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Abstract

We propose a machine learning based approach for au-

tomatic 3D building reconstruction and vectorization. Tak-

ing a single-channel photogrammetric digital surface model

(DSM) and a panchromatic (PAN) image as input, we first

filter out non-building objects and refine the building shapes

of the input DSM with a conditional generative adversarial

network (cGAN). The refined DSM and the input PAN im-

age are then used through a semantic segmentation network

to detect edges and corners of building roofs. Later, a set

of vectorization algorithms are proposed to build roof poly-

gons. Finally, the height information from refined DSM is

processed and added to the polygons to obtain a fully vec-

torized level of detail (LoD)-2 building model. We verify the

effectiveness of our method on large-scale satellite images,

where we obtain state-of-the-art performance.

1. Introduction

The availability of accurate 3D building models has be-

come highly demanded in various applications like the mod-

eling of global urbanization process, urban planning, dis-

aster monitoring, etc. As traditional methods performed

by human operators for 3D building modeling are expen-

sive, time-consuming and limited to a small area, modern

automatic 3D building model reconstruction methods have

drawn wide research interests.

Current automatic 3D building reconstruction methods

can be generally categorized into data-driven, model-driven

and hybrid approaches. While model-driven approaches ex-

tract the primitives of buildings and fit them to the most

appropriate models [17], data-driven methods extract geo-

metrical components of building roof planes from 3D point

clouds or digital surface models (DSMs) with point- or

image-based segmentation techniques, and these compo-

nents are merged to 3D models with respect to some ge-

ometrical topology [27]. With model-driven methods being

unable to solve complex situations and data-driven methods

being commonly noisy, hybrid approaches, including this

work, tend to integrate the two types of approaches, where
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Figure 1. Sample results of the proposed 3D building vectorization

method. (a) refined DSM; (b) edge and corner segmentation; (c)
vectorized 3D building model.

a data-driven approach extracts the building components,

and a model-driven approach utilizes prior knowledge of the

geometrical building models to help reconstruct 3D build-

ings [35].

While light detection and ranging (LiDAR) point clouds

and aerial images have been the most common sources to

extract 3D building information in the past years [9, 10, 12],

satellite images become more and more important as they

are convenient to acquire, cover wide areas and update fre-

quently. Apart from optical images, modern satellites can

also provide DSMs using photogrammetric stereo matching

techniques, from which we can extract both building ob-

jects and their height information. However, satellite DSMs

show a reasonable amount of noise and outliers because

of matching errors or the existence of non-building ob-

jects, thus refinement methods have been studied to improve

their quality. With traditional methods using filter-based

techniques like principle component analysis (PCA) [20],

Kalman filter [30] and fast Fourier transform (FFT) [3] to

remove outliers, recent researches have shown promising

improvement by using deep learning based methods. Bit-

tner et al. [5] proposed firstly a conditional generative ad-

versarial network (cGAN) based approach to filter out non-

building objects and refine building shapes of photogram-

metric DSMs, which was further developed by a set of

works [6, 7, 8] to step-by-step improve the generation qual-

ity. Stucker and Schindler [26] proposed an improvement

for traditional stereo image matching by regressing a resid-

ual correction with a convolutional neural network.



The revolutionary appearance of machine learning and

deep learning techniques has also brought significant con-

tributions to the whole process of 3D building reconstruc-

tion tasks. Not only building footprints can be extracted

and regularized with neural networks [28, 34, 36], but also

the heights and roof elements can be detected and pre-

dicted [1, 2], leading to constructed 3D building models.

Recent researches can be found in [21], where the authors

combined building object detection, semantic segmentation

and height prediction in a multi-task manner, and [29],

where the authors proposed a deep learning based model-

driven approach to perform parametric building reconstruc-

tion. While most of these researches focusing on level of

detail (LoD)-1, LoD-2 building modeling is relatively new.

One example is presented in [24], where a hybrid 3D build-

ing reconstruction method is applied to detect and decom-

pose building boundaries, classify roof types, and fit prede-

fined building models.

Challenges for LoD-2 building reconstruction contain

the requirement for accurate building height prediction and

roof element extraction, and the complexity to form vec-

torized 3D roofs. Most existing methods utilize or predict

coarse height maps for detection tasks of neural networks

and later perform optimization [2, 24]. Our work, by con-

trast, uses network refined DSMs to extract roof elements

and proposes a corresponding vectorization pipeline to form

3D models.

In this paper, we propose a machine learning based ap-

proach to reconstruct LoD-2 building models from pho-

togrammetric DSMs and panchromatics (PANs) image ob-

tained from satellites. Our contributions can be described

as following:

• We improve the state-of-the-art cGAN based DSM re-

finement network proposed by Bittner et al. [7] by

adding a popular self-attention convolutional block at-

tention module (CBAM) [32].

• We propose an edge and corner detection network

sharing the architecture of the previous DSM refine-

ment network.

• We propose a novel vectorization pipeline to polygo-

nize building roofs and reconstruct 3D building mod-

els.

2. Methodology

As is shown in Figure 2, our multi-stage 3D building vec-

torization approach starts with a cGAN architecture for pho-

togrammetric DSM building shape refinement. The refined

DSM, together with the input PAN image, is then used to

detect building edges and corners with a semantic segmen-

tation network that shares the structure of the cGAN gener-

ator. The detected edges and corners are later vectorized to

building roof polygons. In the final stage, the refined DSM

and 2D polygons are combined to reconstruct 3D building

models.

2.1. DSM building shape refinement

The proposed deep neural network for DSM refinement

is an extension of the network presented by Bittner et al. [7]

based on an image-to-image translation cGAN introduced

by Isola et al. [14]. The network jointly learns a generator

and a discriminator to do the domain transfer, i.e. from a

source domain, the photogrammetric DSM, to a target do-

main, the refined DSM. With the discriminator following

the PatchGAN architecture proposed by Isola et al. [14],

the generator has a UNet-like structure with both long skip

connections from the encoders to the decoder and short skip

connections in-between the residual blocks inside the en-

coders. To enhance the feature of building objects, we add a

CBAM as presented by Woo et al. [32] before the decoder.

The CBAM is a combination of 1D channel attention and

2D spatial attention, which are sequentially multiplied to

the input feature maps. The overall generator architecture

is shown in Figure 3.

Following the idea presented by Bittner et al. [7], we

combine several types of losses in a multi-task manner for

optimizing the proposed DSM refinement network:

Ltotal (G) = α · LcLSGAN(G,D) + β · LL1
(G)

+γ · Lnormal (N
t,N p)

(1)

where α, β and γ represent the weighting parameters of

different loss terms.

GAN loss. We combine a conditional GAN [23] and a Least

Squares GAN [22] for the DSM refinement network, thus a

convolutional least squares GAN (cLSGAN) loss is utilized:

min
G

max
D

LcLSGAN (G,D) = Ex,y∼preal (y)

[

(D(y, x)− 1)2
]

+Ex,z∼pz(z)

[

D(G(z, x), x)2
]

(2)

where y ∼ preal (y) represents real samples, and G(z) rep-

resents generated samples transferred from usually latent

noise variables z ∼ pz(z). Respectively, x denotes the

generative adversarial network (GAN)’s condition (the in-

put DSM), D(y, x) represents discriminator output of real

samples, and D(G(z, x), x) represents discriminator output

of generated samples.

L1 loss. It is common to blend the objective functions for

GANs with traditional regression losses like L1 or L2 dis-

tances to help the generator create images as close as possi-

ble to the given ground truth. Since L1 loss encourages less

blurring to the image boundaries, it is added to our genera-

tor losses:
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Figure 2. Overview of the proposed method. Given a photogrammetric DSM and a PAN image as input, a cGAN based DSM refinement

network and a semantic segmentation network are sequentially applied to refine building shapes and detect edges and corners. A set of

vectorization algorithms are then applied to reconstruct a full 3D building model.
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Figure 3. Generator architecture of the proposed DSM refinement

network.

LL1
(G) = Ex,y∼preal (y),z∼pz(z) [‖y −G(z, x)‖1] (3)

Normal vector loss. To further refine the surface of build-

ing roof planes, a normal vector loss [13], which measures

the angles between normal vectors of generated and target

DSMs, is added to the generator losses:

Lnormal

(

N t,N p
)

=
1

m

m
∑

i=1

(

1−
〈nt

i, n
p
i 〉

‖nt
i‖ ‖n

p
i ‖

)

, (4)

where N t = {nt
1, . . . , n

t
m} and N p = {np

1 , . . . , n
p
m} rep-

resent normal vectors of the target and predicted DSM, and

〈·, ·〉 denotes the scalar product of the two vectors. This

normal vector loss emphasizes the planarity and inclination

of building roofs. The smaller the angle, the more planar

the predicted surface and the more consistent to the target

surface.

The combination of different losses forms a multi-task

learning problem, thus an automatic weighting method pro-

posed firstly by Kendal et al. [15] and investigated in remote

sensing in [18, 19] is applied to automatically tune the loss

weights considering the homoscedastic uncertainty of each

separate task:

wl =

{

0.5 · exp
(

− log
(

σ2
l

))

for LL1
and Lnormal

exp
(

− log
(

σ2
l

))

for LcLSGAN

(5)

where σ2
l is a learnable parameter, which represents the

variance, i.e. uncertainty of each task through the training

process. In order to avoid over-controlled parameter values,

a regularization term 0.5 · log
(

σ2
l

)

is added following each

weighted loss. As a result, the final loss of the generator of

this DSM refinement network can be formulated as:

Ltotal (G) =
∑

l

wl · Ll +Rl (6)

while the discriminator loss remains the same as the cLS-

GAN loss:

Ltotal (D) = Ex,y∼preal (y)

[

(D(y, x)− 1)2
]

+Ex,z∼pz(z)

[

D(G(z, x), x)2
] (7)

2.2. Building edge and corner detection

Given the refined DSM and PAN image, a semantic seg-

mentation network is used to detect building edges and cor-

ners. The network architecture is identical to the generator

of the DSM refinement network (see Figure 3), except the

change of the three-channel output layer. A simple multi-

class cross-entropy loss is applied:
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Figure 5. Examples of building edge vectorization.

LCE(x, t) = E

[

−
3

∑

i=1

ti log xi

]

(8)

where xi is the predicted probability for a certain class i,

and ti is either 0 or 1 depending on the label of class i for

the corresponding target. The output probability remains

for further processing.

2.3. 3D building model reconstruction

In the final stage, a novel 3D building vectorization

method is proposed using the refined DSM and detected

building edges and corners. Assuming building edges are

straight lines, the core idea is to step-by-step build a graph

data structure that stores points, lines, faces and their re-

lationships for every single building. As being a hybrid

method, the proposed approach is not limited to the com-

plexity of different types of buildings, thus performing well

especially for large area 3D building modeling. A general

workflow is shown in Figure 4.

Corner point selection. For each corner pixel in the ground

truth, multiple surrounding pixels may be detected as cor-

ners, thus a non-maximum suppression (NMS) algorithm is

implemented to filter out best fitting corner points. As is

shown in Figure 4 (a)− (b), for each detected corner pixel

(the candidate), a surrounding n× n window is used as the

evaluating box. For each neighbor pixel in this window,

if the pixel value (corner probability) is no bigger than the

candidate, it is set to zero; otherwise if it exceeds the can-

didate, this pixel remains while the candidate is set to zero.

This process is iterated over all corner candidates and those

isolated best candidates are seen as final corner points.

Roof edge vectorization. Before we start the vectorization

process, a connected component labeling (CCL) [33] algo-

rithm is applied to label connected pixels into building in-

stances. Two pixels are connected when they are neighbors

and have a non-zero value. Here the neighborhood is de-

fined in a 2-connected sense, which means every pixel has

eight neighbors in eight directions. As shown in Figure 5

(a), different sets of connected pixels would have differ-

ent IDs and separate different buildings, which enables the

next steps to be performed within the scope of every single

building.

Then we connect the corners to form edges based on two

conditions. The first condition is the average pixel value of

a line buffer between a pair of corner points. If the average

value is above a threshold, an edge line is determined be-

tween the corners. This condition would possibly fail when

the edge is curved in reality, thus a second condition is ap-

plied in parallel. By utilizing the CCL algorithm again in a

rectangle buffer between the pair of corners, an edge is de-

termined if the labels of the two corners are identical. Two

examples are shown in Figure 5 (b), where both an edge

with a hole and a little curved edge can be successfully de-

tected.

With the two conditions we can efficiently and thor-

oughly detect building edges, yet still one problem needs

to be considered. As it is shown in Figure 5 (c), corner A

and B, corner B and C form two edges, but corner A and

corner C can also form an edge which is redundant since

it covers AB and BC. To solve this issue, we again create

a rectangle buffer for each potential two-corner pair and, if

other corner points exist inside this buffer, this pair can not

form an edge anymore.

Roof polygon generation. The vectorized edges are then

polygonized to roof faces ( see Figure 4 (d)), which can be

easily done by graph search algorithms. For each building,

an undirected graph is firstly built from the obtained edges.

A simple depth first search (DFS) is then applied to detect

and mark a cycle (i.e. a roof polygon) in this graph by trac-

ing a back edge to vertices that have been visited. This is

run iteratively to extract all cycles with corresponding dif-

ferent marks. To avoid face overlapping, large cycles which

cover small cycles are removed in the final step. In prac-

tice, the polygonization process can also be directly applied

with a polygonize function from the open-source shapely

package which is popular for manipulation and analysis of

planar geometric objects [11].
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Figure 6. The construction of final 3D building model. Height in-

formation from refined DSM is processed and added to the poly-

gons to build 3D roofs, walls and ground face, together forming

the final 3D model.

3D building modeling. In the final stage, walls and the

ground face are constructed utilizing roof polygons and the

refined DSM to produce a full 3D building model. Firstly,

a normalized digital surface model (nDSM) is generated

from the refined DSM with the method proposed by Qin

et al. [25]. Then the adjacent roof faces are merged into

a union, i.e. a polygon whose edges are the building out-

lines. This gives us the footprints of the building, which

also means the 2D shape of the ground face. In the next

step, the height information from the nDSM is applied to

corner points both inside roofs and on the building bound-

aries. To avoid apparent height difference between end-

points of an edge due to corner miss-matching (especially

on outer boundaries where corner height is supposed to be

much bigger than neighboring ground pixels), a small win-

dow is applied again to adjust height values. This is done

by giving the corner point the maximum height value in this

small window. Though slightly decreasing general accu-

racy, it can largely improve the robustness and smoothness

of resulting 3D models.

The edges of the union polygon represent both the upper

and lower boundaries of the building’s surrounding walls.

With the height of upper corners already determined with

the maximum height value in the window, the height of

lower corners is determined by giving the minimum height

value in the window, i.e. zero, hence forming the build-

ing walls in 3D. Meanwhile, the lower edges form also the

ground face of the building, resulting in the final 3D build-

ing model. The modeling process is shown in Figure 6.

3. Experiments and results

The proposed approach is evaluated on Worldview-1

data of Berlin, Germany. The input consists of a space-

borne photogrammetric DSM and a panchromatic image

with 0.5 m spatial resolution covering a total area of 410

km2. The ground truth is generated from the public city

geography markup language (CityGML) dataset following

the same procedure as described in [4]. The CityGML

data for Berlin is freely available at https://www.

businesslocationcenter.de/en/economic-

atlas/download-portal/. Open datasets for some

other worldwide cities can be found at https://3d.bk.

tudelft.nl/opendata/opencities/.

3.1. Implementation details

The DSM refinement network is based on the Coupled-

UResNet cGAN architecture proposed by Bittner et al. [7],

with an additional CBAM [32] applied before the decoder.

The edge and corner detection network shares the archi-

tecture of the generator of the DSM refinement network,

while the last layer is changed to three-channel output with

a softmax activation function.

The networks are trained on a single NVIDIA TITAN

X (PASCAL) GPU with 12 GB memory. To fit the train-

ing data into the GPU memory, the satellite images are tiled

into 21480 samples of size 256×256 px. A minibatch of 4

is applied in both networks. The samples are augmented not

only by horizontal and vertical flipping but also tiled from

the original image with a random overlap every epoch to

give the model a clue about building geometries which hap-

pened to be on the patch border in previous epochs. During

the training of both networks, the ADAM optimizer is used

with an initial learning rate of α = 0.0002 and momentum

parameters β1 = 0.5, β2 = 0.999. For the DSM refine-

ment network, the generator is pre-trained for 100 epochs

as a warm-up and later interpolated with the cGAN’s gen-

erator. This so-called network interpolation [31] can bal-

ance CNN’s over-smoothing and GAN’s over-sharpening.

The initial learnable weighting parameters as described in

Equation (5) are equally set to 1.

During the vectorization process, the window size for

both corner point filtering and corner height valuing is set to

5 × 5 pix, while the width for rectangle buffers (edge con-

necting and overlap elimination shown in Figure 5 (c)) is

set to 7 pix.

3.2. Results and evaluation

Figure 7 (c) shows the DSM refinement result, from

which it can be seen that the proposed network can both fil-

ter out and regularize building objects from the photogram-

metric DSM. This in parallel shows the robustness and ac-

curacy of our approach to detect correct buildings, as we can

see from Figure 7 (d) that the ground truth consists of sev-

eral buildings that are not shown in satellite images due to

the time difference. Mean absolute error (MAE), root mean

squared error (RMSE) and normalised median absolute de-

viation (NMAD) are applied for quantitative evaluation of

the DSM refinement result:

εMAE(h, ĥ) =
1

n

n
∑

j=1

∣

∣

∣
ĥj − hj

∣

∣

∣
(9)



(a) PAN image (b) Photogrammetric DSM (c) Ground truth DSM

(d) Refined DSM (e) Detected edges and corners (f) Vectorized edges and corners

Figure 7. Experimental results of a 500m × 500m testing area. Some buildings in (c) are not shown in other images because of the time

difference. Some edges are missing in (f) compared to (e) because they don’t meet the requirements of vectorization process, especially

for boundary objects as they are incomplete.

εRMSE(h, ĥ) =

√

√

√

√

1

n

n
∑

j=1

(

ĥj − hj

)2

(10)

εNMAD(h, ĥ) = 1.4826 ·medianj (|∆hj −m∆h|) (11)

where ĥ denotes the predicted heights, h denotes the target

heights, ∆h denotes height error and m∆h denotes median

height error. As is shown in Table 1, our network improves

all three metrics evaluated over the testing area compared

to Bittner et al. [7]. The RMSEs of all DSMs are relatively

large compared to the ground truth, which can be explained

by the time difference between the reference data and the

given satellite DSM. There can be cases when in one data

source the buildings exist and in the other not (due to new

buildings construction or their destruction), and vice versa.

Figure 7 (e) and (f) present the edge and corner de-

tection and vectorization results. By combining building

Table 1. Quantitative metrics for refined DSM evaluated over the

testing area.

MAE (m) RMSE (m) NMAD (m)

Photogrammetric DSM 3.91 7.14 1.40

Bittner et al. [7] 1.73 4.02 0.93

Ours (with attention) 1.42 3.65 0.60

height and shape information from the refined DSM and in-

tensity information from the PAN image, the results show

well-formed building skeletons with accurate corners and

complete outlines. As a result of the requirements from the

vectorization process, edges which have only one or none

corner detected, or which are over-curved are unable to be

determined. However, though missing some of the expected

line segments, most of the building outer boundaries and in-

ner edges are successfully constructed. Meanwhile, it might

be helpful to mention that during the experiments we tried

also combining the two steps (DSM refinement and edge

and corner detection) together in a multi-task manner, but

the results got worse, as the edge and corner detection net-



Figure 8. Reconstructed 3D building model of a 500m × 500m
testing area.

Table 2. Quantitative metrics for building nDSM evaluated over

the testing area.

MAE (m) RMSE (m) NMAD (m)

Photogrammetric nDSM 3.21 6.04 0.85

Ours 0.80 2.28 0.47

Table 3. Quantitative metrics for roof orientation error evaluated

over the testing area.

min (◦) max (◦) mean (◦) σ (◦)

Photogrammetric nDSM 0.08 75.84 22.46 22.28

Ours 0.10 75.83 9.31 15.53

work benefits more from an already refined DSM as input.

The final vectorized 3D building model is shown in Fig-

ure 8, where most of the buildings are well reconstructed in

3D space. Even though some buildings are not fully visible

in PAN image and blurry in photogrammetric DSM, we can

still reconstruct them to a good shape. It is also seen that

some buildings are missing or incomplete, which is due to

the missing of those vectorized edges and corners whose

quality doesn’t meet the vectorization process.

For quantitative evaluation of the height of reconstructed

buildings, the generated nDSM is compared to the ground

truth. MAE, RMSE and NMAD are applied again to evalu-

ate the quality of the generated nDSM. The evaluation result

is shown in Table 2, from which we can see that both pho-

togrammetric nDSM and our genereated nDSM have better

metrics than DSMs (Table 1) after removing the height of

ground surface. Meanwhile, our result presents large im-

provement compared to photogrammetric nDSMs.

To evaluate the quality of the reconstructed 3D roofs, an

orientation error is applied to examine the inclination of the

constructed roof planes. As proposed by Koch et al. [16],

the orientation error can be formulated as the angle differ-

ence between the normal vectors of 3D planes fitted to the

predicted surface points and the given ground truth points:

εorie (G⊙ P) = arccos
(

nt
i · ň

p
i

)

(12)

where nt
i and n

p
i denote the normal vector of a certain plane

on target and predicted image respectively. G⊙P represents

Table 4. Comparison of eave and ridge heights of the building

model for selected buildings.

Building No.
Ridge (m) Eave (m)

Reference Partovi et al. [24] Ours Reference Partovi et al. [24] Ours

17 15 14.03 15.05 11 11.29 11.72

18 19 17.46 18.21 15 13.38 15.50

19 15 14.42 16.13 11 12.52 13.01

20 15 14.22 - 11 10.86 -

21 15.5 14.08 15.33 11.9 12.21 11.54

22 15.6 15.28 14.87 11.5 11.87 11.94

23 20.0 20.76 21.80 16.5 17.35 17.58

24 16.2 15.87 17.03 12.3 11.03 13.66

25 17.4 16.21 18.02 13.6 13.58 13.77

26 16.8 16.40 17.19 12.5 10.54 11.36

27 15 14.66 13.88 10.9 10.49 11.40

28 16.8 16.27 17.11 12.5 10.41 12.96

29 14.7 13.94 15.54 10.7 10.46 11.06

30 16.8 15.66 16.00 12.5 10.51 13.79

µ|∆H| - 0.79 0.74 - 0.93 0.99

σ|∆H| - 0.41 0.44 - 0.77 0.74

RMSE - 0.89 0.74 - 1.20 1.54

NMAD - 0.55 0.59 - 0.82 0.68

the predicted depth image G masked with a binary mask P
containing a certain number of roof planes. Table 3 shows

the average orientation error of constructed 3D roof faces

compared to corresponding ground truth, showing that the

average plane angle is within 10◦, which is much better than

using only the photogrammetric nDSM.

In addition, we compare our proposed 3D building vec-

torization method with the work presented by Partovi et

al. [24], who developed a multi-stage hybrid method for

3D building reconstruction using PAN images, photogram-

metric DSMs and multi-spectral images from satellite data.

Figure 9 presents the reconstruction results of a sub-area

of Munich using Worldview-2 satellite data. The ridge and

eave heights of 14 reconstructed buildings in this area are

compared with reference data from the Department of Ur-

ban Planning and Building (DUPB) of Munich. As is shown

in Table 4, |∆H| denotes the absolute height difference be-

tween the predicted model and reference, and µ|∆H| and

σ|∆H| represent the mean and standard deviation of the

height difference, respectively. The building numbers re-

fer to Figure 9 (c). It can be seen that both methods lead

to lower accuracy in eave heights than ridge heights be-

cause the surroundings of building boundaries are usually

more complex than inner-roof ridges both in PAN image

and photogrammetric DSM. Our method tends to get big-

ger values for eave heights, which can be explained by our

valuing method for the height of building corners. In order

to avoid the mismatching between DSM heights and cor-

ner positions, we give the eave corner the maximum height

value in a surrounding window and the minimum height

value for the corresponding ground corner. This would in-

crease the relative height of the building eaves, yet we can

see that this systematic error is within a small range. Apart

from that, the overall accuracy shows promising superior-

ity of our method, where we get comparative metric perfor-

mance with a simpler approach. Meanwhile, as a price of

simplicity, the biggest problem remaining to be solved is the

lack of completeness of our constructed model. As can be



(a) PAN image (b) Photogrammetric DSM

(c) Refined DSM (d) Reconstructed 3D model

Figure 9. Testing results of a sub-area of Munich.

seen from both Figure 8 and Figure 9, some building com-

ponents are lost after vectorization, which quantitatively re-

duces the recall score from 0.88 to 0.81 (Berlin testing area)

compared to the refined DSM before vectorization.

4. Conclusion

In this paper, we present a multi-stage large-scale 3D

building vectorization approach. We extend the application

of recent deep learning based techniques on photogrammet-

ric digital surface model (DSM) refinement and bring it to

the application of automatic 3D building model reconstruc-

tion. With the help of a self-attention module, we obtain

promising results for both regression of building heights and

semantic segmentation of edges and corners. Based on that,

we propose a simple yet effective vectorization pipeline to

reconstruct level of detail (LoD)-2 building models. We

apply non-maximum suppression (NMS) to filter out best

fitting corner points, define buffer connectivity and buffer

thresholds to determine edges, and polygonize them to roof

faces. By utilizing again the height information from the

refined DSM, we finally reconstruct fully vectorized 3D

building models. Though limitations exist in straight edge

assumptions and the completeness of reconstructed building

models, results prove the overall robustness and accuracy of

our proposed method.
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