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Abstract

In recent years self-supervised learning has emerged

as a promising candidate for unsupervised representation

learning. In the visual domain its applications are mostly

studied in the context of images of natural scenes. However,

its applicability is especially interesting in specific areas,

like remote sensing and medicine, where it is hard to obtain

huge amounts of labeled data. In this work, we conduct

an extensive analysis of the applicability of self-supervised

learning in remote sensing image classification. We analyze

the influence of the number and domain of images used for

self-supervised pre-training on the performance on down-

stream tasks. We show that, for the downstream task of

remote sensing image classification, using self-supervised

pre-training on remote sensing images can give better re-

sults than using supervised pre-training on images of natu-

ral scenes. Besides, we also show that self-supervised pre-

training can be easily extended to multispectral images pro-

ducing even better results on our downstream tasks.

1. Introduction

The advent of deep learning based methods enabled

rapid progress in computer vision, as can be seen by the re-

sults on many benchmark datasets like ImageNet [29] and

MS-COCO [23]. However, most of these improvements

came from the usage of supervised learning based methods

that need huge amounts of labeled training data. This need

for large labeled datasets poses a significant problem as cre-

ating them is a highly time-consuming and error-prone task.

This is especially visible in highly specialized areas, like re-

mote sensing and medicine, where data labeling can only be

done by domain experts.

Over the years transfer learning emerged as a standard

technique for overcoming this need for big labeled datasets.

It is based on the idea of using neural networks pre-trained

on already available labeled datasets, like ImageNet, as ei-

ther feature extractors or for finetuning on small datasets.

This allowed usage of these supervised deep learning based

methods for small datasets, but some limitations remained.

One major limitation in applying these techniques for re-

mote sensing images is that most remote sensing images

contain information outside of the visible spectrum, while

the neural networks are usually pre-trained on RGB im-

ages as most of the big labeled datasets contain only RGB

images. This forces us to drop all information outside of

the visible spectrum if we want to use a neural network

pre-trained on RGB images, which significantly limits the

amount of information we use in the analysis. Even if

remote sensing images only contain RGB color channels,

a possible drawback of using models pre-trained on Ima-

geNet is that images of natural scenes present in ImageNet

look quite different from remote sensing images, especially

if these are satellite images. Besides, different missions

like Sentinel, Landsat, and others provide us with an ever-

growing amount of unlabeled multispectral images which

makes it even more interesting to study the possibilities of

learning visual representations in an unsupervised manner.

Recently, self-supervised learning [20, 10, 17] emerged

as a promising candidate for overcoming the need for large

labeled datasets in representation learning. It is based on the

idea of training a neural network to solve the pretext task for

which labels can be obtained directly from the data. This

pretext task should be complex enough to allow the neu-

ral network to learn meaningful image representations. A

neural network trained in a self-supervised fashion can then

be used for transfer learning in the same way as we would

use neural networks pre-trained on supervised tasks. How-

ever, as this is an unsupervised technique of pre-training it

allows us to take advantage of a large number of available

unlabeled images. This possibility of using unlabeled im-

ages for representation learning is especially interesting in

areas where we have multispectral images or images that

simply look differently than images of natural scenes. In

these areas using in-domain images for pre-training could

allow us to overcome the issues that we have with classical

transfer learning.



Applications of self-supervised learning, in working

with images of natural scenes, have been studied quite well

in the last few years and they show very promising re-

sults. In the last year, self-supervised learning provided

representations that transfer to classification, segmentation,

and detection tasks even better than representations learned

by supervised learning [5, 4]. However, the application of

self-supervised learning methods in remote sensing has not

been studied a lot. Most of these applications either used

small amounts, up to 50,000 images, of unlabeled training

data [31, 30, 35] or tested learned representations on a small

number of datasets [1, 19, 38].

For these reasons, in this work we give a detailed analy-

sis of the applicability of self-supervised learning in remote

sensing. First, we analyze the influence of the number and

domain of images used for self-supervised pre-training on

the performance on downstream tasks. Second, we compare

representations learned by self-supervised learning to the

representations learned by supervised learning. Third, we

analyze different strategies for expanding a self-supervised

algorithm proposed for RGB images to the case of mul-

tispectral images. Fourth, we analyze the possibility of

finetuning these self-supervised models and the influence

it has on results on downstream tasks. Finetuning is usually

skipped in most self-supervised learning papers and these

models are usually only used as feature extractors. Besides

that, we compared these results to the results obtained by

finetuning supervisedly trained models.

We show that, for the classification of remote sensing im-

ages, using self-supervised pre-training on remote sensing

images can give better results than using supervised pre-

training on images of natural scenes, even when we use sig-

nificantly smaller number of images. We also apply self-

supervised pre-training on multispectral images and show

that it further improves the results on downstream tasks.

Code and trained models used in this paper are available

at https://github.com/vladan-stojnic/CMC-RSSR.

2. Related Work

2.1. Selfsupervised learning of visual representa
tions

Self-supervised learning of visual representations is a

fast-growing subfield of unsupervised learning and, over the

years, many methods have been proposed and applied. All

the proposed methods can be categorized into three groups

depending on the type of pretext task they use.

In the first group, we have methods based on the pre-

text task of image reconstruction or solving some natural

tasks. In these pretext tasks, self-supervised models are

trained to remove a degradation artificially added to images

or to solve some simple natural tasks in image understand-

ing. For example, in [7] a pretext task is formulated in a

way that a model needs to predict how one block of the im-

age is positioned compared to another block of the same

image. A similar pretext task is presented in [24] where a

model is trained to solve a jigsaw puzzle consisting of nine

shuffled image blocks. In [27] the authors propose a pre-

text task based on solving the image inpainting problem.

Another interesting pretext task is proposed in [9] where a

model learns to predict the natural orientation of the im-

age. A pretext task based on colorizing an image is pre-

sented in [21, 43] while in [44] authors propose a pretext

task where they train a model to predict both the colors of

the image from its luminance as well as predict the lumi-

nance from its colors. The methods from this group per-

form generally worse than the methods from the other two

groups. Moreover, some of these methods, such as image

inpainting, as well as predicting natural orientations or rel-

ative positions of image blocks cannot be unambiguously

defined for remote sensing images, which makes them in-

applicable to this domain.

The second group of methods for construction of pre-

text tasks is based on the idea of predicting synthetically

generated labels. In this case self-supervised models solve

a classical classification problem, but instead of predicting

human supplied labels they predict labels that are automat-

ically generated. In [8] every image is its own class and

other samples from that class are generated by applying dif-

ferent augmentations to the original image. Another way of

generating labels is proposed in [3]. This time classes are

determined by applying k-means clustering to the represen-

tations extracted from a self-supervised model. New classes

are determined at the start of each epoch, while each image

is assigned a label that corresponds to the index of the clos-

est cluster.

The third group of self-supervised methods is based on

the idea of contrastive learning. In the case of contrastive

learning, the pretext task is defined in a way that rep-

resentations of similar (positive) images should be close

in the representation space, while the representations of

dissimilar (negative) images should be as far as possible.

Now the main task is how to find similar/dissimilar images.

In [25, 15] the authors propose to use patches extracted from

the same image as positive pairs and patches from differ-

ent images as negative pairs. Another method for finding

positive pairs is based on the idea of applying different aug-

mentations to the same image and using them as positive

pairs [5, 39, 42, 12], while the negative pairs again come

from different images. A method based on using represen-

tations from different neural network layers as positive pairs

is proposed in [16, 2]. In [36] the authors propose to use

disjoint subsets of image channels as positive pairs while

they use subsets of channels coming from different images

as negative pairs. Another method is proposed in [4, 22].

This time authors propose to contrast image representations



Dataset Number of images Image sizes Spatial resolution (m)

ImageNet 1,281,167 up to 4488x7056 -

NWPU-RESISC45 31,500 256x256 0.2 - 30

DOTA 2,806 800x800 - 4000x4000 not specified

NWPU VHR-10 800 381x601 - 1028x1728 0.08 - 2

BigEarthNet 269,695 up to 120x120 10 - 60

Table 1. Details of datasets used for self-supervised learning. (Number of images denotes number of images used for self-supervised

learning and not the number of images in a dataset.)

with their cluster assignments. The process is quite similar

to the previously mentioned methods that use clustering for

generating synthetic image labels. They calculate represen-

tations of positive/negative images but instead of directly

contrasting representations, they cluster the representations

and contrast them with cluster assignments of their posi-

tive/negative pairs.

2.2. Selfsupervised learning in remote sensing

Lately, some research has been done in the area of apply-

ing self-supervised learning to the analysis of remote sens-

ing images. In [31, 30] the authors analyzed the possibil-

ities of using split-brain autoencoder [44] in the analysis

of aerial images. They analyzed the influence of the num-

ber of images used for self-supervised learning, as well as

usage of different color channels, on the results obtained

on the downstream task of aerial image classification. A

method that is quite similar to contrastive learning with dif-

ferent image augmentations is proposed in [1]. However,

instead of using different augmentations of the same image

as a positive pair, they use satellite recordings of the same

geospatial areas in different time frames. Also, besides the

contrastive loss, they introduce a loss term that is based on

the classification of the image geolocation. Classification

of a geolocation is based on the idea of predicting artificial

labels. Artificial labels are generated by k-means cluster-

ing of latitude and longitude coordinates of every image in

a dataset. In [35] the authors analyze possibilities of us-

ing different self-supervised methods, specifically the ones

based on image inpainting [27], context prediction [7], and

contrastive learning using different augmentations. How-

ever, they only train these methods on small datasets of

remote sensing images ranging from 20,000 to 30,000 im-

ages. A method proposed in [19] is based on contrastive

learning with different augmentations. They train their self-

supervised models on relatively big datasets with 100,000

images, but they only test them on two downstream tasks

NAIP [18] and EuroSAT [14]. In [38] the authors propose

a method similar to the image colorization, but they train

a model to predict information from the visible part of the

spectrum from the information outside of the visible spec-

trum. The authors trained the model using the BigEarthNet

dataset [33, 34] that is quite big with 269,695 training im-

ages, but they again only tested learned representation on

two downstream tasks.

In this work, we train the self-supervised algorithm

on three large datasets of: (a) images of natural scenes,

(b) high-resolution remote sensing images, and (c) low-

resolution remote sensing images. In addition, we apply

it to both RGB and multispectral remote sensing images.

Finally, we evaluate learned representations on four down-

stream tasks of both single-label and multi-label classifica-

tion problems.

3. Datasets

To perform the experiments in this paper we use two

groups of datasets. One group contains datasets used for

training of the self-supervised algorithm and the second

group contains datasets used for the evaluation of the repre-

sentations obtained using self-supervised pre-training.

3.1. Datasets used for selfsupervised pretraining

To train self-supervised models we use three different

datasets. One dataset consists of images of natural scenes

and will be used as a baseline, while the two remaining

datasets consist of remote sensing images. One of these

datasets contains high-resolution images, while the other

one contains low-resolution images. It is important to note

that even though most of these datasets contain labels we do

not use them in any way for training of our self-supervised

models. Details about these datasets can be seen in Table 1.

For the dataset of natural scenes, we chose Ima-

geNet [29] as it is a standard dataset used for training both

supervised and self-supervised models in the literature. In

this work, we use only the training set of 1.2M images from

ImageNet1000 dataset.

As the high-resolution remote sensing dataset, we use

the dataset created by combining images from NWPU-

RESISC45 [6], DOTA [40], and NWPU VHR-10 [32]

datasets. Some of the images in DOTA dataset contain

a black border, so we manually extracted regions without

it from every image in the dataset. From these regions,

we then extracted non-overlapping patches of 256x256

pixels that we used as samples in our dataset for self-

supervised learning. For NWPU VHR-10 dataset, we only



Dataset Annotation type Number of categories Number of images Image sizes Spatial resolution (m)

AID single-label 30 10,000 600x600 0.5 - 8

MLRSNet multi-label 60 109,161 256x256 0.1 - 10

BigEarthNet multi-label 19 519,284 up to 120x120 10 - 60

So2Sat single-label 17 376,485 32x32 10

Table 2. Details of datasets used for the evaluation of self-supervised representations.

extracted non-overlapping patches of 256x256 pixels from

the original images and use these patches as samples in our

dataset. Since NWPU-RESISC45 dataset originally con-

sists of 256x256 pixel images we use these original images

as samples in our dataset. Using this procedure we cre-

ated a dataset of 196,215 images that we use for training of

our self-supervised algorithm. We call this dataset NWPU-

DOTA throughout this paper.

For the low-resolution dataset, we use images from

BigEarthNet [33, 34] dataset. This dataset consists of

519,284 multispectral images collected by Sentinel-2 satel-

lite, but we only use images from the training set of

BigEarthNet, 269,695 images in total, as the dataset for

training of the self-supervised algorithm.

3.2. Datasets used for the evaluation of learned rep
resentations

To evaluate the representations learned by the self-

supervised algorithm we use four remote sensing datasets:

two with high-resolution and two with low-resolution im-

ages. Details about these datasets can be seen in Table 2.

AID [41] is a high-resolution scene classification dataset

of aerial images. Every image in this dataset is labeled with

one category from the set of 30 predefined categories. On

this dataset, we use 50% - 50% training/test split for training

and evaluation of our models, as previously used in litera-

ture.

MLRSNet [28] is a dataset of high-resolution aerial im-

ages. This dataset was developed for the problem of scene

classification in a multi-label setting. Every image in this

dataset is assigned 1 to 13 labels from the set of 60 prede-

fined categories. For training and evaluation of our models,

we use a 20%-80% training/test split as suggested in [28].

BigEarthNet is a dataset of multispectral satellite images

for multi-label land use classification. There are two ver-

sions of this dataset with 45 [33] and 19 [34] predefined

categories, but in this work, we only consider a version of

the dataset with 19 categories. For training/validation/test

split we use the same split defined in [34] with 269,695,

123,723, and 125,866 images, respectively.

So2Sat [45] represents a dataset of multispectral satel-

lite images collected by Sentinel-2 and SAR images col-

lected by Sentinel-1 designed for local climate zones clas-

sification. Every image in this dataset is labeled with one

category from the set of 17 predefined categories. In this

work, we use only multispectral images and the official

training/validation split with 352,366 and 24,119 images,

respectively.

4. Method

The method we use in this work consists of two steps:

(1) self-supervised pre-training and (2) transfer learning and

evaluation of learned representations.

4.1. Selfsupervised pretraining

As the first step in our experiments, we use Contrastive

Multiview Coding - CMC [36] for self-supervised pre-

training. We chose CMC because it gave good results for

images of natural scenes and could be readily adapted to

multispectral images. We believe that similar results would

be obtained by using the majority of the methods from the

second and third groups in Section 2.

CMC is based on the idea of contrasting representations

of different image views. More specifically, given a set

of images {x1, x2, . . . , xN}, each image xi is split into

two views, v1i and v2i , containing different subsets of chan-

nels. Each of these views is then processed using encoding,

z1i = E1(v
1
i ), z

2
i = E2(v

2
i ), and projection, h1

i = P1(z
1
i ),

h2
i = P2(z

2
i ), networks that output data and contrastive rep-

resentations, respectively. The model is then trained to pull

together contrastive representations of views coming from

the same image, h1
i and h2

i , while pushing apart contrastive

representations of views from different images, h1
i and h2

j ,

as shown in Figure 1. This is achieved by training the en-

coding and projection networks to minimize the loss

LV 1,V 2

= − E

{v1
1
,v2

1
,...,v2

k+1}

[

log
s
(

h1
1, h

2
1

)

∑k+1

j=1
s
(

h1
1, h

2
j

)

]

, (1)

where view V 1 is an anchor, and one positive and k neg-

ative images are sampled from view V 2. Discriminating

function s (·, ·) is cosine similarity of contrastive represen-

tations with temperature hyperparameter τ

s
(

h1, h2
)

= exp

(

h1 · h2

‖h1‖‖h2‖

1

τ

)

. (2)

Finally, the objective function for CMC is obtained by com-

puting the losses (1) using both views as anchors and sum-

ming them

L = LV1,V2 + LV2,V1 . (3)
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Figure 1. Schematic representation of the CMC algorithm.

Since k in (1) can be very large, Noise Contrastive Esti-

mation [11] is used to approximately compute the loss and

reduce computational requirements.

In this work, we use a ResNet50 [13] based architec-

ture for the encoding network of the CMC model, and for

the projection network we use a fully-connected linear layer

followed by L2 normalization. We train our CMC models

for 400 epochs using SGD with batch size 100, learning

rate 0.03, momentum 0.9, and weight decay 10−4. Learn-

ing rate is further reduced by a factor of 10 after the 250th,

300th and 350th epoch. We also employ data augmenta-

tion using random resized cropping and horizontal flipping.

For calculating NCE based loss we use k = 4096 negative

samples and the temperature parameter of τ = 0.07.

4.2. Transfer learning

As our main goal in this paper is to evaluate representa-

tions learned using self-supervised learning, in the next step

we use previously trained CMC models for transfer learn-

ing. To conduct transfer learning, the trained CMC models

are used both as feature extractors and as starting points for

finetuning.

For feature extraction, we pass 224x224 pixel images

through the CMC model and use concatenated outputs of

both encoder networks as image representation. To evalu-

ate these representations we train a linear classifier on top

of them for our testing datasets. For single-label datasets,

we use softmax activation function with categorical cross-

entropy loss, while for multi-label datasets we use sigmoid

activation function with binary cross-entropy loss. A lin-

ear classifier is trained for 50 epochs using Adam optimizer

with the batch size of 256 and weight decay 10−2. The

learning rate is set to 10−2 for MLRSNet dataset and 10−3

for other datasets. This learning rate is further reduced by a

factor of 5 after the 30th, 35th, 40th, and 45th epoch.

Similar to the feature extraction, for finetuning we put a

linear layer on top of the concatenated outputs of both en-

coder networks and use the same activation and loss func-

tions. This time we train the whole resulting model for 100
epochs, without warm-up, using Adam optimizer with the

batch size of 100, learning rate of 10−4 and weight decay

10−4. Learning rate is further reduced by a factor of 5 after

the 60th, 70th, 80th and 90th epoch. In the process of train-

ing these finetuned models, we first rescale training images

to 256x256 pixels and then extract 224x224 pixel blocks

from them using random resized cropping. These blocks

are also horizontally flipped with the probability of 0.5. In

the process of evaluation of the finetuned models, we pass

them input images that are rescaled to 224x224 pixels.

As evaluation metrics, we use accuracy for single-

label datasets and macro-averaged mean average precision

(mAP) for multi-label datasets.

5. Experimental Setup

To assess the possibilities of CMC for learning repre-

sentations of remote sensing images, we perform three ex-

periments. First, we want to analyze the influence of the

number and domain of the images used for training of the

CMC model on the results obtained by training a linear

classifier for our downstream tasks. To do this we train

CMC models using subsets of 10,000 (10k), 25,000 (25k),

50,000 (50k), 100,000 (100k), and 196,215 (200k) images

from ImageNet, NWPU-DOTA, and BigEarthNet datasets.

It is important to note that in these experiments we use only

RGB color channels even for datasets with multispectral im-

ages. To be precise, we train our CMC models as proposed
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Figure 2. Results obtained using a linear classifier on top of the representations learned by supervised and self-supervised learning. Abbre-

viations HR and LR represent high-resolution and low-resolution remote sensing datasets, respectively.

in [36], RGB images are converted to L∗a∗b∗ color space

and L∗ component is used as one view of the image while

a∗b∗ components are used as the second view.

Second, we want to analyze the possibilities of using

multispectral images for the training of CMC models. To

accomplish this we train our CMC models on subsets of

10,000 (10k), 25,000 (25k), 50,000 (50k), 100,000 (100k),

and 196,215 (200k) images from BigEarthNet dataset and

use them as feature extractors on BigEarthNet and So2Sat

downstream tasks. We propose two possible ways to cre-

ate multispectral image views for the CMC model. Our first

method is based on the idea that the first view should con-

tain the spectral bands with short wavelengths, while the

second view should contain the ones with long wavelengths.

In addition, we also split visible bands into different views

so that the blue color channel ends up in the view with long-

wavelength bands, while red and green end up in the other

view. Views created in this way are shown in Table 3 where

we used only 10 spectral bands available from Sentinel-2 as

proposed in [34]. The second method for defining CMC

views is based on the idea that it is better to use decor-

related channels when training CMC models [36, 37]. To

decorrelate previously used spectral bands we employ Prin-

cipal Component Analysis - PCA. To determine the PCA

decomposition we randomly sampled 144 pixel values from

View Spectral bands

1 2, 8, 8A, 11, 12

2 3, 4, 5, 6, 7

Table 3. One possible method for defining CMC views of multi-

spectral images.

each of 200k training images from BigEarthNet. After de-

termining the PCA decomposition, original image channels

are projected into the PCA basis and new CMC views are

defined so that they contain approximately the same vari-

ance. To be precise, the first view contains the channel that

explains the most data variance and four channels that ex-

plain the least amount of variance, while the second view

contains the remaining channels.

Finally, we evaluated the possibility of using previously

trained CMC models for finetuning on our downstream

tasks. For this, we used only CMC models trained using

200k images from different datasets and finetuned them us-

ing the procedure presented in Section 4.2.

All experiments are implemented on a computer with

two NVIDIA GeForce RTX 2080Ti GPUs and using a Py-

torch [26] library. Depending on the number and type (RGB

or multispectral) of images used for training of the CMC
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Figure 3. Results obtained using a linear classifier on top of the representations learned by self-supervised learning on multispectral

images. Supervised baseline represents a baseline obtained using supervisedly pre-trained network on ImageNet, and CMC baseline with

RGB images represents the best result obtained in previous experiments.

models, training a model takes from few hours to few days.

As for the transfer learning, all feature extraction models

can be trained in a couple of minutes, while finetuning can

take up to a few days in the case of multispectral images.

6. Experimental Results

6.1. Feature extraction with RGB images

In Figure 2 the results obtained using a linear classi-

fier on top of the representations learned by CMC models

trained on different datasets with varying sizes are shown.

In the same Figure, we also show the baseline results ob-

tained by using the representations from the CMC model

trained using 1.2M ImageNet images and ResNet50 model

trained in supervised fashion on ImageNet dataset, avail-

able in PyTorch [26]. As we can see, using bigger datasets

for the training of CMC models, in general, gives better

representations for our downstream tasks, but this can be

expected from most deep learning models. More interest-

ing is to look at the influence of the domains of images

used for CMC training on the results on downstream tasks.

For downstream tasks on AID and MLRSNet datasets, we

can see that using NWPU-DOTA dataset for self-supervised

pre-training gives better results than using ImageNet or

BigEarthNet for pre-training while using ImageNet gives

better results than using BigEarthNet. Interestingly, using

even as low as 25k or 50k images from NWPU-DOTA gives

better results than using 200k images from ImageNet and in

the case of MLRSNet even better than using 1.2M images

from ImageNet. Besides that, using NWPU-DOTA dataset

for self-supervised pre-training can give results that are bet-

ter than the results obtained using representations learned

by supervised learning on ImageNet. In the case of testing

on BigEarthNet and So2Sat datasets, it is visible that using

BigEarthNet dataset for self-supervised pre-training gives

better results than using NWPU-DOTA or ImageNet for

pre-training while using NWPU-DOTA gives better results

than using ImageNet. For the case of testing on BigEarth-

Net, we can see that using even 10k images from BigEarth-

Net for self-supervised pre-training gives results that are

better than any other result obtained either using super-

vised or self-supervised learning. As for the So2Sat, we

can see that using 25k or more images from BigEarthNet,

for self-supervised learning, gives results that are better than

the results obtained using self-supervised learning on other

datasets. Besides that, using 50k images from BigEarthNet

for self-supervised learning exceeds the results obtained by

using the supervisedly pre-trained network.

The aforementioned results show us that the choice of

images used for the training of the CMC model is crucial to

the performance on the downstream tasks if we use CMC

models as feature extractors. We can see that on the down-

stream task of remote sensing image classification it is much

better to train the CMC model on remote sensing images

than on images of natural scenes. This is even more pro-

nounced when the spatial resolutions of the images used in

the pretext and downstream tasks are similar. Interestingly,

if the spatial resolution between pre-training and down-

stream images significantly differs we get some opposed re-

sults. For the case of high-resolution downstream tasks, we

get better results by pre-training on images of natural scenes

than on low-resolution remote sensing images. On the other

hand, when we do testing on low-resolution tasks it is better

to pre-train on high-resolution remote sensing images than

on images of natural scenes. We think that this discrepancy

might be due to the inability of learning sharp edge detec-

tion filters when we pre-train on low-resolution images. On

the other hand, if we pre-train on high-resolution remote

sensing images we can learn both filters for sharp edge de-

tection and filters that would detect features interesting for

the special case of remote sensing images.



Finetuning initialization

RGB images Multispectral images
Downstream task

NWPU-DOTA

HR 200k

BigEarthNet

LR 200k

ImageNet

200k

ImageNet

1.2M

ImageNet

supervised

Without

PCA

With

PCA

AID (HR) 94.76 94.60 94.60 94.16 95.58 - -

MLRSNet (HR) 95.49 95.02 95.31 92.59 96.43 - -

BigEarthNet (LR) 78.34 79.56 78.63 76.21 81.62 82.00 82.90

So2Sat (LR) 58.43 58.50 58.51 57.06 60.84 60.66 60.68

Table 4. Finetuning results on our downstream tasks. Abbreviations HR and LR represent high-resolution and low-resolution remote

sensing datasets, respectively.

6.2. Feature extraction with multispectral images

In Figure 3, we can see the results obtained using a lin-

ear classifier on top of the representations learned by self-

supervised learning on multispectral images. As we would

have expected, using bigger datasets for self-supervised pre-

training gives better results on downstream tasks. Besides,

we can see that on the BigEarthNet downstream task using

PCA-based views turns out to be better by around 2% than

using non-decorrelated views. On the other hand, testing

on the So2Sat dataset shows that better results are obtained

if we use non-decorrelated views, but differences in results

are in general much smaller. We think that this difference

might come from the fact that the PCA decomposition was

learned using images from the BigEarthNet and the learned

basis may be too specialized to that dataset.

If we compare the results obtained using multispectral

images with the ones obtained using only RGB images we

can see that using multispectral information boosted the re-

sults by 2% to 4%.

6.3. Finetuning

Results obtained using finetuning are shown in Table 4.

We can see that in the case of RGB images the best results

are obtained using neural networks pre-trained in a super-

vised fashion. These models show around 1% to 2% bet-

ter results than the models pre-trained in a self-supervised

manner. It is also interesting that all self-supervised mod-

els give almost the same results with only a slight favor to

the models trained with images that have similar resolution

as the images in the downstream task. When we use mul-

tispectral images, finetuning a self-supervised network will

give around 1% better results on the BigEarthNet dataset

compared to the supervisedly pre-trained network and al-

most the same results on the So2Sat. However, it is impor-

tant to note that on the So2Sat finetuned models give worse

results than linear classifiers. We have observed a signif-

icant overfitting problem on the So2Sat using both linear

and finetuned models that we were not able to solve using

architectures and hyperparameters used in this work.

7. Conclusion

In this paper, we evaluate the applicability of self-

supervised learning in remote sensing image classification.

We show that if we use pre-trained models as feature extrac-

tors, self-supervised models trained on RGB remote sensing

images give better results than supervised models trained

on ImageNet. This can be seen even if the datasets used

for self-supervised pre-training are 6 to 24 times smaller

than the ImageNet dataset. However, if finetuning is used,

the models pre-trained in a supervised fashion on ImageNet

give up to 2% better results than the models trained using

self-supervised learning. Nevertheless, self-supervised pre-

training still has merit because finetuning of the network

is time and resource consuming. Furthermore, models pre-

trained on multispectral images are rare and we showed that

self-supervised pre-training on multispectral images boosts

the performance on downstream tasks up to 4% and allows

us to match or surpass the results obtained by finetuning a

supervised model pre-trained on RGB images.

There are still a lot of directions for future research in

this area. In this paper we focused on scene classification,

but it would be important to investigate whether similar

results would be obtained for different downstream tasks,

such as segmentation or object detection. Next, new meth-

ods for creating views for multispectral images are needed,

since PCA-based views fail to generalize to different down-

stream tasks. It would also be interesting to train self-

supervised methods on huge amounts of unlabeled data to

find the limits of these methods. Finally, further investi-

gation why supervisedly trained models give better results

with finetuning is necessary.
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Andreas Köpf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library. In

NeurIPS, 2019. 6, 7

[27] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor
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