Additionally, we used fivefold cross validation during the

training process. All computations in this work were car-

ried out by using the TSUBAME3.0 supercomputer at the

Tokyo Institute of Technology.

Test

(a) Aerial Photo (b) 3D Point Cloud

Figure 4. Experimental dataset used in this paper. We used an

airborne 3D point cloud, published in the 2018 IEEE GRSS Data

Fusion Contest [16]. The test area is indicated as a blue rectangle.

4.3. Point Colorization Result

Training the model on the generator and two discrimi-

nators took approximately three days on a TSUBAME3.0

with one NVIDIA P100 GPU until 100 epochs. Here, we

showed quantitative and qualitative evaluations of the col-

orization results by the trained model.

4.3.1 Quantitative Evaluation

To measure the performance, we chose to employ pointwise

mean absolute error (MAE) in RGB space normalized to 0-

1. The MAE for the whole test data was computed by taking

the mean of the absolute error of the fake color and real

color on a point level for each color channel. The training

results for point2color showed that the MAE was 0.10 in the

test data.

(d)

𝐶!"#$

(e)

𝐶%$"&

(f)

𝐼!"#$

(a)
Input

(b)
Dense Point

(c)
PCCN

(g)

𝐼%$"&

Figure 5. Visual results from the tasks of colorization example sampled from the test data. (a) Input airborne 3D point cloud colored by

height. (b) Fake color with DensePoint [4]. (c) Fake color with PCCN [35]. (d) Fake color with point2color. (e) Ground truth (real color).

(f) Rendered fake color with point2color. (g) Rendered real color. The circles indicate colorization failure cases.

Next, we compared to previous point colorization meth-

ods [4, 35] based on PointNet [46]-based cGAN. Dense-

Point [4] with vanilla PointNet showed that MAE is 0.25 in

the test data. PCCN [35] with modified PointNet showed

that MAE is 0.22 in the test data. Compared to these pre-

vious studies, point2color achieved a lower MAE. This is

because the method of previous studies on a simple 3D ob-

ject cannot handle complex objects observed by airborne

LiDAR. In particular, the largest problem is that these meth-

ods do not combine local and global features effectively

since PointNet is used as the generator for colorization in

these methods.

4.3.2 Qualitative Evaluation

Some of the typical results using the DFC2018 dataset

are shown in Figure 5. The colored points generated by

point2color (Figure 5 (d)) and its rendered images (Figure 5

(f)) contained colors that were vibrant. Generally, the col-

ored points had a tendency to nearly replicate the ground

truth color (Figure 5 (e)). Additionally, the rendered im-

ages nearly replicated the ground truth rendered image (Fig-

ure 5 (g)). As shown in the lower figure, coloring was pos-

sible even with blank input. In addition, point2color dis-

tinguished and colored the grass from the road. Overall,

point2color improved the legibility and made it easier to un-

derstand the objects.

Next, we compared the colorization results with previ-

ous point colorization methods [4, 35] with PointNet [46]

for CAD data. Comparing densePoint [4] with point2color,

point2color obtained more vivid colors. Comparing

PCCN [35] with point2color, point2color also showed more

vivid colors. Point2color using a PointNet++ [47]-based

generator and a differentiable renderer was more effective

for capturing large-scale 3D point clouds observed by air-

borne LiDAR than PointNet [46]-based methods [4, 35].

Point2color was estimated the relatively reasonable color

of the input airborne 3D point cloud in the shown samples;

however, there were some failure cases, shown as circles in

Figure 5. We saw missing colors in cars, as shown by or-

ange circles in Figure 5. This was because deep learning

methods for 3D point clouds are sensitive to the size of the

training data, so car-like small objects with a small num-

ber of points tended to be ignored. Additionally, another

drawback was that point2color tended to colorize points in

colors that are most frequently seen. For example, the bare

ground was colored grass-like green, shown as a blue circle

in Figure 5. This was most likely due to the significantly

larger number of points with bare ground than points with

grass. In the future, we need to develop new methods to en-

hance color variation and to deal with small objects while

generating more realistic colors.

4.3.3 Ablation Study

To further demonstrate the effectiveness of point2color,

we quantitatively analyzed different settings of point2color.

Basically, we used four models to exclude some parts from

the original structure.

Model 1: L
point
L1 . We dropped the rendered images L

image
L1 ,

L
point
D,G , and L

point
D,G from point2color and its corresponding

discriminators to analyze the ability of baseline pointwise

regression.

Model 2: L
point
L1 + L

image
L1 . We added the image loss

(L
image
L1) to Model 1 to analyze the effect of the rendered

image.

Model 3: L
point
L1 + L

point
D,G . We added the point-based GAN

loss (L
point
D,G) to Model 1 and its corresponding point dis-

criminator to analyze the effect of the GAN mechanism.

This Model 3 replaces the PointNet-based cGAN methods

[4, 35] with PointNet++.

Model 4: L
point
L1 + L

image
D,G . We added the image-based GAN

loss (L
image
D,G) to Model 1 and its corresponding image dis-

criminator to analyze the effect of the GAN mechanism for

the rendered image.

Figure 6 (a)-(d) shows the results from ablation settings.

First, if we used only pointwise L1 loss (Figure 6 (a)), the

system tended to colorize all points with a dark green color.

Consistent with the trend reported in pix2pix [23], L1 loss

alone estimated average color. Second, if we used point-

wise and pixelwise L1 loss (Figure 6 (b)), we were able to

find white colored ground easier than Model 1. However,

the roof points had a similar color to the trees. Third, if we

used pointwise L1 loss and point GAN loss (Figure 6 (c)),

the system tended to enhance the sharpness of the coloriza-

tion result compared to Models 1 and 2 with regression task.

Compared to the result of the cGAN with PointNet [4, 35]

(Figure 5 (b), (c)), Method 3 using PointNet++ and cGAN

resulted in more natural colors. The assumption that Point-

Net++ is effective in outdoor scenes has been shown to be

reasonable. Finally, if we used pointwise L1 loss and image

GAN loss (Figure 6 (d)), the system also tended to enhance

the sharpness of the colorization result. Compared to Model

3, Model 4 was able to recognize the shade of a tree by us-

ing contextual information outside of the target. Generally,

by adding each GAN loss function, natural colorization was

possible. As shown in Figure 6 (e), the full (point2color)

had the best performance compared with the four settings.

The quantitative analysis using MAE for the whole test

data is summarized in Table 1. First, if image L1 loss and

two discriminators were removed (Model 1), the system

tended to generate samples with the highest MAE com-

pared to the full model (point2color). Second, we also

train the system with image and point L1 losses (Model

2) using the same data as Model 1. The MAE of Model

2 was higher than Model 1. Third, point GAN loss and

the corresponding point discriminator (Model 3) promoted

the baseline model to produce lower error than regression

models alone (Models 1 and 2). Finally, image GAN loss

and the corresponding image discriminator (Model 4) pro-

duced lower error than Models 1, 2, and 3. These effects

of GAN were consistent with pix2pix [23] and GAN-based

image colorization methods [31]. In conclusion, each com-

ponent of point2color is indispensable, and the full model

(point2color) achieved the lowest MAE.

5. Conclusion

In this study, we proposed a colorization schema called

point2color for airborne 3D point clouds using a conditional

generative adversarial network (cGAN). With the GRSS

Data Fusion Contest 2018 dataset, point2color was able to

consistently produce a colored airborne 3D point cloud with

(e)

full
(point2color)

(f)

Real Color

(d)

Model 4

(a)

Model 1

(c)

Model 3

(b)

Model 2

Figure 6. Comparison of colorization examples of different abla-

tion study settings and full models (point2color). (a) Fake color

with Model 1 (L
point
L1). (b) Fake color with Model 2 (L

point
L1 +

L
image
L1). (c) Fake color with Model 3 (L

point
L1 + L

point
D,G). (d) Fake

color with Model 4 (L
point
L1 + L

image
D,G). (e) Fake color with full

model (point2color). (f) Real color.

Model L
point
L1 L

image
L1 L

point
D,G L

image
D,G MAE

1 X - - - 0.23

2 X X - - 0.18

3 X - X - 0.15

4 X - - X 0.12

full X X X X 0.10

Table 1. Ablation study performance of colorization result for test

data. The MAE shown in the table is the average value for the

whole test data.

a lower mean absolute error than previous methods. In ad-

dition, qualitative evaluation showed that it was possible to

estimate fake colors close to the real color. Moreover, the

colorization result by the ablation model showed all of our

proposed components.

However, point2color tends to generate color frequently

in the training data. Additionally, the PointNet++-based

generator tended to ignore small objects when colorized.

We need to solve limitations of our method.

Acknowledgment

We thank Data Fusion Contest 2018 for providing

dataset. We used TSUBAME3.0 supercomputer at Tokyo

Institute of Technology. This research was supported in a

part by KAKENHI (19H02408) and “the Tokyo Metropoli-

tan Resilience Project” of the Ministry of Education, Cul-

ture, Sports, Science and Technology (MEXT) of the

Japanese Government and the National Research Institute

for Earth Science and Disaster Resilience (NIED).

References

[1] Het actueel hoogtebestand nederland 3(ahn3). https://

downloads.pdok.nl/ahn3-downloadpage/. (Ac-

cessed on 02/17/2021). 1

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein generative adversarial networks. In Proc. ICML,

pages 214–223, 2017. 3, 5, 6

[3] M. G. Blanch, M. Mrak, A. F. Smeaton, and N. E. O’Connor.

End-to-end conditional gan-based architectures for image

colourisation. In 2019 IEEE 21st International Workshop

on Multimedia Signal Processing (MMSP), pages 1–6, 2019.

1

[4] Xu Cao and Katashi Nagao. Point cloud colorization based

on densely annotated 3d shape dataset. In International Con-

ference on Multimedia Modeling, pages 436–446. Springer,

2019. 2, 3, 7, 8

[5] Wenzheng Chen, Jun Gao, Huan Ling, Edward Smith,

Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-

ing to predict 3d objects with an interpolation-based differ-

entiable renderer. In Advances In Neural Information Pro-

cessing Systems, 2019. 2

[6] Ziyue Chen, Bingbo Gao, and Bernard Devereux. State-of-

the-art: Dtm generation using airborne lidar data. Sensors,

17(1):150, 2017. 1

[7] Zezhou Cheng, Qingxiong Yang, and Bin Sheng. Deep col-

orization. In Proc. ICCV, pages 415–423, 2015. 1, 2, 3

[8] PDAL Contributors. Pdal point data abstraction library, Nov.

2018. 6

[9] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proc. Computer Vision and Pattern Recognition (CVPR),

IEEE, 2017. 1

[10] Matthias Fey and Jan E. Lenssen. Fast graph representa-

tion learning with PyTorch Geometric. In ICLR Workshop on

Representation Learning on Graphs and Manifolds, 2019. 6

[11] Stephan Gehrke, Kristian Morin, Michael Downey, Nicolas

Boehrer, and Thomas Fuchs. Semi-global matching: An

alternative to lidar for dsm generation. In Proceedings of

the 2010 Canadian Geomatics Conference and Symposium

of Commission I, volume 2, 2010. 1

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,

and Yoshua Bengio. Generative adversarial nets. In Proc.

NeurIPS, pages 2672–2680, 2014. 3

[13] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In Proc. NeurIPS, pages 5767–5777, 2017.

3

[14] Raj Kumar Gupta, Alex Yong-Sang Chia, Deepu Rajan,

Ee Sin Ng, and Huang Zhiyong. Image colorization using

similar images. In Proc. ACM MM, pages 369–378, 2012. 2

[15] Timo Hackel, N. Savinov, L. Ladicky, Jan D. Wegner, K.

Schindler, and M. Pollefeys. SEMANTIC3D.NET: A new

large-scale point cloud classification benchmark. In ISPRS

Annals of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, volume IV-1-W1, pages 91–98, 2017.

1

[16] Saurabh Prasad; Bertrand Le Saux; Naoto Yokoya; Ronny

Hansch. 2018 ieee grss data fusion challenge – fusion of

multispectral lidar and hyperspectral data. 2020. 6

[17] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing

the dimensionality of data with neural networks. science,

313(5786):504–507, 2006. 4

[18] Yi-Chin Huang, Yi-Shin Tung, Jun-Cheng Chen, Sung-Wen

Wang, and Ja-Ling Wu. An adaptive edge detection based

colorization algorithm and its applications. In Proc. ACM

MM, pages 351–354, 2005. 2

[19] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Let

there be color!: joint end-to-end learning of global and local

image priors for automatic image colorization with simulta-

neous classification. ACM Trans. on Graphics, 35(4):110,

2016. 1

[20] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised

learning of shape and pose with differentiable point clouds.

In Advances in Neural Information Processing Systems

(NeurIPS), 2018. 2

[21] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised

learning of shape and pose with differentiable point clouds.

arXiv preprint arXiv:1810.09381, 2018. 3

[22] Revital Ironi, Daniel Cohen-Or, and Dani Lischinski. Col-

orization by example. In Proc. EGSR, pages 201–210, 2005.

2

[23] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In Proc. CVPR, pages 1125–1134, 2017. 1,

2, 3, 5, 6, 8

[24] Mingyang Jiang, Yiran Wu, Tianqi Zhao, Zelin Zhao, and

Cewu Lu. Pointsift: A sift-like network module for

3d point cloud semantic segmentation. arXiv preprint

arXiv:1807.00652, 2018. 2

[25] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

Proc. ECCV, pages 694–711, 2016. 1

[26] Justin Johnson, Nikhila Ravi, Jeremy Reizenstein, David

Novotny, Shubham Tulsiani, Christoph Lassner, and Steve

Branson. Accelerating 3d deep learning with pytorch3d. In

SIGGRAPH Asia 2020 Courses, pages 1–1. 2019. 3, 6

[27] Hiroharu Kato and Tatsuya Harada. Learning view pri-

ors for single-view 3d reconstruction. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 9778–9787, 2019. 3

[28] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-

ral 3d mesh renderer. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 3907–

3916, 2018. 2, 3

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In Proc. ICLR, 2014. 6

[30] K L Navaneet, Priyanka Mandikal, Varun Jampani, and

Venkatesh Babu. Differ: Moving beyond 3d reconstruc-

tion with differentiable feature rendering. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, pages 18–24, 2019. 3

[31] Gustav Larsson, Michael Maire, and Gregory

Shakhnarovich. Colorization as a proxy task for visual

understanding. In Proc. CVPR, pages 6874–6883, 2017. 8

[32] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-

nen. Differentiable monte carlo ray tracing through edge

sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia),

37(6):222:1–222:11, 2018. 2

[33] Xiang Li, Lingjing Wang, Mingyang Wang, Congcong Wen,

and Yi Fang. Dance-net: Density-aware convolution net-

works with context encoding for airborne lidar point cloud

classification. ISPRS Journal of Photogrammetry and Re-

mote Sensing, 166:128–139, 2020. 2

[34] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. Advances in neural information processing systems,

31:820–830, 2018. 2

[35] Jitao Liu, Songmin Dai, and Xiaoqiang Li. Pccn: Point cloud

colorization network. In 2019 IEEE International Confer-

ence on Image Processing (ICIP), pages 3716–3720. IEEE,

2019. 2, 3, 7, 8

[36] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-

terizer: A differentiable renderer for image-based 3d reason-

ing. In Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision, pages 7708–7717, 2019. 2, 4

[37] Xiaopei Liu, Liang Wan, Yingge Qu, Tien-Tsin Wong,

Stephen Lin, Chi-Sing Leung, and Pheng-Ann Heng. Intrin-

sic colorization. ACM Trans. on Graphics, 27(5):1–9, 2008.

2

[38] Matthew M Loper and Michael J Black. Opendr: An ap-

proximate differentiable renderer. In European Conference

on Computer Vision, pages 154–169. Springer, 2014. 2

[39] Qing Luan, Fang Wen, Daniel Cohen-Or, Lin Liang, Ying-

Qing Xu, and Heung-Yeung Shum. Natural image coloriza-

tion. In Proc. EGSR, pages 309–320, 2007. 2

[40] Mehdi Mirza and Simon Osindero. Conditional generative

adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 2, 3

[41] KL Navaneet, Priyanka Mandikal, Mayank Agarwal, and

R Venkatesh Babu. Capnet: Continuous approximation pro-

jection for 3d point cloud reconstruction using 2d supervi-

sion. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 8819–8826, 2019. 3

[42] Kamyar Nazeri, Eric Ng, and Mehran Ebrahimi. Image col-

orization using generative adversarial networks. In Interna-

tional conference on articulated motion and deformable ob-

jects, pages 85–94. Springer, 2018. 1, 2, 3

[43] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-

zel Jakob. Mitsuba 2: A retargetable forward and inverse

renderer. ACM Trans. Graph., 38(6), Nov. 2019. 2

[44] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017. 6

[45] MS Prasad, KJ Reid, and HH Murray. Kaolin: processing,

properties and applications. Applied clay science, 6(2):87–

119, 1991. 3

[46] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 652–660,

2017. 1, 2, 3, 7

[47] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

net++ deep hierarchical feature learning on point sets in a

metric space. In Proceedings of the 31st International Con-

ference on Neural Information Processing Systems, pages

5105–5114, 2017. 1, 2, 4, 5, 7

[48] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-

zstein. Scene representation networks: Continuous 3d-

structure-aware neural scene representations. arXiv preprint

arXiv:1906.01618, 2019. 3

[49] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, François Goulette, and Leonidas J

Guibas. Kpconv: Flexible and deformable convolution for

point clouds. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 6411–6420, 2019. 2

[50] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Ji-

tendra Malik. Multi-view supervision for single-view re-

construction via differentiable ray consistency. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 2626–2634, 2017. 3

[51] Julien Valentin, Cem Keskin, Pavel Pidlypenskyi, Ameesh

Makadia, Avneesh Sud, and Sofien Bouaziz. Tensorflow

graphics: Computer graphics meets deep learning. 2019. 3

[52] N. Varney, V. K. Asari, and Q. Graehling. Dales: A large-

scale aerial lidar data set for semantic segmentation. In

2020 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition Workshops (CVPRW), pages 717–726, Los

Alamitos, CA, USA, jun 2020. IEEE Computer Society. 1

[53] Congcong Wen, Xiang Li, Xiaojing Yao, Ling Peng, and

Tianhe Chi. Airborne lidar point cloud classification with

global-local graph attention convolution neural network.

ISPRS Journal of Photogrammetry and Remote Sensing,

173:181–194, 2021. 2

[54] Lukas Winiwarter, Gottfried Mandlburger, Stefan Schmohl,

and Norbert Pfeifer. Classification of als point clouds using

end-to-end deep learning. PFG–Journal of Photogrammetry,

Remote Sensing and Geoinformation Science, 87(3):75–90,

2019. 2

[55] H. Xiu, T. Shinohara, and M. Matsuoka. Dynamic-scale

graph convolutional network for semantic segmentation of

3d point cloud. In 2019 IEEE International Symposium on

Multimedia (ISM), pages 271–2717, 2019. 2

[56] Zhen Ye, Yusheng Xu, Rong Huang, Xiaohua Tong, Xin Li,

Xiangfeng Liu, Kuifeng Luan, Ludwig Hoegner, and Uwe

Stilla. Lasdu: A large-scale aerial lidar dataset for semantic

labeling in dense urban areas. ISPRS International Journal

of Geo-Information, 9(7):450, 2020. 1

[57] Mohammed Yousefhussien, David J Kelbe, Emmett J Ien-

tilucci, and Carl Salvaggio. A fully convolutional network

for semantic labeling of 3d point clouds. arXiv preprint

arXiv:1710.01408, 2017. 2

[58] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful

image colorization. In Proc. ECCV, pages 649–666, 2016. 4

[59] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d:

A modern library for 3d data processing. arXiv preprint

arXiv:1801.09847, 2018. 6

