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Abstract

Neuromorphic vision sensors are biologically inspired

devices which differ fundamentally from well known frame-

based sensors. Even though developments in this research

area are increasing, applications that rely entirely on event

cameras are still relatively rare. This becomes particularly

clear when considering real outdoor scenarios apart from

laboratory conditions.

One obstacle to the development of event-based vision

applications in this context may be the lack of labeled

datasets for algorithm development and evaluation. There-

fore we describe a recording setting of a DVS-based long

time monitoring of an urban public area and provide la-

beled DVS data that also contain effects of environmental

outdoor influences recorded in this process. We also de-

scribe the processing chain used for label generation, as

well as results from a performed denoising benchmark uti-

lizing various spatio-temporal event stream filters.

The dataset contains almost 7 hours of real world out-

door event-data with ≈47k labeled regions of interest and

can be downloaded at http://dnt.kr.hsnr.de/

DVS-OUTLAB/

1. Introduction

The proposed “DVS-OUTLAB”-dataset was created as a

part of a higher-level project, which aims to improve the ur-

ban planning of public open spaces by including the user be-

havior into this planning step. Aiming at this goal long-term

measurements of a publicly accessible outdoor area were

carried out over a period of several months. We present the

dataset and the description of the technical setup that was

used to carry out these observations by utilizing three Dy-

namic Vision Sensors (DVS).

Dynamic Vision Sensors are the result of the ongoing

research in the field of neuromorphic engineering. They

are bio-inspired vision sensors with the operating paradigm

that all pixels work independently and asynchronously from

each other. Each pixel can trigger an output based on de-

tected local brightness changes exceeding a defined thresh-

old [11].

This results in a sparse output data stream of activated

pixels at a variable data rate. Each of these pixel activations

is called an “event” and carries information about (a) the

local (x, y)-coordinate within the sensor-array of the acti-

vated pixel, (b) the timestamp of activation for this event

and (c) the polarity of the event which indicates the direc-

tion of the brightness change. The operating scheme of a

DVS leads to a reduced data redundancy, a higher temporal

resolution, lower power consumption and a higher dynamic

range compared to classical image sensors. These proper-

ties are especially beneficial in outdoor recording settings.

A further advantage of the DVS technology is that it offers

the opportunity to carry out the monitoring under low pri-

vacy regulations. In comparison to classical frame based

vision, no gray or color values need to be processed by any

software logic.

However, while in the context of frame based video mon-

itoring and surveillance several annotated datasets for tasks

like action or anomaly detection (e.g. [21, 27, 31]) or traffic

flow analysis (e.g. [25, 35]) exist, there is currently a lack

of available event based annotated datasets.

This shortcoming is even more apparent considering out-

door usage scenarios as in contrast to laboratory conditions

the recorded event stream also contains artefacts from envi-

ronmental influences. Summarizing our main contributions

we therefore provide

• a DVS based dataset containing almost 7 hours of raw

event data in the context of static long-term monitoring

of a public outdoor area

• the description of a semi-automatical labeling chain

and the resulting selection of almost 50k labeled re-

gions of interest



• as well as benchmarking results of spatio-temporal fil-

ters to address the challenge of denoising DVS event

streams.

The rest of this paper is structured as follows. Section

2 briefly summarizes the requirements for data recordings

in the context of the performed measurement and provides

an overview of already existing datasets and approaches. A

description of the technical setup used for data collection

onsite follows in Section 3. Section 4 introduces the label-

ing processing chain as well as statistics over the provided

data. In Section 5 the denoising benchmarking is presented.

Finally, a short summary is given in Section 6.

2. Use-case scenario

2.1. Requirements

In the context of the performed stationary long time

monitoring (details are following in Section 3) a dataset is

required that

(a) contains only limited ego-motion due to the usage of

fixed mounted sensors.

(b) includes challenging illuminations, sensor noise and

environmental interferences (compare to Figure 2)

through the outdoor measurement.

(c) provides suitable label annotations and classes (com-

pare to given labels in Table 2) for the monitoring of

public open places.

In machine learning, especially when using deep learn-

ing techniques, often large datasets are necessary. Only

these datasets allow a reliable and comparable development

of specific algorithms or complete processing pipelines.

Therefore it is also required that

(d) the database is large enough to support training in a

deep learning approach, e.g., for object detection or

tracking.

2.2. Existing DVSDatasets

Frame based DVS-Stream simulation

Early work often used well known frame-based datasets by

simply recording a computer display with a DVS. In this

case events were triggered by flashing or moving the im-

age on the screen or through the simulation of small eye

movements, so-called saccades, by moving the sensor in

front of the screen. Examples for these kinds of datasets are

several converted versions of the MNIST dataset (e.g. N-

MNIST [28], MNIST-DVS [33]) or the N-Caltech101 [28]

dataset. Besides the missing applicability of these datasets

with respect to the described monitoring scenario, the time-

continuous aspect of the DVS event stream is also missing

by converting individual image frames.

Frame-based video datasets have also been converted

[19] to address this limitation. However, it is difficult to

use in the sense of long-term monitoring, because only very

short sequences of very different sceneries were considered.

Furthermore, this kind of conversion by recording scenes

displayed on a screen does not fully include realistic DVS-

characteristics. E.g., the time resolution of events is limited

by the frame rate of the shown video material and the re-

fresh rate of the used screen. Therefore a computationally

realistic simulation of DVS output from frame based ma-

terial is an active field of research [6, 12, 32]. The “v2e”-

framework introduces a DVS pixel model including tempo-

ral noise, leak events, finite bandwidth as well as a Gaussian

threshold distribution into the simulation process [10]. To

overcome the time resolution limitation of classical frame

based video input material this framework creates inter-

polated frames by applying a synthetic slow motion deep

learning approach. Although this seems to be an interesting

and promising path to accelerate the DVS-based work by

re-using the effort already invested in existing frame-based

datasets, this approach does not fit very well to the needs in

terms of a long-term monitoring scenario.

Frame-based datasets in this context are usually recorded

by closed CCTV video surveillance systems operating at

low image resolutions and/or frame-rates. Examples are

the datasets “ADOC” [31] with 3 fps or “ICVL” [21] with

15 fps, each containing several hours of footage. The up-

per limit are usually 30 fps recordings (like “VIRAT” [27]),

which would still require a high up-sapling factor to achieve

typical DVS time resolution of a few milliseconds within

the simulation. In addition, the computation time required

to simulate DVS-data leads to another practical limitation.

The authors of the v2e-framework estimate that the simu-

lation runs between 20 to 100 times slower than realtime

[10]. Therefore, the conversion of large datasets with mul-

tiple hours of footage is quite challenging.

Native DVS-Datasets

Most of the existing published neuromorphic datasets are

composed of temporally short sequences of specific actions

or patterns recorded well aligned in mostly clean laboratory

environments. The “POKER-DVS”-dataset [33] (sequences

of fast flipping poker cards) or “DVS128 Gesture” [2], “SL-

ANIMALS-DVS” [36] (sequences of hand/sign language

gestures) are examples.

Available, more general datasets, recorded under real

world conditions relate to autonomous driving [9, 18, 30,

34]. However, due to the movement of the vehicle, these

recordings contain a high proportion of egomotion which

makes them difficult to apply in the required monitoring ap-

plication context.

Currently there exists just one dataset [26] covering the



related task of pedestrian detection. However, this part of

the dataset consists only of 12 recordings with an aver-

age length of 30 seconds. In summary, no published DVS

dataset currently fulfills the requirements resulting from the

long-term monitoring of public urban areas.

3. Dataset Recording setup: Living-Lab

To allow the inclusion of users and their behavior into

urban planning processes a public children playground was

considered as a living-lab concept. The “DVS-OUTLAB”

dataset consists of selected recordings from multiple Dy-

namic Vision Sensors which carried out a long-time moni-

toring of this playground.

Technical setup

Figure 1a depicts a schematic plan of the monitored play-

ground. The area under surveillance has an approximate

size of 2800 square meters and is observed by three fixed

mounted sensors. Each of the Dynamic Vision Sensors is

mounted in a weatherproof enclosure on a mast at a height

of approx. 6 meters with a pitch angle of about 25 degree to

ground (see Figure 1b). The positioning of the sensors has

been chosen in such a manner that blind spots given due to

the terrain characteristics (trees, bushes, mounds) are mini-

mized. The three sensor positions are connected by under-

ground cables to a central point (see Figure 1c) for sensor

data acquisition. The complete system is powered by an

independent solar-based energy storage.

Used Sensor

In this measurement setup we used three models of the

CeleX-4 DVS-Sensors [15], each equipped with an 8mm

wide-angle lens1. The CeleX-4 sensor is the fourth gener-

ation of a neuromorphic vision sensor series [8, 14, 20, 7]

developed and distributed by Celepixel Technology2. This

sensor offers a high-speed event output with 200Meps

(events per second), a high dynamic range and a spatial res-

olution of 768× 640 pixels [15, 11].

The sensor array of the CeleX-4 DVS is logically di-

vided into 5 read-out blocks, each consisting of 128 rows.

According to the feedback from the manufacturer the first

block containing the upper 128 pixel rows is read out more

frequently than the others. This leads to different event-

triggering frequencies within the pixel array and has also

implications to the other blocks due to the performed off-

sensor event timestamping. For further notes on this sensor

behavior compare with issue 8 in [24]. To avoid these prob-

lems, we have completely disabled this block in our record-

ings, resulting in a remaining resolution of 768×512 pixels.

1Computar V0814-MP, f=8mm, F1.4, 1”, C-Mount
2https://www.celepixel.com/

(a) Schematic plan of the measuring area and DVS positioning

(each sensor is equipped with an 8mm focal length wide angle

lens mounted in 6 meter height at the head of a mast)

(b) Sensor mount and case (c) Central data acquisition

and processing point

(d) FoV from DVS1 as greyscale image for clarification with typical

object heights for an adult person depending on the distance to the

sensor

Figure 1: Outdoor recording area and sensor mount setup

To illustrate the recorded scene, Figure 1d shows the ac-

quired field-of-view of one of the sensors as a gray-scale

image.

Privacy focus

The described living-lab measurement setup is located in

Germany. Due to very strict data protection laws [3, 5, 13]

and a high expectancy of the potential users for privacy

(especially in the considered use-case of a children play-

ground), it was not possible to use additional sensors such



(a) Rain (b) Global lighting

change by clouds

(c) Shadows caused by

tree crowns

(d) Movement of tall

grass due to wind

(e) Ego-Motion caused by

minimal mast movements

Figure 2: Visualization of environmental influences caused by the outdoor scenario. (Each image pixel encodes the polarity

of the last occurred event within a time window of 60ms. A brightness increase is displayed in green and a decrease in red.

Short video sequences are also provided at the dataset webpage for a better impression.)

as classical RGB-frame based CCTV systems besides the

DVS.

At this point using DVS-technology falls under signifi-

cantly lower regulations due to inherent sensor properties.

No gray or color values have to be processed by the appli-

cation logic during the subsequent analysis of the acquired

data stream.

4. Provided Database

The presented dataset includes data from two semanti-

cal different recording scenarios of the same area. The first

recording session contains staged scenes, which were sub-

sequently semi-automatically tagged with event-wise se-

mantic class labels. The data set from the second record-

ing session also includes artefacts from environmental in-

fluences.

In the Subsection 4.1 some properties which pose a chal-

lenge in subsequent semantical processing steps are briefly

presented. The label generation process, as well as statistics

on the published data, are described in the Subsections 4.2

and 4.3.

4.1. Challenges

Due to the fixed mounted sensor measurement setup the

dataset contains just minor parts of ego-motion background

cluttering. Still, the realistic outdoor setting produces data

properties, that make the development of high level com-

puter vision solutions challenging.

Background noise: The output of currently available Dy-

namic Vision Sensors contains noise, caused for ex-

ample by junction leakage currents and thermal noise.

In [11], Gallego et al. give an overview of the spec-

ifications of different DVS models, including a con-

sideration for the stationary noise behavior. From this

comparison it can be seen that the event stream of the

CeleX4-sensor contains a relatively high proportion of

noise.

Object sizes: The low resolution, compared to state of the

art frame-based systems, of the CeleX-4 DVS sensor

in combination with the used wide-angle lens and the

size of the monitored area leads to small object sizes.

Figure 1d illustrates this by means of apparent object

sizes of an adult person, which varies between 17px

and 110px depending on the distance to the sensor.

Environmental interferences: Especially in outdoor us-

age scenarios the Dynamic Vision Sensors tends to

capture different kinds of environmental interferences

due to its high sensitivity and temporal resolution.

These interferences are mostly not taken into account

in other datasets.

Figure 2 shows an example of some of these distur-

bances such as rain or shadows, where the DVS event

stream data is displayed as event polarity image.

4.2. Staged scenes and semiautomatic labeling

To be able to generate a large annotated dataset, we re-

staged typical use scenarios at the site. During the record-

ings of these scenes, we were also able to temporarily ac-

quire and store the brightness values provided by the CeleX

sensor stream. This was only possible by explicit consent

of the observed persons due to the privacy concerns as men-

tioned in Section 3, while the area was closed for public us-

age. In this way, several hours of material could be recorded

that included activity, which was then semi-automatically

augmented with object label annotations.

Label Generation

In the context of this special recording setup it was possible

to calculate grayscale images based on the brightness values

provided per event directly by the CeleX data stream. Us-

ing these images, generated at a time interval of 60ms, well

known frame-based CNN methods were utilized to gener-

ate object label proposals. For this purpose, we used an im-

plementation [1] of the Mask-R-CNN object detector [17]

which was pre-trained on the COCO database [23].



(a) MaskRCNN based label generation on accumulated greyscale images

(b) Label propagation from object masks to

event stream

Figure 3: Processing step visualization for label generation and propagation on stages dataset scenes

Sensor
#TimeWindow

recorded

#TimeWindow

containing Label

DVS1 131492 98853

DVS2 131488 52520

DVS3 131488 76337

Total
394468

≈6h 30min

227710

≈4h

Table 1: Staged scenes: number of total recordings and au-

tomatic label suggestions (TimeWindow =̂ 60ms)

We first applied a deep learning super-resolution network

[22] to scale the input images by the factor of 4. This should

mitigate effects from the low image resolution of acquired

grey scale images on small objects. The scaled images were

divided into 13 blocks so that the block-width corresponds

to the expected input size of the used Mask-R-CNN net-

work. For each block, the result of the Mask-R-CNN infer-

ence was calculated and combined into a single mask image

of the size of the original image. This procedure is depicted

in Figure 3a.

Based on this object mask, the generated labels were

propagated to the events of the corresponding 60ms time

segment of the initial event stream (see Figure 3b). In

this step, objects were filtered out that did not move in the

corresponding time windows, since they are visible in the

greyscale images but do not have a significant amount of

associated events in the DVS stream.

4.3. Dataset Statistics

The total length and number of automatically generated

label-proposals by the Mask-R-CNN pipeline are summa-

rized in Table 1. Since almost all staged scenes have a per-

son involved, this results in a very large class imbalance in

the class appearance frequency. For this reason, we propose

to use only a sub-selection of the available data.

In the process of sub-selection, attention was paid to the

following two aspects. First to select an equal number of

examples per class and sensor row-block, if it was avail-

able in the original data. The goal of this row-block guided

sub-selection is to equally include all different object sizes

resulting from the different object to sensor distances in-

cluded per block. Secondly, care was taken to ensure the la-

bel quality of the Mask-R-CNN predictions for the selected

data. The labeling was manually controlled by a human and

only satisfying predictions were added into the final selec-

tion.

The number of resulting labeled event time windows is

given in Table 2. Each time window contains labels within

an 192× 128px region of interest when a selected object is

included in this region. Examples for selected regions are

given in Figure 4. For a visual impression of the achieved

label quality a comprehensive overview of label visualiza-

tions is available on the dataset webpage.

We also propose a 70/15/15% split that can be used

to train, validate and test further work and applications.

The distribution across the sensor row-blocks has also been

taken into account by performing this split.

5. Spatio-temporal Event-Filter Comparison

As already mentioned in Section 4.1 currently available

Dynamic Vision Sensors suffer from noise. Therefore, de-

noising of DVS event streams is an active research topic in

which we will present the first application of our database.

In the context of long-term monitoring, a fast compu-

tational and cost-effective approach to noise filtering is

needed. For our dataset, nearly 42 billion events were cap-

tured over a total of almost 7 hours of recordings. With a

storage requirement of 80 bits per event as it is implemented



#TimeWindows containing Label in

Class-Label
#TimeWindow

containing Label
Row 1 Row 2 Row 3 Row 4

Objects

of

interest

PERSON 7399 2833 2678 1255 633

DOG 709 351 259 54 45

BICYCLE 4378 2023 1834 478 43

SPORTSBALL 500 147 244 74 35

Environmental

interferences

BIRD 3807 825 1353 1173 456

INSECT 5939 842 1329 1532 2236

TREE CROWN 6375 1731 2511 1576 557

TREE SHADOW 6901 50 1660 2387 2804

RAIN 7052 1776 1776 1750 1750

GLOBAL SHADOW 4800 1200 1200 1200 1200

EGO MOTION 4800 1200 1200 1200 1200

Table 2: Performed sub-selection from all labeled event data. Each row represents a 128 pixel sensor block on the Y-axis,

starting to count at the top. (TimeWindow =̂ 60ms)

(a) PERSON (b) DOG (c) BICYCLE (d) SPORTSBALL

(e) BIRD (f) INSECT (g) TREE CROWN (h) TREE SHADOW

(i) RAIN (j) GLOBAL SHADOW (k) EGO MOTION

Figure 4: Example snippets from provided database (more examples are provided on the dataset webpage)
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Figure 5: CeleX4 sensor temperature correlated noise be-

havior (recorded scene is unchanged in temperature con-

trolled environment)

by the CeleX SDK [24], this results in approximately 390

gigabytes of data. When measuring with three sensors for

10 hours per day as in our real application scenario, denois-

ing for data reduction is unavoidable. The Figure 5 illus-

trates that the amount of sensor background noise also in-

creases significantly with higher ambient temperature of the

sensor. This behavior was also evident in our recorded data,

because in summer temperatures of over 50 degrees were

measured inside the case. Therefore, reducing the number

of events in the data by efficiently eliminating event noise

represents the first processing step in the analysis of our

data. Due to the limited computational and power capac-

ities on site and the need to process three DVS streams in

parallel in real time at a central location, as mentioned in the

description of the technical setup above, the use of simple

spatio-temporal event filters seems to be a suitable solution.

Subsequently we define different spatio-temporal filters

and compare their results on the provided dataset. A filter is

suitable for our application if it has the following properties:

• removing as many events as possible that were trig-

gered by noise,



• eliminating as many events as possible that were gen-

erated by environmental influences and

• obtaining as many events as possible that were created

by objects of interest.

5.1. FilterLogic

The basic assumption of spatio-temporal filters is that

events from real objects should occur spatially and tempo-

rally more often than noise events [11].

Neighborhood-Filter: For each event e spatially adjacent

events are evaluated in its time windows twi and its

preceding window twi−1. The number of populated

spatial neighborhood cells that include at least one

other event is counted. For this a 8-neighborhood is

used for twi and a 4-neighborhood in the previous

twi−1. The event e is discarded if less than thres1
neighborhood cells for twi are populated or thres2 cells

for twi−1.

In the following experiments we set thres1 = 4 and

thres2 = 2.

Time-Filter: For each event e it is checked whether or not

there was another event at the same (x,y) position in the

preceding x milliseconds. If no other event occurred in

this timespan, the event e is considered as noise.

In the following experiments we calculated different

results for the time threshold x=3ms, x=6.5ms and

x=10ms.

SeqX-Filter: For each event e the spatial distances to a

small number of directly preceding events in the ac-

quired sensor stream is calculated [16]. If the small-

est occurred distance is below a defined threshold, the

event is kept. Further details can be found in [16].

In the following experiments we set the number of con-

sidered preceding events to 10 and the threshold σ =

0.01.

EDnCNN: It consists of three 3 × 3 convolutional layers

(using ReLU, batch normalization and dropout) and

two fully connected layers [4]. An Adam optimizer

with a decay rate of 0.1 and a learning rate of 2E-4 is

used for learning. For each event, the network makes

a binary classification based on a feature vector gener-

ated from the spatial-temporal neighborhood.

5.2. FilterResults

Comparison on provided data and scenario

We compare the performance that can be achieved using

these different filters. The EDnCNN approach was trained

for this purpose with our data.

Similar to [29] we calculate the Percentage of

Remaining Events (PER) after filtering for each labeled

60ms time windows of the dataset. However, we addition-

ally consider the effects of filtering for each individual ob-

ject class as well:

PREf
c =

#Eventsf
c

#Eventstotal
c

· 100 (1)

where f describes the used filter method, c the object class

and #Events the number of corresponding events.

The selected labels of the dataset (see Section 4.3 and

Table 2) are scattered over the complete duration of the

dataset. However, for the filter calculation the entire tem-

poral sequence (also of unlabeled events) were considered,

but only labeled events were judged in the benchmarking.

Figure 6 summarizes the distribution of per time window

calculated PRE filter results considering all selected and la-

beled parts of this dataset.

It can be noted that by means of these spatio-temporal fil-

ters generally a significant reduction of background activity

noise can be achieved. However, the proposed filters differ

in their results with respect to individual object classes. The

EDnCNN achieves good denoising results on background

noise as well as on effects like global shadow and ego mo-

tion. Nonetheless this approach also preserves a relatively

high proportions of other environmental interferences. In

turn, the ’Neighborhood-Filter’ achieves a higher denois-

ing level on these environmental interferences classes, but

also removes a slightly higher amount of other object class

events. However, in total, the effects of environment influ-

ences can only be removed to a limited extent and must be

adressed separately in subsequent analysis.

As the object class PERSON in Figure 7 shows, the av-

erage PRE result for each filter is individually comparable

when considering the different sensor row-blocks (128px on

Y-axis) separately. However, the variation within the results

decreases with an increasing object size.

Comparison in other scenarios

In a second step, we evaluate the results on the DVS-

NOISE20 dataset3, which is explicitly provided by the ED-

nCNN authors to evaluate event denoising algorithm per-

formance against real sensor data. The data included in

this dataset contains recordings with moderate to very heavy

ego-motion of scenes with differently textured details. For

comparison, we therefore examined only the recordings

from the DVSNOISE dataset, which showed a low ego-

motion/event count and most closely matches to the appli-

cation in the described Living-Lab.

3https://sites.google.com/a/udayton.edu/issl/

software/dataset
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Figure 6: PRE results from spatiotemporal filters on the provided DVS-OUTLAB dataset
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Figure 7: PRE filter results for class PERSON separated by

sensor row blocks
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Figure 8: Comparison of EDnCNN benchmark results on

DVSNOISE20 dataset [4] (applying same calculation and

averaging logic, smaller RPMD values indicate better de-

noising performance, ME =̂ Million Events)

The denoising results obtained in this case by using the

provided pre-trained EDnCNN network weights and the de-

scribed spatiotemporal filter are given in Figure 8. For con-

sistency with the results originally computed by Baldwin et

al., the “relative plausibility measure of denoising” (RPMD)

metric is also used here (for details see [4]).

The results are comparable to the denoising results on

our dataset.

6. Conclusion

The central contribution of this paper is a neuromorphic

vision dataset addressing the issues of DVS-based long time

monitoring, especially in real outdoor scenarios. It consists

of several hours of raw event data and a total of 47,878 re-

gions of interest containing labels which were generated by

the described processing chain. These labels address clas-

sical object classes as well as environmental interferences

(like rain and shadows) which are included in DVS event

streams in outdoor recordings, but have not been taken into

account in available datasets so far.

With respect to the challenges that have to be consid-

ered in DVS-based processing pipelines we provide a quan-

titative comparison of denoising results utilizing different

spatio-temporal filters on the provided dataset as well as on

the DVSNOISE20 [4] dataset. In summary good denoising

results can be achieved with respect to background events,

while preserving a high amount of object events. However

included events caused by environmental interferences con-

tinue to be a challenge. In further work, we will also address

these challenges by means of higher level analysis for object

detection and classification.

The dataset is made freely available to support and accel-

erate the development and deployment of fully DVS based

processing pipelines in real world usage scenarios. Espe-

cially in these cases the advantages of Dynamic Vision Sen-

sors like privacy aspects, low power consumption and a high

dynamic range can be particularly beneficial.
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