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Abstract

Neuromorphic vision sensors present unique advantages

over their frame based counterparts. However, unsuper-

vised learning of efficient visual representations from their

asynchronous output is still a challenge, requiring a re-

thinking of traditional image and video processing methods.

Here we present a network of leaky integrate and fire neu-

rons that learns representations similar to those of simple

and complex cells in the primary visual cortex of mammals

from the input of two event-based vision sensors. Through

the combination of spike timing-dependent plasticity and

homeostatic mechanisms, the network learns visual feature

detectors for orientation, disparity, and motion in a fully un-

supervised fashion. We validate our approach on a mobile

robotic platform.

1. Introduction

The development of deep neural networks (DNNs) for

image and video processing has progressed rapidly in recent

years, with current systems displaying impressive perfor-

mance and versatility. Nevertheless, these systems are lim-
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ited by the requirement of large amounts of labeled training

data and poor energy efficiency. In contrast, the mammalian

brain exhibits unequaled unsupervised learning capabilities

at ultra-low energy requirements. A growing body of re-

search on neuromorphic vision systems [17] is therefore try-

ing to mimic these features of biological vision.

Event-based vision sensors [8] are a great starting point

for exploring neuromorphic vision systems with brain-like

learning abilities. These sensors are directly inspired by

the information processing in the retina [19]. In particular,

their pixels react independently to changes in light inten-

sity, generating an asynchronous flow of “events”, similar

to the flow of action potentials or “spikes” produced by reti-

nal ganglion cells, which communicate visual information

from the retina to the brain. This asynchronous processing

of event-based vision sensors gives them several advantages

over traditional cameras such as very high temporal resolu-

tion at very low data rates. In addition, they exhibit high dy-

namic range and low power consumption. Furthermore, the

sparse nature of the sensor’s outputs avoids transmitting re-

dundant information and maximizes the system’s efficiency

while minimizing computational load.

To fully harvest the benefits of these sensors, it is im-

portant that subsequent processing steps take advantage of

their low-latency asynchronous output. Spiking Neural Net-

works (SNNs) are ideally suited for this [6, 26, 27], since

they follow the same architectural principles as used by the

brain, using an arrangement of comparatively simple com-

putational units (“neurons”) connected via weighted con-
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nections (“synapses”) and communicating asynchronously

via spikes. At present, it is not yet fully understood how the

connectivity of visual cortex is set up through developmen-

tal and learning processes [29], but it is clear that learning in

the brain does not require explicit supervision. Therefore,

we here attempt to mimic the unsupervised learning abilities

of visual cortex in a neuromorphic vision system. To this

end, we present a novel spiking neural network, inspired by

so-called simple and complex cells of the mammalian visual

cortex. To the best of our knowledge, it is the first SNN that

learns complex cells via a timing-based rule from event-

based visual input. We demonstrate that it learns feature

detectors for local orientation, disparity, and motion from

the asynchronous inputs of a pair of event-based vision sen-

sors mounted on a mobile robotic platform without the need

for any supervision. This brings us one step closer to the

creation of neuromorphic vision systems that can learn in a

more brain-like unsupervised fashion. Overall, our contri-

butions are as follows: 1.) We present a novel spiking neural

network that learns simple and complex cell-like receptive

fields from binocular event-based input using biologically

plausible spike timing-based unsupervised learning mecha-

nisms. 2.) We demonstrate that the learned representations

match biological findings and come to reflect the statistical

properties of the input signals in terms of their distribution

of orientation, motion, and disparity tuning. 3.) We validate

our approach on a mobile robotic platform.

2. Related Work

The field of neuromorphic vision systems using event-

based cameras has been expanding rapidly in recent years,

as has the use of SNNs to solve complex vision tasks. Su-

pervised learning techniques are used frequently in works

combining event-based vision sensors with SNNs. One

popular trend, especially in the case of recognition tasks,

is to train a standard DNN using backpropagation and then

convert the network to an SNN. This can lead to good re-

sults, though inferior to the DNN itself, but is not very ver-

satile, scalable, or biologically plausible.

On the other hand, direct supervised training of SNNs is

becoming more popular as modified backpropagation rules

intended for SNNs have been developed [28, 32, 4]. Though

much more convincing, this approach still requires exten-

sive amounts of labeled training data.

Sidestepping the problem of learning, some research

has pre-wired early visual feature detectors. Tschechne et

al. [35] estimate the optical flow of a scene with the help

of a set of spatio-temporal filters created by combining Ga-

bor functions. Variants of the Barlow and Levick model, a

direction sensitive neuronal triplet, have been employed to

create a network capable of estimating optic flow [9, 5]. Or-

chard et al. [22] have used a network with synaptic delays to

construct feature detectors sensitive to visual scene motions.

Similarly, in the field of stereo vision [34], there have been

attempts at creating networks to estimate binocular dispar-

ities between two event-based cameras [7, 23, 30]. These

methods present interesting biological properties and clev-

erly designed network structures, but they lack a decisive

trait: the ability to learn. Learning allows SNNs to become

much more versatile and adapt to changing environments.

A particularly promising unsupervised learning mechanism

that has been used successfully in SNNs is spike timing-

dependent plasticity (STDP), of which different formula-

tions exist. Often it is combined with homeostatic mecha-

nisms to keep activity levels in desired regimes.

Masquelier et al. [20] demonstrated unsupervised learn-

ing of hierarchical visual representations with STDP.

Akolkar et al. [1] showed the ability of STDP to learn

an efficient visual representations that even surpasses Ga-

bor filters. Kheradpisheh et al. [11] used a deep spiking

neural network with STDP-based learning to solve an ob-

ject recognition task with results close to supervised ap-

proaches. Srinivan et al. [33] introduced a novel “STDP-

based convolution-over-time learning methodology” and

apply it to hand-written digit recognition. Hopkins et

al. [10] created a biologically inspired STDP-based network

on the SpiNNaker neuromorphic chip and successfully tack-

led a recognition task. Paulun et al. [25] used a bio-inspired

down-sampling of the visual field fed to a complex brain-

like Neucube architecture. The learning was done with a

combination of STDP rules and a last stage was comprised

of a supervised SNN classifier. Lagorce et al. [13] presented

an interesting unsupervised learning of visual representa-

tions, but their implementation is based on a conversion to a

rate code and does not use STDP. Liu et al. [16] introduced

a new “Multiscale Spatio-Temporal Feature” representation

and applied it to recognition tasks such as gesture or digit

recognition via STDP. Recently, Paredes-Valles et al. [24]

have presented a multi-stage SNN that is capable of optical

flow estimation using STDP-based learning combined with

homeostatic mechanisms.

Our network model shares architectural features with

several of the works above, but appears to be the first that

learns complex cells with a timing-based plasticity rule,

demonstrating the approach on inputs of an event-based vi-

sion sensor.

3. Methods

3.1. Leaky Integrate and Fire Neuron

We use the Leaky Integrate and Fire (LIF) neuron model

as the basic building block of our model. It is one of

the most popular neuron models and offers great simplicity

compared to more detailed bio-physical models [18], while

still providing an accurate depiction of a biological princi-

ples. An LIF neuron is described by a membrane potential
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V (t) that decays exponentially to a resting value over time

when no inputs are registered. Here, we use a resting value

Vrest of 0 for simplicity. The exponential decay speed is

controlled by the membrane time constant τm. LIF neurons,

just like real neurons, are linked via weighted connections

called synapses. A synapse transmits information from one

neuron to another. The strength of a synapse wi is plas-

tic, i.e., it can change with time. Modifying the synaptic

weights is the main way to control the behavior of a spik-

ing neural network. When an LIF neuron receives an input

from a synapse (called a “pre-synaptic” input) at a time t,
its membrane potential changes by the amount wi. Let ∆t
be the time between the current input and the previous in-

put to the neuron. Then the new membrane potential can be

calculated directly upon arrival of the input as:

Ṽ (t+∆t) = V (t) e
−∆t

τm + wi(t) (1)

If the membrane potential exceeds a threshold Vθ, the

neuron is said to “spike”. It generates an action potential,

which is then propagated to other neurons via synapses. Its

membrane potential is then reset to Vrest = 0:

V (t+∆t) =

{

Ṽ (t+∆t) : Ṽ (t+∆t) < Vθ

Vrest : Ṽ (t+∆t) ≥ Vθ .
(2)

3.2. Homeostatic mechanisms

The LIF neuron presented before is one of the simplest

models. But biological neurons exhibit much more com-

plex mechanisms to adapt their behavior to varying situa-

tions. We replicate some of the most beneficial of those

mechanisms in order to improve the stability, adaptability

and robustness of our spiking neural network.

3.2.1 Refractory period

When a neuron spikes, it enters in a period of low excitabil-

ity called a refractory period. This strongly limits the spike

frequency of neurons in the case of frequent and/or large

inputs. We model a refractory mechanism through a trace

ηRP generated after each spike and then decaying exponen-

tially back to zero at a rate defined by τRP. The membrane

potential update becomes:

Ṽ (t+∆t) = V (t) e
−∆t

τm − ηRP e
−

t+∆t−ts

τRP , (3)

where ts is the time of the neuron’s last spike.

3.2.2 Threshold and spike rate adaptation

Event-based cameras present an inherent variability in the

output frequency depending on factors such as lighting con-

ditions, the amount of textures or the relative speed of ob-

jects. This means that neurons will be subjected to variable

data rate during their operation, which in turn can lead to

high variability in their spike rates. Although this is some-

what unavoidable, it is preferable to keep the spike rate of

neurons in a reasonable range across different conditions.

Biology handles that problem by means of a wide range of

homeostasis mechanisms, be it at the heart of the neuron,

the soma, or at the sites of its inputs, the synapses.

We implemented two such mechanisms. The first one

is oriented towards long term regulation. It constantly bal-

ances the value of the threshold Vθ depending on the spiking

activity S(t) of a neuron in order to reach a target spike rate

S∗. It can be written as:

∆Vθ = ηTA (S(t)− S∗) , (4)

with ηTA controlling the speed at which the threshold

adapts. S(t) is computed by counting the number of spikes

which occurred in the previous 10 seconds. The threshold

update happens every second, and is therefore a somewhat

slow process intended to handle global illumination and

speed conditions. We define a minimum threshold Vθmin

to avoid capturing camera noise in areas with very little in-

puts.

For local variations, we use a faster process called spike

rate adaptation. Just like the threshold adaptation, it relies

on the neuron’s activity. When a neuron spikes, a trace

VSRA(t) is increased by a value η SRA. This trace is sub-

tracted for each pre-synaptic input and decays exponentially

back to 0 according to the parameter τSRA. The membrane

potential internal update becomes:

Ṽ (t+∆t) = V (t) e
−∆t

τm − VSRA(t) e
−∆t

τSRA − ηRP e
ts−t−∆t

τRP (5)

This regulation mechanism acts immediately after a spike

has happened. By choosing a relatively small time constant

τSRA (in the order of a few hundreds of milliseconds), the

effects of the spike rate adaptation mechanism are only visi-

ble on short periods of time, which complements the slower

threshold update.

3.2.3 Lateral inhibition

Next to excitatory synapses, our network also uses lateral

inhibitory synaptic connections. However, we simplified

the mechanism of inhibition compared to biology. Rather

than assigning specific neurons to the role of inhibitory

cells, we simply considered that some neurons can directly

inhibit each other reciprocally. Specifically, when a neuron

spikes, it will instantly inhibit its neighbors by subtracting

a fixed value η INH from their membrane potential. This

mechanism introduces strong competition between neigh-

boring neurons.
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3.3. Spike TimingDependent Plasticity

Spike timing-dependent plasticity (STDP) is a funda-

mental learning mechanism of the nervous system. If a

neuron’s spike causes another neuron to also spike, then

the synaptic connection from the first neuron to the second

one will be strengthened. Conversely, if the post-synaptic

neuron spikes before the pre-synaptic one, this generally

leads to weakening of the synaptic connection. This sim-

ple mechanism has given rise to one of the most popu-

lar techniques for unsupervised learning in SNNs via so-

called STDP rules [3]. There are many different formula-

tions of STDP, but the main idea stays the same. Synap-

tic weights evolve depending on the relative timing be-

tween pre and post-synaptic spikes. Long-Term Potentia-

tion (LTP) happens when a pre-synaptic spike arrives be-

fore a post-synaptic one. The opposite leads to Long Term

Depression (LTD).

In our network, the update of weights happens directly

after the spiking of a neuron. We keep track of the exact

timing of every pre-synaptic spike ti and the 2 last post-

synaptic spikes ts and ts−1. The update of the synaptic

weights can be written as:

∆wLTP

i = ηLTP e
ti−ts

τLTP

∆wLTD

i = −ηLTD e
ts−1−ti

τLTD ,
(6)

where ts ≥ ti ≥ ts−1. ηLTP and ηLTD are parame-

ters controlling the height of the potentiation and depres-

sion windows, whereas τLTP and τLTD control the width of

these windows.

3.3.1 Weight normalization

The STDP rule above does not include a weight limita-

tion mechanism. To improve stability and avoid unbounded

growth of synaptic weights, we force the weights to be

positive and use a separate weight normalization where

synapses from inputs of each event polarity (on and off) is

normalised separately to sum to a target value.

3.3.2 Parallel synapses with different delays

As a final mechanism, we allow a pixel from the sensor ar-

ray to connect to a neuron in the network via multiple “par-

allel” synapses with different transmission delays. This en-

ables such neurons to learn a representation of optic flow

via STDP.

3.4. Spiking neural network architecture

3.4.1 Event-based pixel array

The event-based camera pixel array serves as the input layer

of the SNN. Event-based cameras record the polarity of

Figure 1: Proposed SNN architecture

events, indicating the sign of the of change in light inten-

sity. We therefore separate the events in 2 maps depending

on their polarity (on and off) as depicted in Fig. 1.

3.4.2 Simple cell layer

Found in the human early visual pathway, simple cells are

neurons local orientation information. They typically form

receptive fields in the shape of Gabor functions tuned to a

specific orientation and possibly motion direction. The first

layer of our network aims to mimic the behavior of these

simple cells. It is fed directly from the pixel array. Table

1 presents the parameters used during training. We chose

parameters that are mostly plausible with regard to biology.

To improve the diversity of learned receptive fields, we

used a weight sharing mechanism between simple cells.

Neurons looking at different locations of the visual field

jointly learn the same set of synaptic weights. We define

these neurons as belonging to the same “neuronal map”.

This is represented by the blue cross section in the simple

cell layer in Fig. 1. To obtain simple cells tuned to different

orientations, we increase the number of neuronal maps. We

also connect neurons looking at the same location of the vi-

sual field, but from different neuronal maps, with inhibitory

connections. This is represented by the red inhibitory con-

nections in Fig. 1.

3.4.3 Complex cell layer

Neurons in the complex cell layer receive inputs from sim-

ple cells. They pool inputs from a larger portion of the vi-

sual field. Similar to complex cells in visual cortex, they

should learn to represent to oriented edges independently of

the precise location of the edge, which requires a strongly

non-linear behavior [15] [12]. Often, complex cell-like be-

havior is achieved via a max-pooling operation, but here we
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Simple cells:
ηLTP ηLTD ηTA η SRA ηRP η INH τLTP τLTD τ SRA τRP τm
(mV) (mV) (mV) (mV) (mV) (mV) (ms) (ms) (ms) (ms) (ms)

0.00077 0.00021 1 0.6 1 25 7 14 100 20 18

Vθ Vreset Vθmin S∗ λ xRF yRF zRF

(mV) (mv) (mV) (spikes/s) px px pol

20 -20 5 0.75 4 10 10 2

Complex cells:

ηLTP ηLTD ηTA η SRA ηRP η INH τLTP τLTD τ SRA τRP τm
(mV) (mV) (mV) (mV) (mV) (mV) (ms) (ms) (ms) (ms) (ms)

0.2 0.2 1 0.6 1 25 20 20 100 20 20

Vθ Vreset Vθmin S∗ λ xRF yRF zRF

(mV) (mv) (mV) (spikes/s) cell cell cell

3 -20 2 0.75 10 4 4 100

Table 1: Parameters used for the simple and complex cells.

are interested in learning the non-linear behavior of com-

plex cells with STDP. For this, we adjust complex cell pa-

rameters to be more sensitive to inputs by giving them a

lower spiking threshold (cf. Tab. 1).

We also chose a different and simpler STDP window for

the complex cells. Contrary to simple cells, the weight vari-

ation is always positive, following a step function. Un-

bounded growth is avoided using weight normalization.

The STDP rule for complex cells is written as:

∆wLTP,c
i =

{

ηLTP : |ti − ts| ≤ τLTP

0 : |ti − ts| > τLTP .

∆wLTD,c
i =

{

ηLTD : |ts−1 − ti| ≤ τLTD

0 : |ts−1 − ti| > τLTD .

(7)

We also tried other STDP windows, such as a linear or ex-

ponential ones. We compare these results in the supplemen-

tary materials, cf. suppl. Fig. 2.

4. Results

4.1. Learning simple cell receptive fields

We first evaluate the ability for our network’s simple cell

layer to learn 3 essential environment properties: orienta-

tion, motion, and disparity. We created a synthetic event

video where we precisely controlled those 3 variables. The

simplest type of stimuli consist of moving bars (from left

to right) in front of a static camera. We chose a bright bar

moving on a dark background, as depicted in Fig. 2a. This

results in a leading positive event polarity edge, followed

by a negative polarity edge. We created the artificial video

by creating stereoscopic frames and then converting them

to event-based videos using the ESIM simulator [31]. Be-

cause of the synthetic nature of the stimulus, we can choose

precise bar orientations, motions, and disparities.

The learned simple receptive fields are shown in Figs. 2b

and 2c. They are tuned to vertical orientations, matching

the bars orientations in the synthetic videos. As the bars are

(a)

(b)

(c)

Figure 2: (a) Synthetic event video made of vertical bars

moving from left to right. Their speed varies from top

(fastest) to bottom (slowest). (b) Motion sensitive cells (top)

with 3 increasing synaptic delays (represented as 3 squared

receptive field stack on top of each other). (c) Disparity sen-

sitive cells (bottom) connected to a left and right “synthetic”

camera (represented as 2 squared receptive field stacked on

top of each other). 2 neurons are presented per moving bar,

from the fastest bar (left) to the slowest (right).

moving from left to right in the visual field, events of spe-

cific polarities will always appear in the same order (posi-

tive then negative). The learned receptive fields reflect this

specific order and resemble Gabor functions describing bi-

ological simple cell receptive fields [2].

When adding multi-synaptic connections with multiple

delays between the pixels and the simple cells, they learn a

representation of the speeds of the bars. Specifically, sim-

ple cells are connected to the pixel array using 3 synaptic

connections with different delays per pixel. This is repre-

sented in Fig. 2b by showing the corresponding 3 receptive

subfields (one per delay) on top of one another. For each

bar we show two examples of learned receptive fields (cor-

respondence is indicated by colored frames). The four bars

are moving at speeds of (top to bottom) 420, 210, 140 and

105 pixels/s relative to the camera. To accurately capture

this motion, we chose synaptic delays of 0, 10 and 20 ms

for receptive fields of 10 by 10 pixels. This amounts to a

velocity tuning of up to 10

2.10−3 = 500 pixels/s. Above that

speed, the receptive fields would be too small (or the de-

lays too big) to capture the bar motion. In Fig. 2b we see

that faster speeds become reflected in bigger shifts between

the subfields corresponding to the different delays. For the

fastest moving bar (close to the 500 pixels/s limit), the re-

ceptive fields start to “break” for the 20 ms delay (bottom

row in (b). This is because the first subfield with delay zero

does not start completely to the right, pushing the shift for

the 20 ms synaptic delay beyond the size of the receptive

field. Due to the polarity independent weight normaliza-

tion, the weight to a random synaptic pixel becomes very

strong (single red pixel).
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(a) (b)

Figure 3: (a) Screenshot of an event video of various shapes

moving in front of a DAVIS 346 camera. (b) Resulting re-

ceptive fields of simple cells learned with the moving shapes

video sequence.

We extend this experiment by adding a second set of

moving bars in order to form a stereoscopic setup. Each bar

is slightly shifted in the second visual field to mimic differ-

ent binocular disparities. Specifically, the bars have dispar-

ities of (top to bottom) 2, 4, 6, and 8 pixels. Here, simple

cells are connected to the 2 stereoscopic visual fields via

single synaptic connections. Fig. 2c depicts the resulting

left and right receptive fields placed on top of each other.

As expected, the shift between the left and right receptive

subfields matches the disparity of the bar.

4.2. Learning complex cell receptive fields

We extend the network by adding a layer of complex

cells and changing the input stimulus to a real event-based

recording made with a DAVIS 346 camera. We moved a

sheet of paper with various shapes drawn onto it in front of

the camera. Real inputs from event-based camera contain

a substantial amount of noise that can affect the training.

We used an event noise filter available in the DV-software

(associated with the DAVIS 346 camera) to reduce this ef-

fect. The video presents many edges in many orientations,

as depicted in Fig. 3a.

To increase variability, we perform data augmentation,

by presenting the same video with artificial rotations and

mirroring effects during training. This ensures that the neu-

rons are presented with edges of all possible orientations.

We use a first layer of simple cells without the use of multi-

synaptic connections and add a second layer of complex

cells and trained the network for approximately 30 minutes.

Figure 3b presents the resulting receptive fields of the

simple cells. They are also Gabor-shaped but show a wide

range of orientation tuning. Four of the 100 simple cells

were not able to learn anything. This is due to the strong

inhibition in the network that prevented them from becom-

ing active on a regular basis. Indeed, when we increased

the number of simple cells to 144 we found that the number

of cells with Gabor-shaped receptive fields stayed roughly

constant, because an increasing number of cells became per-

Figure 4: Visualization of the RFs of six example complex

cells. Left images represent the total strengths of connec-

tions between a complex cells and simple cells from sixteen

different input regions (brighter is stronger). Right images

show the RFs of the simple cells that have the strongest

connection to the complex cell for each of the 16 differ-

ent regions. Simple cell RFs are scaled by their connection

strength to the complex cell.

manently suppressed.

Complex cells’ receptive field are harder to visualize

since they pool activity from many simple cells connected

to a larger area of the pixel array in a nonlinear fashion.

Figure 4 represents the weighted connections to a complex

cell from simple cells connected to it. The left images were

created by summing all the weights from the simple cell

maps. Yellow squares represent the strongest connections.

The complex cell receptive fields have become localized,

i.e., they respond to inputs from local regions of the pixel

array. The images on the right are constructed by selecting

the simple cell receptive field with the strongest connection

to the complex cell for each of the local region of the pixel

array that projects to it. Typically, these simple cell recep-

tive fields have similar orientation but diverse phases, giv-

ing rise to phase invariance of complex cells. Furthermore,

while simple cells are selective for a particular motion di-

rection, i.e., they are direction selective, our complex cells

are mostly only orientation selective.

Neuroscientists usually analyse the behaviours of these

types of cells by observing their responses to oriented stim-

uli. A standard test is to show different oriented gratings

and measure a cell’s response. We followed the same pro-

cedure by creating artificial event sequences as produced by

gratings moving in 16 different directions (from 0 to 360 de-

grees by steps of 22.5 degrees). We measured the responses

of our artificial neurons by counting the number spikes pro-

duced during the presentation of the stimuli and averaging

the numbers over 5 trials. We used the normalized vector

length L to quantify orientation and direction tuning [21]:

Ldir =

∣

∣

∣

∣

∑

k R(θk) exp(iθk)
∑

k R(θk)

∣

∣

∣

∣

Lori =

∣

∣

∣

∣

∑

k R(θk) exp(2iθk)
∑

k R(θk)

∣

∣

∣

∣

,

(8)
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(a) (b)

Figure 5: (b) Complex cell response in direction space,

made from counting the cell’s spikes for a rotating grating

stimulus. The red line corresponds to the normalized vector

length and indicates the cell’s selectivity strength and direc-

tion. (c) Complex cell response in orientation space, made

by pooling over opposite directions.

where R(θk) is the average number of spikes for stimulus

direction θk. For orientations, we simply summed together

the number of spikes for the 2 opposite motion directions.

The normalized vector length gives the sensitivity of a cell

to a particular direction. A cell that reacts very strongly to

only one direction is said to be highly direction selective.

Whereas a cell reacting strongly to many different direc-

tions is not selective. A particular case emerges with cells

being very selective in orientation space but not in direction

space. This is due to cells responding strongly to opposing

motion directions.

We visualize a cell’s selectivity by plotting a circular his-

togram of its responses to different oriented stimuli. Fig-

ure 5 shows the response of an example complex cell in

orientation and direction space. The red lines correspond to

the normalized vector length. We observe that this cell is

orientation selective 5b but not direction selective 5a. This

is because it exhibits 2 roughly symmetric lobes in direc-

tion space, which cause a low selectivity value. The cell

will strongly respond to stimuli oriented at around 135° and

315°, but not to other orientations. Looking at the full set

of the 144 learned complex cells in direction space, we ob-

serve that most complex cells exhibit similar responses to

the ones shown here, except for a few that are also direction

selective (uni-lobe). We present a larger set of 36 complex

cells in the supplementary material, suppl. Fig. 1.

To quantify the results, we compute the normalized vec-

tor length for the full batch of trained complex cells (144 in

total). The result is visualized in Fig. 6. It shows the over-

all orientation and direction selectivity. On average, cells

are highly orientation selective but not very direction selec-

tive. Figure 6b represents the distribution of preferred ori-

entations of the complex cells. It exhibits a preference for

oblique orientation. This is consistent with a slight overall

(a) (b)

Figure 6: (a) Normalized vector length distribution of the

network complex cells in direction and orientation space.

(b) Histogram of normalized vector orientations in orienta-

tion space (0° corresponds to a horizontal orientation).

preference for oblique orientations among simple cells seen

in Fig. 3b. Overall, the set of complex cells has learned to

respond to a wide range of orientations/motion directions.

4.3. Stereo driving scenes

In this section, we feed our network stereoscopic input

from a pair of event-based cameras mounted on a mobile

robotic platform operating in an urban outdoor environment

(see Fig. 7a). The disparity statistics vary greatly depending

on the location within the visual field. We were interested to

see whether these statistical difference become reflected in

the network’s receptive fields. We use a network composed

of multiple patches of neurons looking at specific regions

of the visual field. Neurons in different locations within

a single region share their weights (similar to convolutional

neural networks). Specifically, we consider 20 regions, each

one composed of an array of 3 by 3 simple cells, with 49

neuronal maps connected by inhibitory synapses. Figure 7b

shows a typical image from the training sequence. The 20

regions are marked by squares.

The horizontal distance between the two event-based

sensors induces disparities between the two images. Neu-

rons are connected to the inputs of both the left and right

sensor and receive related events from both, but at slightly

shifted pixel locations depending on the distance to the

stimuli. This induces differences between the learned left

and right receptive subfields of such a binocular neuron.

We train the network on a small repeated sequence of about

45 seconds to control the number of different disparities to

which the neurons are exposed.

We find the preferred disparity of neuron’s learned re-

ceptive field by determining the smallest mean squared er-
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(a) (b) (c) (d)

Figure 7: (a) Mobile platform with the pair of stereo event-based cameras mounted on top. (b) Example of an image (left

camera) taken from one of the outdoor sequences. The squares mark the different image regions. The colored squares in the

upper left mark regions for which disparities and receptive fields are shown in (c) and (d). (c) Histograms of estimated dis-

parities of the learned receptive fields (orange) and disparities estimated from corresponding image frames with conventional

computer vision techniques (blue) for the 3 colored regions. (d) Learned left (top) and right (bottom) receptive subfields for

the 49 neuron layers in the 3 colored regions.

ror (MSE) between the left and shifted versions of the right

receptive subfields of the neuron. It is important to note that

the maximum possible disparity is limited by the size of the

receptive fields. The learned receptive fields are shown in

Fig. 7d. We selected 3 regions that were mostly exposed to

objects of similar distances so that input to each region was

dominated by a different disparity. We observe that only

vertical receptive fields were learned for this input. This is

likely due to the scene structure, which is dominated by ver-

tical orientations. More generally, it is well-known that ver-

tical and horizontal orientations are abundant in man-made

environments [14]. Figure 7c presents a histogram (orange)

of the computed disparities. We observe that most recep-

tive fields in a region learned one specific disparity, up to a

variation of 1 or 2 pixels. Interestingly, there is a systematic

relation across the regions. The learned disparity increases

roughly linearly as we move from the left side to the center

of the visual field. This is consistent with the structure of

the scene, where objects in the center are closer. We com-

pare the learned preferred disparities to disparities estimated

via conventional computer vision techniques from image

frames (that the sensor also produces) (blue histogram in

Fig. 7c). The results are in reasonable agreement with the

receptive fields learned by our spiking network.

We also trained our network on the MVSEC dataset [36],

focusing on the sequence “outdoorday1data”, a stereo ur-

ban driving scene. RFs are learned for nine different re-

gions of the visual field (similar to the 20 regions considered

in Fig. 7). The learned preferred disparities for the differ-

ent regions reflect different distribution of object distances

across these regions roughly corresponding to the ground

truth data of object distances, cf. suppl. Fig. 3. Learned sim-

ple cell RFs are shown in suppl. Fig. 4. The set of RFs forms

a strong basis responding to multiple orientations and dis-

parities consistent with the scene structure, making it an ef-

ficient processing stage for solving more complex dynamic

tasks.

5. Discussion

Taking inspiration from neurobiology, we have presented

a spiking neural network that learns orientation, motion, and

disparity representations in a fully unsupervised fashion via

STDP from input from a stereoscopic event-based vision

setup mounted on a mobile robotic platform. The learned

representation shares many similarities to that observed in

the brain, including simple and complex cells as found in

primary visual cortex of mammals. Furthermore, as ob-

served in biology, the learned representation adapts to the

statistics of the visual input (in terms of orientation, motion,

and disparity). From a biological standpoint, we have made

a number of gross simplifications including the instanta-

neous inhibition or simple weight normalization. There-

fore, our work should not be seen as an attempt to construct

a faithful model of biological learning. However, being

fully spike-based and relying on only local learning rules,

our network is well-suited for implementation on modern

neuromorphic spiking network hardware. This will facili-

tate scaling up our approach to much larger network sizes.

This is left for future work. Furthermore, in the future we

would like to extend this work to active binocular and mo-

tion vision and develop techniques for the autonomous self-

calibration of spike-based active binocular vision systems.
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