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Abstract

There are many labelled datasets relating to land cover

and crop type mapping that cover diverse geographies,

agroecologies and land uses. However, these labels are

often extremely sparse, particularly in low- and middle-

income regions, with as few as tens of examples for cer-

tain crop types. This makes it challenging to train super-

vised machine learning models to detect specific crops in

satellite observations of these regions. We investigate the

utility of model-agnostic meta-learning (MAML) to learn

from diverse global datasets and improve performance in

data-sparse regions. We find that in a variety of coun-

tries (Togo, Kenya and Brazil) and across a variety of tasks

(crop type mapping, crop vs. non-crop mapping), MAML

improves performance compared to pretrained and random

initial weights. We also investigate the utility of MAML for

different target data-size regimes. We find MAML outper-

forms other methods for a wide range of training set sizes

and positive to negative label ratios, indicating its general

suitability for land use and crop type mapping.

1. Introduction

Although remote sensing has plentiful unlabelled data,

collecting high-quality labels is much more challenging.

While certain land-cover (LC) classes can be labelled us-

ing satellite photo-interpretation, crop type labels typically

require teams to be sent into the field, which is expensive

and not always feasible. This limits the scale of in-situ data

collection efforts that can be undertaken. In some areas, it

may not be possible to collect additional labels (e.g., due to

conflict), making it especially important to develop methods

that can efficiently learn from small datasets.

While extensive data collection efforts are rare, there

are many small-scale efforts to collect LC and crop type

datasets globally. These datasets are extremely heteroge-

neous, capturing different information depending on their

geographic coverage or the project’s scope and aims. Ef-

forts to learn from such heterogeneous datasets typically re-

quire careful curation and pipeline design depending on the

end goal [38, 40, 16], or reduce the granularity of the dataset

so that the labels are homogeneous (e.g., reducing crop type

labels to coarser crop/non-crop labels) [44], in which case

some information in the labels is lost.

In this paper, we demonstrate the applicability of meta-

learning (specifically model-agnostic meta-learning, or

MAML [10]) to learning from many heterogenous datasets

without losing the unique information contained in each

dataset, and apply a MAML formulation that can be used

for a variety of LC and crop type classification scenarios.

We investigate the effectiveness of this model in a variety of

geographies and across different sample-size regimes, and

apply it to create a common bean map for Busia province,

Kenya and a coffee map in Luı́s Eduardo Magalhães mu-

nicipality, Brazil given very few positive task labels (42 and

20, respectively). All source code1, photo-interpreted la-

bels2 and maps3 from this study are made publicly available

to promote operational uptake and future research.

2. Related Work

Machine learning has commonly been used to identify

cropland from Earth observation data. Common methods

include tree-based classifiers [37, 24, 27] or deep neural

networks [22, 21]. However, these have often been ap-

plied to small, homogeneous regions [22, 21] or require

1https://github.com/nasaharvest/crop-maml
2https://doi.org/10.5281/zenodo.4680394
3https : / / code . earthengine . google . com /

39a0fedfc7ac7f21c3dcb06eab29917d



large, task-specific datasets (hundreds of thousands of la-

bels) [30, 42, 29, 27].

A number of techniques have been developed to improve

performance on a data-sparse task by leveraging a larger

dataset of related samples. In remote sensing, the following

approaches have been applied:

Transfer Learning Transfer learning consists of first

training a model to perform well on an initial source dataset

before finetuning it on the dataset of interest. Transfer learn-

ing works best with extremely large source datasets such as

the ImageNet dataset [28]. Pretrained models are typically

optimized for a single target task, such as aircraft detection

[7] or land cover classification [38]. Alternative pretrain-

ing datasets can also be used—[43] used an unsupervised

tree detection algorithm to create a large pretraining dataset

for tree-crown detection. Finally, pretraining a model on

one geography before applying it to another has been used

for crop yield prediction [41], but this requires very similar

tasks across the different regions.

Multi-task learning Multi-task learning consists of solv-

ing multiple tasks at the same time[5], for example, simul-

taneously predicting tree type and tree health from satellite

imagery[6]. In addition, multiple classification tasks can be

learned together, e.g., [20] used multi-task learning for bi-

nary cropland (crop vs. non-crop) mapping, simultaneously

training a model to classify pixels from a global crop/non-

crop dataset and a smaller, region-specific crop/non-crop

dataset.

Meta-learning Meta-learning consists of using a variety

of related tasks to learn how to efficiently learn when given

new tasks. Model-agnostic meta-learning [10] consists of

learning an initial set of model weights θ that are opti-

mized to efficiently learn new tasks. This is in contrast

to transfer learning in which the initial weights θ are op-

timized by pretraining the model on a larger dataset. Com-

pared to pretraining, meta-learning enables efficient learn-

ing of information in classes with very few labels, as each of

these classes can be a single task. In pretraining, the under-

representation of these classes can make it much harder for

the model to learn from them [15, 8].

Rußwurm et al. [31] applied model-agnostic meta-

learning (MAML) [10] to land cover classification. Specif-

ically, they defined each task to be land cover classification

within a single biosphere and trained a convolutional net-

work on the SEN12MS segmentation dataset [34] and the

DeepGlobe dataset[9].

Our work builds on Rußwurm et al.’s initial exploration

into meta-learning for cross geography generalization. We

investigated the ability of MAML models to effectively

learn from heterogeneous sparse datasets, reformulating the

task so that this method can be applied to classes, such as

specific crops, that are not present in all tasks. In addition,

we investigated the performance of the model in a variety

of real-world settings, using this method to generate crop

type maps in Brazil and Kenya given very few labels for the

target task.

3. Data

3.1. Labelled Data

We leveraged multiple datasets to construct the tasks

for meta-learning. In total, we assembled 50,169 sam-

ples, the majority (41,364 or 82%) of which were binary

crop/non-crop labels. We additionally had access to 8,805

crop type labels spanning 18 crop type classes (including

monocropped and intercropped, in which only one or more

than one crop is planted in the same field respectively), 4

land use labels and 4 countries (Brazil, Kenya, Togo and

Mali). The distribution of labels is shown in Figure 1. We

describe these datasets below.

GeoWiki global crowd-sourced labels We leveraged a

large (35,866 samples) publicly-available crowd-sourced

dataset of binary cropland (crop/non-crop) labels from

diverse, globally-distributed locations from GeoWiki

(https://www.geo-wiki.org/). The sampling, la-

belling and quality assessment procedures are described in

Bayas et al. [4]. As each point was labelled by multiple

labellers, we took the mean of all labels for each point and

used a threshold of 0.5 to convert the mean to a binary label.

Groundtruth crop type labels We obtained 3 datasets

with crop type labels collected in the field in 3 countries:

Brazil, Mali and Kenya. Specifically, we used the following

datasets:

• Kenya: Local labels from Kenya were obtained from

in-country partners who work with field agents. These

labels include agricultural fields collected by Plant Vil-

lage [17, 18]. The dataset contains 8,318 total labels

and 13 classes. These included 12 single-crop classes:

cassava (365 labels), common bean (42 labels), cow-

pea (41 labels), green grams (127 labels), groundnut (3

labels), maize (830 labels), millet (25 labels), sorghum

(182 labels), soybean (6 labels), sugarcane (7 labels),

sunflower (60 labels), and wheat (12 labels). We ag-

gregated all fields that contained more than one crop

type into one class of intercropped fields (6,227 la-

bels).

• Mali: This dataset was collected under the Relief

to Resilience in the Sahel (R2R) project to gather

valuable on-the-ground information about crop con-

ditions for relevant government agencies in Mali



Figure 1: The spatial distribution of the labelled datasets. The insets show, clockwise from left, (a) Togo, (b) central Brazil,

including state boundaries, (c) Ethiopia, (d) Mali, (e) Kenya and (f) Sudan, highlighting the combinations of labelled datasets

in each country.

in partnership with NASA Harvest (https://

nasaharvest.org/). This dataset consists of 4

crops in Segou, Mali: maize (35 labels), sorghum (44

labels), millet (55 labels) and rice (14 labels).

• LEM+ (Brazil): We used the open source LEM+[23]

dataset which labeled monthly land use in 1,854 fields

across 16 land use classes between October 2019 and

September 2020. We took all fields that had the same

land use class between October 2019 and April 2020,

yielding 7 classes: cerrado (or natural vegetation) (149

labels), pasture (95 labels), coffee (20 labels), hay (21

labels), conversion area (recently deforested area that

was not previously cerrado) (11 labels), eucalyptus (26

labels) and bracharia (6 labels).

Hand-labelled data: While crop type labels usually re-

quire groundtruth observation in the field, in most cases bi-

nary cropland labels can be determined based on visual in-

terpretation of high-resolution satellite images. We used the

following datasets collected in this way:

• Togo: We used a dataset of 1,319 crop/non-crop labels

in Togo provided by [20]. These points were labeled

based on expert interpretation of a high-resolution (<

1m/pixel) SkySat basemap of Togo from 2019 [36]. In

addition, we used the provided test set of 350 randomly

sampled points in Togo, labelled by consensus from 4

expert labellers.

• Crop: We used crop-labels collected in Sudan (289

labels) and Ethiopia (454 labels), labeled based on ex-

pert interpretation of high resolution (3 m/pixel) Plan-

etScope basemaps [36]

• Non-Crop: We supplemented the groundtruth and

handlabelled crop datasets with handlabelled non-crop

points, labeled by experts based on visual interpre-

tation of PlanetScope basemaps [36]. We generated

2,697 non-crop labels in Kenya, 142 non-crop labels

in Mali, 202 non-crop labels in Ethiopia and 376 non-

crop labels in Sudan.

3.2. Satellite data

We used Sentinel-2 top-of-atmosphere re-

flectance (Level 1C) observations from Google

Earth Engine (GEE) as input to the model

(https://developers.google.com/earth-

engine/datasets/catalog/COPERNICUS_S2).

To construct a cloud-free representation of the pixel, we

used the algorithm in [33] to find the least-cloudy pixel

within a 30-day time period, resulting in a 12 month

least-cloudy time series for each label. We used all

Sentinel-2 bands except B1 (coastal aerosols) and B10

(cirrus SWIR). We additionally included the normalized

difference vegetation index (NDVI) (NDV I = B08−B04
B08+B04 ).

All bands (ranging from 10m to 60m resolution) were

upsampled to 10m during the GEE export.

To construct the 12-month time series we used observa-

tions acquired between March of Year N and March of Year

N+1 where N is the year the labels were created for. For

example, the GeoWiki labels were based on satellite im-

ages from 2017 [35], thus we used observations acquired

March 2017-March 2018 for those samples. Our handla-

belled datasets were based on images from 2019, thus the

time series spans March 2019-March 2020. The labels for

all other datasets were acquired between 2018-2020; each

groundtruth label has a date attribute that we used to de-

termine the time series start and end dates. Obtaining the

correct time window is important, as land use can change

over time [23], leading to incorrect labels if the wrong time

period is paired with a label.

For each label, we exported a 160m × 160m (16 × 16
Sentinel-2 pixels) patch around the label location using



GEE. This was necessary to give sufficient spatial context to

the cloud filtering algorithm. We then took the closest pixel

to the label within the patch. We focused on modelling the

temporal structure of the data instead of the spatial struc-

ture, as prior work has highlighted the importance of tem-

poral structure in crop and crop type mapping [32, 19], and

has shown that successful crop classification models use the

majority of their parameters to model the temporal structure

of the data [12].

4. Model Agnostic Meta-Learning

Algorithm 1 Model-Agnostic Meta-Learning

1: Require: p(T ): Distribution over tasks

2: Require: α, β: step size hyperparameters

3: randomly initialize θ

4: while not done do

5: Sample batch of tasks Ti ∼ p(T )
6: for all Ti do

7: Evaluate∇θLTi
(fθ) with respect to K examples

8: Compute adapted parameters with gradient de-

scent: θ
′

i ← θ − α∇θLTi
(fθ)

9: Update θ ← θ − β∇θΣTi∼p(T )LTi
(f

θ
′

i

)

Model-agnostic meta-learning (MAML) [10] is an algo-

rithm for learning a set of initial model weights θ that are

optimized to efficiently learn new tasks with few examples

and/or gradient steps. The MAML model learns these ini-

tial weights θ by training on other tasks, such that these

tasks behave as training examples (Algorithm 1).

Task construction We used two types of tasks to train our

meta-model:

1. Crop vs. non-crop tasks: We combined all the

datasets described in Section 3.1 and split the com-

bined dataset along national boundaries (using bound-

aries from [26]). We omitted countries with fewer than

10 positive or negative examples. This resulted in 91

tasks for which the model learned to classify pixels as

crop or non-crop.

2. Crop type vs. rest tasks: As described in Section 3.1,

we had crop type labels for Brazil, Mali and Kenya.

For each crop type C in each country, we constructed

a binary “C vs. rest” task. The “rest” class consisted

of all other crop, crop type, and non-crop labels in the

country. Differentiating a crop from other crops is sub-

stantially more challenging than differentiating a crop

from non-crop pixels (Figure 2). To compensate for

this, we upsampled the other crop samples by a factor

of 10 so they would be over-represented in the nega-

tive samples for each task. To prevent overfitting, we

Figure 2: A t-SNE [39] plot of a random subset of the raw

pixel-wise satellite time-series drawn from non-crop, com-

mon bean and other crop classes in Kenya. The crop and

non-crop instances are clustered much more effectively than

the common bean and other crop instances, highlighting the

more challenging nature of the crop type vs. rest problem

compared to crop vs. non-crop.

sampled each task-batch so that it would only contain

unique instances.

Model architecture MAML can be applied to any neural

network architecture. We used a one-layer LSTM (Figure

3) as in [20] to classify the time series for a single pixel as

crop vs. non-crop or crop type vs. rest (depending on the

task type). The LSTM had a hidden vector size of 128 and

the final hidden output was passed to a 2-layer classifier and

sigmoid activation. We applied variational dropout [11] be-

tween each LSTM timestep with 20% of weights randomly

dropped (dropout value of 0.2).

Training procedure We trained the meta-model in a one-

shot learning regime, using a binary cross entropy loss func-

tion. Each batch consisted of 10 positive and negative ex-

amples (20 total) from each task, sampled without replace-

ment until all positive or negative examples from a task had

been sampled, at which point all instances would be re-

placed. As in [1], we applied cosine annealing to the meta-

learning rate (β) when training the model, with a maximum

value of 10−4 and a minimum value of 10−6. We used an

update learning rate (α) of 10−4. We sampled all tasks be-

fore updating the meta-weights, so that each batch included

all tasks. We implemented the model using PyTorch [25]

and learn2learn [2].

We randomly split the tasks into training and validation

tasks using an 80/20 split. The test sets described in Section

5.1 were held out from both the training and validation sets.

We selected the model that performed best on the validation

tasks after 2000 passes over all tasks.



Figure 3: The LSTM model used to classify pixels as con-

taining a crop (or the crop of interest) or not.

(a) Togo (b) Kenya (c) Brazil

Figure 4: Example 500m × 500m satellite images of the

evaluation regions, demonstrating the variety in field sizes

and agro-ecology being evaluated. (Images obtained from

Google Earth Pro basemaps, comprised primarily of high

resolution Maxar images.)

5. Experiments

5.1. Evaluation datasets

We evaluated the model on 3 datasets. Figure 4 illus-

trates the diversity of agro-ecology and cropping systems in

each region.

1. Togo: We used the same dataset with crop vs. non-

crop labels from [20]. This consisted of a training

dataset with 1,319 hand-labelled examples (688 crop

and 588 non-crop) as well as 43 examples in Togo

from the GeoWiki dataset [35]. The test dataset con-

tained 350 randomly sampled points within Togo with

crop/non-crop examples labeled by consensus from

four experts.

2. Kenya: We held out the 42 examples labeled as com-

mon bean in the Kenya crop type dataset to evaluate

model performance for a minority class. We trained

the model in a common bean vs. rest regime as de-

scribed in Section 4.

3. Brazil: We held out the 20 coffee examples from the

LEM+ dataset and trained the model in a coffee vs.

rest regime as described in Section 4.

Each evaluation dataset consisted of a fine-tuning (train-

ing) and test dataset. For Togo, the test dataset consisted

of the 350 randomly sampled test labels provided with the

training dataset. For Kenya and Brazil, due to the small

number of positive examples, we randomly sampled 10 pos-

itive and 10 negative instances from the evaluation set to

create the test set. With very small sample sizes and the

small evaluation sets used for Kenya and Brazil, the test per-

formance can be sensitive to a particular split of the dataset

and not representative of the performance on the dataset

overall. To address this, we used bootstrapping to evalu-

ate the model across different splits and report performance

metrics as an average of 10 bootstraps.

Starting from initial weights learned using MAML, we

finetuned the model on the evaluation dataset by training the

model for 2000 iterations. Each iteration consists of a gradi-

ent update with batch size fixed to be the same size as dur-

ing meta-training (10 positive and 10 negative examples).

We sampled batches without replacement until all the in-

stances in a class had been used, then replaced all instances.

After finetuning, we evaluated the model on the held-out

test set (or bootstrap sample), constructing the test set to

only contain unique instances. We evaluated the model by

measuring its Area Under the Receiver Operating Charac-

teristic Curve (AUC ROC), which measures the probabil-

ity the model will rank a randomly chosen positive instance

above a randomly chosen negative instance (or how well

the model separates positive and negative instances)[3]. We

designed this evaluation procedure to emulate the common

real-world scenario in which there is a need to create a crop

type map for a region of interest but there are only a hand-

ful of groundtruth labels available for model training and

evaluation.

5.2. Baselines

We compared our meta-learning method with two base-

line methods for initializing the model weights prior to fine-

tuning: 1) Pretraining, where the LSTM model is pre-

trained to classify crop vs. non-crop using all available data,

and (2) Random initialization, where the LSTM model

weights are initialized using Xavier initialization [13].

In the case of the Togo dataset, we also compared our

results to those from the multi-task learning (multi-headed

LSTM) approach reported in [20].

6. Results

The overall results are shown in Table 1. Overall, across

a variety of geographies and sample-size regimes, MAML

outperformed both the random and pretrained baselines.

6.1. As a function of sample size

Using the Togo dataset, we compared the performance

of the MAML model with the random and pretrained base-



Dataset #Pos #Neg Model AUC ROC

Kenya 32

32

MAML 0.849

Pretrained 0.822

Random 0.803

4373

MAML 0.898

Pretrained 0.853

Random 0.870

Brazil 20

20

MAML 0.979

Pretrained 0.938

Random 0.962

420

MAML 0.998

Pretrained 0.974

Random 0.997

Togo

10 10

MAML 0.844

Pretrained 0.819

Random 0.750

688 588

MAML 0.910

Pretrained 0.856

Random 0.840

Multi-headed[20] 0.894

Table 1: The AUC ROC results of crop type classifica-

tion for the MAML, pretrained and randomly initialized

models. The #Pos and #Neg values indicate the number

of unique positive and negative instances used for training.

All MAML, pretrained and random were obtained using 10

bootstraps. The multi-headed LSTM results were obtained

using 3 bootstraps[20].

Figure 5: The effect of increasing the training sample size

on model performance on the Togo test dataset. The results

are taken at the 2000th training iteration. The multi-headed

results are taken from [20]. The results from [20] are from 3

bootstraps, while the MAML results are from 10 bootstraps.

lines as the number of available training samples increases

(Figure 5). We evaluated the models on the 350 randomly-

sampled test instances. We additionally compared the

model to the results reported for the multi-task model orig-

inally trained on the same training dataset[20]. Because the

multi-headed LSTM was simultaneously trained on the Ge-

oWiki [35] and Togo-specific dataset, its training procedure

is different from the MAML model and the baselines. Most

Figure 6: The performance of the MAML model on the

Togo test dataset across different sample sizes as the number

of finetuning gradient steps increases from 2 to 2000. The

multi-headed LSTM results from [20] are included for ref-

erence. The results from [20] are from 3 bootstraps, while

the MAML results are from 10 boostraps.

notably, the training procedure in [20] used early stopping

and a validation set instead of training for a fixed number of

gradient steps. Overall, the MAML model outperformed all

compared methods at all sample sizes.

In addition, the performance of the MAML model

rapidly approaches the performance of the multi-headed

LSTM [20] trained on all available data. When trained on

only 254 samples, the MAML model achieved an average

AUC ROC of 0.889, compared to an AUC ROC of 0.894

for the multi-headed LSTM trained on all the data (1,319

samples).

6.1.1 As a function of gradient steps

With small training set sizes, there may not be enough data

samples to create a validation set that can be used to deter-

mine when to stop training (or other hyperparameter set-

tings). To better understand the effect this may have on

model over-fitting, we measured the performance of the

MAML model on the Togo test set at a variety of training

iterations (Figure 6).

With 20 data samples (10 positive and 10 negative), the

model is sensitive to overfitting. Specifically, the model’s

AUC ROC decreases from a peak of 0.855 at 500 gradient

steps to 0.844 at 2000 gradient steps. However, for larger

sample sizes the model is robust to many gradient steps,

with model performance remaining stable from 500 to 2000

gradient steps.

6.2. As a function of class imbalance

In the cases of the Kenya and Brazil evaluation tasks (and

other field data collection scenarios), we are limited by the

number of positive groundtruth (crop type) examples that

were collected in the field. However, we can more easily

collect additional negative non-crop labels by visually in-

terpreting and annotating satellite images. The downside

is that adding more negative non-crop labels will increase

the class imbalance. To evaluate the trade off between class



(a) Kenya: Few negative points (b) Kenya: All negative points

(c) Brazil: Few negative points (d) Brazil: All negative points

Figure 7: The averaged test AUC ROC of the MAML, ran-

dom and pretrained models for the Kenya common beans

and Brazil coffee test sets using (a, c) all positive samples

and an equal number of positive samples, and (b, d) all

available negative samples, across 10 bootstraps. This per-

formance is plotted as a function of the number of training

gradient steps. The values in the legend indicate the final

AUC ROC of each model.

imbalance and plentiful, easy to collect negative labels, we

tested the model (a) in a balanced regime, with all available

positive samples and an equal number of negative samples,

and (b) in an imbalanced regime, with all available positive

samples and all available negative samples.

We found that even when using all available negative

samples, the MAML model outperformed the random and

pre-trained models (Figure 7). In addition, as in section

6.1.1 we found that the models were robust to overfitting in

both in the balanced and imbalanced regimes, with model

performance increasing or remaining stable as the number

of gradient steps increased.

In addition, we found that in all cases except one (the

balanced Kenya task), pretraining the model on crop vs.

non-crop failed to improve the performance of the model

compared to a random initialization. There is evidence

that given the right training procedure, randomly initialized

models can match the performance of those trained on Im-

ageNet, even with tens of thousands of samples [14], but

there are also many cases where pretraining does improve

model performance [38, 7, 41]. We hypothesize that train-

Common bean probability

0.0 0.5 1.0

Figure 8: Common beans vs. rest map for the 2019-2020

season in Busia, Kenya, created from an ensemble of 10

bootstrapped MAML models.

ing the pretrained model on a crop vs. non-crop regime

makes it more difficult for the model to learn to differentiate

a single crop from other crops, leading to the lower perfor-

mance. This highlights the suitability of pretraining when

there is alignment between the source and target tasks, but

that the problems may need to be carefully constructed to

ensure pretraining benefits the test task [31]. An additional

benefit of the MAML model is that it can be re-purposed

for a variety of different tasks (e.g., crop mapping in Togo

or crop type mapping in Brazil and Kenya) with no alter-

ations.

6.3. Crop type maps from ensembles

We ensembled the the 10 bootstrapped crop vs. rest mod-

els to create a common bean map for Busia, Kenya (Figure

8) and a coffee map for Luı́s Eduardo Magalhães munici-

pality in Brazil (Figure 9). We did this by using the trained



Coffee probability

0.0 0.5 1.0

Figure 9: Coffee vs. rest map for the 2019-2020 season in

Luı́s Eduardo Magalhães, Brazil, created from an ensemble

of 10 bootstrapped MAML models.

models to create predictions for the entire area, and taking

the mean of the predictions of the 10 models.

Given the sparsity of the labels, evaluating the maps is

challenging. The LEM+ [23] dataset collected polygons

delineating the boundaries of entire fields in Luı́s Eduardo

Magalhães municipality, so we can measure the accuracy

of the ensembled wall to wall crop type map by comparing

it to these field polygons. We emphasize that these sam-

ples have some overlap with the training dataset, because

we used the central pixels of each fields for training. In ad-

dition, these fields do not completely cover the municipal-

ity. Still, this metric is useful to understand how well the

model can generate wall-to-wall (dense) maps given few

sparse labels. Using a threshold of 0.5 to classify pixels

as containing coffee or not, this map accurately classifies

87.5% of pixels in coffee fields, and misclassifies 2.8% of

pixels in non-coffee fields as coffee. We computed intersec-

tion over union (IOU) by removing all pixels not covered by

the LEM+ polygons, and calculating IOU using the remain-

ing pixels. The IOU was measured to be 0.51.

7. Conclusions and Future Work

In conclusion, we presented a framework for combin-

ing multiple sparse, heterogenous datasets using model-

agnostic meta-learning. We compared this approach against

pretrained and randomly initialized weights in a variety of

agro-ecologies, geographies and data regimes. We found

that meta-learning is an effective way of combining many

diverse datasets without losing granular information, and

that this method outperformed the pretraining and random-

weight baselines for both crop vs. non-crop tasks and crop

type vs. rest tasks.

In addition, we used this method to generate a common

bean map for Busia province, Kenya and a coffee map for

Luı́s Eduardo Magalhães municipality, Brazil, demonstrat-

ing the operational utility of this method for creating crop

type maps given few labels.

In future work, we plan to investigate methods of com-

municating task-specific information (such as the agro-

ecology of the region being learned) to the model and to

continue extracting information from the labels to improve

the model output (e.g., whether a field is monocropped

or intercropped). In addition, we plan on expanding this

method, both by adding additional training tasks (and ex-

tending the crop type tasks to include one v. one crop type

tasks) and by using it to generate other crop type maps

around the world.
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