Self-supervised multi-image super-resolution for push-frame satellite images
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1 DSA architecture

Our DSA architecture (see Figure 1) has 4 major modules: Motion estimator, Encoder, Feature Shift-and-add, and De-
coder. The Feature Shift-and-add block does not have any trainable parameters. Our motion estimator follows the work
of [5]. Our encoder and our decoder are inspired from the SRResNet architecture [4], and built from the residual blocks
(see Table 1). Convolutions of the encoder and decoder are performed using reflection padding. In total, our networks
have 2853411 trainable parameters (Table 2).
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Figure 1: Overview of the DSA framework at training time.
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2 The encoder matters

In this experiment, we study the role of the feature extraction in our proposed DSA architecture. By removing the encoder
from the DSA architecture, we obtain a different method that performs pixel fusion instead of feature fusion. We observe
that the network which performs feature fusion is better at removing the residual noise in the SR image. This aspect is
especially noticeable when we have few LR input images. With 5 input images per sequence, the network with encoder
performs 0.22dB better than the one without encoder (see Table 3).

Table 1: ResBlock (N)

Input Tensor N channels

Layer] Conv2d(in=N, out=N, k=3, s=1, p=1)
RelLU

Layer2 Conv2d(in=N, out=N, k=3, s=1, p=1)

Output Layer 2 + Input
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Table 2: DSA Architecture

Modules Layers Number of parameters
Motion Estimator FNet [5] 1744354
Encoder Conv2d(in=1, out=64, k=3, s=1, p=1) 332992
ResBlock (64) x4
RelLU
Conv2d(in=64, out=64, k=3, s=1, p=1)
FS&A 0
Decoder Conv2d (in=64, out=64, k=3, s=1, p=1) 776065
ResBlock (64) x10
RelLU

Conv2d (in=64, out=1, k=3, s=1, p=1)

Total: 2853411

Table 3: Fusion in feature space: Average PSNR (dB) over the main validation dataset for our supervised DSA networks
with and without Encoder.

Number of images
5 16 30

With encoder 45.82 49.33 50.50
Without encoder 45.60 49.33 50.51
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3 Comparison with SISR methods

In this section, we compare our MISR method with a SISR method. For that, we retrained the SRGAN [4] method on our
synthetic dataset. According to the Nyquist—-Shannon sampling theorem, high-frequency details cannot be fully recovered
from a single aliased LR image. Therefore, SISR techniques often introduce “hallucinations” in the reconstruction, which
are inappropriate for most remote sensing applications. In contrast, MISR methods aim at increasing the true optical
resolution in the SR images. The advantage of MISR over SISR is demonstrated in the Table 4 and in the Figures 2, 3.

4 Image sharpening
In this section, we examine in details the two formulas for the self-supervision loss
Coarg (I, 1) = 1 D2(I5™) — 157, ()

Caery (I, I5T) = | D2 (15" # k) — 15 1. @

In Equation (1), the network is trained to produce an SR image such that after subsampling, it coincides with the LR
reference. According to our image formation model, the output of this network is a filtered high-resolution image (blurry).

Table 4: Quantitative comparison with the SISR method SRGAN. 7' is the number of imput images.

Methods SRGAN (I'=1) DSA (T =5) DSA (I =16) DSA (T = 30)
PSNR 43.92 45.82 49.33 50.50
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Figure 2: Visual comparison with the SISR method SRGAN. In this example, SRGAN confuses the black spots on the
field with noise, and thus cannot recover correctly these details.
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Figure 3: Visual comparison with the SISR method SRGAN. In this example, SRGAN fails to remove the alias present in
the LR image.

After restoring a high-resolution — but blurry — image with a network trained using the loss (1), we can then restore a sharp
image I from I, 69 R by solving a non-blind deconvolution problem

arg min |1 k — ISR + AV, 3)
I

where the blur kernel k is defined in the Fourier domain as k(w) = (5|w| + 1)~ [2], and the the regularization weight
can be set to a very low value thanks to the low noise level of the SR results. This inverse problem can be solved efficiently
using a half-quadratic splitting method as in [3, 1].

As an alternative to using this variational method, we can also integrate the deconvolution (with the same blur kernel
k) into the self-supervision loss as in the Equation (2). In this way, the network is trained to produce directly a sharp
SR image (one that once blurred matches the observed blurry samples). The Figures 4 and 5 show visual comparisons
between our loss-based method and the variational method. Figures 4a and 5a are the outputs of the network trained with
the self-supervision loss in the Equation (1). Figures 4b and 5b show the deconvolved results obtained from these blurry
images by the variational method. Figures 4c and 5c are the outputs of the network trained with the self-supervision
loss (2). As we can see, the loss-based result is as sharp as the variational result while avoiding unwanted high-frequency
artifacts and with less noise. Moreover, our loss-based method is simple, efficient and does not require any regularization.
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(a) Blurry SR result (b) Variational deconvolution (c) Loss-based deconvolution

Figure 4: Loss-based result contains less noise and no ringing artifacts (on the top of the building).

(a) Blurry SR result (b) Variational deconvolution (c) Loss-based deconvolution

Figure 5: Even with a regularization term, variational method has unwanted high-frequency artifacts. Our loss-based
method produces a clean, sharp image without the need of any explicit regularization.



