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Abstract

Event cameras are novel neuromorphic sensors, which

asynchronously capture pixel-level intensity changes in the

form of “events”. Event simulation from existing RGB

datasets is commonly used to overcome the need of large

amount of annotated data, which lacks due to the novelty

of the event sensors. In this context, the possibility of using

event simulation in synthetic scenarios, where data genera-

tion is not limited to pre-existing datasets, is to date still un-

explored. In this work, we analyze the synth-to-real domain

shift in event data, i.e., the gap arising between simulated

events obtained from synthetic renderings and those cap-

tured with a real camera on real images. To this purpose,

we extend to the event modality the popular RGB-D Object

Dataset (ROD), which already comes with its synthetic ver-

sion (SynROD). The resulting Neuromorphic ROD dataset

(N-ROD) is the first to enable a synth-to-real analysis on

event data, showing the effectiveness of Domain Adapta-

tion techniques in reducing the synth-to-real shift. More-

over, through extensive experiments on multi-modal RGB-

E data, we show that events can be effectively combined

with conventional visual information, encouraging further

research in this area. The N-ROD dataset is available at

https://N-ROD-dataset.github.io/home/.

1. Introduction

Event cameras are neuromorphic bio-inspired vision de-

vices that asynchronously stream events in correspondence

of pixels subject to brightness changes. Despite the sen-

sor’s benefits (such as memory efficiency, time resolution,

and dynamic range), the main challenge when training deep

event-based architectures is the lack of annotated data. A

common option to mitigate this issue is to use data simula-

tion as an alternative to direct training on real data, as it pro-

vides a way to re-purpose existing RGB datasets in the event

domain. However, the simulations do not always match the
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Figure 1. How can we study the Synth-to-Real gap in event-based

cameras? We propose N-ROD, a new dataset explicitly designed

for supporting research in domain adaptive event-based classifica-

tion, in both single and multi-modal settings.

data distribution coming from a real sensor [11, 30]. As a

result, training on simulated data could lead to sub-optimal

performance. In this setting, the authors of [23] refer to this

problem as the sim-to-real domain gap and propose to ad-

dress it using unsupervised domain adaptation techniques.

Moreover, simulating events from frames inherits all the

complexities and costs associated with standard data col-

lection and becomes inexpensive only if the RGB dataset is

already available. Indeed, collecting data with precise anno-

tation is a hard problem even with standard vision devices.

In the literature, a common solution is to use synthetic data

generation, as it provide free access to precise annotations.

Nevertheless, differences between synthetic training data

and real test one, commonly referred to as the synth-to-real

domain shift, severely undermine the final model’s perfor-

mance on the actual data. Domain adaptation techniques

revealed once more to be a powerful way to cope with this

issue [4, 32, 27]. However, to date, due to the lack of suit-

able datasets for such an analysis, the real impact of the

synth-to-real shift on events remains an open problem.

In this work, we propose to address this absense by ex-

tending the popular RGB-D Object Dataset (ROD) [16] for

object recognition by its event counterpart. ROD comes

with the RGB and depth modalities, both acquired through

real sensors, and it was recently extended with synthetic

samples [19]. We further extend ROD, and its synthetic

version SynROD, by introducing event data to enable the
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synth-to-real analysis for the event modality, resulting in a

new neuromorphic dataset which we call N-ROD. Thanks

to the multiple modalities already provided by the original

ROD, the new N-ROD does not only enable the study of

the domain gap between synthetic and real data, but it also

unlocks the possibility of designing new ways of exploit-

ing events together with conventional vision information,

encouraging further research in this direction.

2. Related Works

Datasets. Early works in event-based vision focused

in recognizing simple objects and shapes such as dig-

its [22, 28] and poker pips [28]. A standard procedure to

re-purpose existing RGB dataset is to record them using a

real camera, which enabled the creation of more complex

datasets [17, 22, 15]. Thanks to recent advances in event re-

search, the availability of more realistic datasets recorded in

real conditions [29] and more complex vision understand-

ing tasks [3, 2] is also increased. Contrary to all previous

datasets on classification, however, the one proposed in this

work is the first to enable domain adaptive analysis.

Unsupervised Domain Adaptation (UDA). Unsuper-

vised domain adaptation focuses on bridging the gap be-

tween a labeled source domain and an unlabeled target one

by acting on reducing the difference between the feature

spaces of the two. Multiple approaches are possible, from

those directly acting on features, such as discrepancy-based

methods [35, 26, 20, 21, 7] and those based on adversarial

training [8, 31, 10, 25], to those that indirectly act on the

feature spaces by means of pretext tasks [19, 34, 6, 5]. The

research in the multi-modal field started from simple appli-

cations of existing single-modal DA methods [33, 18], and

is now moving to more mature approaches which specifi-

cally exploit the multi-modal nature of the data [19].

UDA for events. Very new is UDA in event-based data.

Its effectiveness in tackling the gap between real events and

simulated ones was recently shown in [23], which devi-

ates from previous approaches acting on simulation param-

eters [30] and data augmentation [11]. Moreover, the au-

thors of [23] show that, when RGB is the primary modal-

ity, adding simulated events obtained from both synthetic

source images and real target ones can be used as a tool in

UDA to mitigate the intrinsic synth-to-real shift on images.

Our work differs from [23] in that it shifts the focus to how

real event data benefits from DA techniques, extending the

synth-to-real shift on events thanks to the proposed N-ROD

dataset. Under this setting, simulation is not performed on

the target domain as real events are already available.

3. Dataset

We propose an extension of the popular RGB-D Object

Dataset (ROD) [16] for object recognition. ROD contains

Synthetic Real

Figure 2. Synthetic (left) and real (right) samples from the N-ROD

dataset. Depth images are colorized with surface normal encoding

and event sequences are represented using voxelgrid [36].

41, 877 samples of 300 daily objects grouped into 51 cat-

egories, captured by an RGB-D camera. ROD is coupled

with SynROD [19], its recent synthetic extension designed

to study the synth-to-real domain shift in multi-modal set-

tings, i.e., RGB images and depth. SynROD contains pho-

torealistic renderings generated under natural lighting con-

ditions of 3D models of the same categories as ROD.

In this work, we extend both versions of the dataset by

introducing real event recordings obtained from ROD sam-

ples, as well as simulated events extracted from SynROD’s

synthetic images. The resulting extended dataset is the first

to enable a synth-to-real analysis on event data.

Recording Setup. We replicate the setting in [22]

for converting RGB images to event-based recordings. A

Prophesee’s HVGA Gen3 (CD+EM) [9] Asynchronous

Time Based Image Sensor (ATIS) configured with default

bias settings and mounting a Computar M0814-MP2 8mm

lens is placed on a pant-tilt and positioned at approximately

23 centimeters from a LCD monitor. We used a 2560×1440
76Hz IPS monitor with a 4ms minimum response time

(LenovoTM ThinkVision® P27h-10), and set its brightness

and contrast settings to their highest values as in [15]. The

pan-tilt1, analogous to the one used in [22], is composed of

two Dynamixel MX-28 servo motors connected with each

other, and an ArbotiX-M Robocontroller board controls it

through serial communication.

Objects from the ROD dataset come into crops of vari-

able size and aspect ratio. Samples are processed with

padding, which replicates the border on the smallest side

of the image to ensure squared samples despite the original

resolution. We display still images from the original ROD

dataset in a loop and record each sample while performing

the same saccades motion pattern described in [22] (i.e.,

three saccades motions of 100ms each in a triangular pat-

tern). A 300ms waiting time was added after transitioning

to the next image to ensure the image was correctly updated

on the monitor, and the event camera has settled after de-

tecting the visual changes incurred by changing the image.

A 256 × 256 region of interest was set on the event cam-

1https://trossenrobotics.com/widowx-MX-28-pan-

tilt
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era to restrict recorded events to a squared resolution, as in

ROD RGB images. Grayscale images from exposure mea-

surement (EM) events were used to fit the size of displayed

images to the camera field of view before recording.

To simulate data on the source domain we follow the

procedure used in [11, 23], making use of the ESIM [24]

simulator to generate events. We replicate the same setting

used to record real samples, mapping synthetic images on

a plane and moving the virtual event camera with the usual

saccadic motion.

4. Method

The proposed N-ROD dataset enables the analysis of the

synth-to-real domain shift in event-based data. In this set-

ting, the source comprises pairs of synthetic RGB images

and their event version generated using a simulator [24].

The target domain instead includes both RGB images and

events acquired with real sensors. Thus, the N-ROD setting

is different from the one in [23], where event simulation is

applied on both the source and target domains. Simulta-

neously, using simulation on one side and real event data

on the other, N-ROD indirectly introduces the sim-to-real

gap studied in [11, 30]. The result is a double domain-shift,

which combines both the synth-to-real and the sim-to-real

shifts. To cope with both these aspects, we use the UDA

algorithms analyzed in the next section.

4.1. UDA Algorithms

In this section we give a brief overview of the UDA

methods applied within our architecture.

GRL. Ganin et al. [10] introduced a domain adversarial

method exploiting a gradient reversal layer which ensures

that the feature distributions of the two domains become in-

distinguishable (domain-invariant) to the feature extractor.

MMD. Long et al. [20] proposed to minimize the Maxi-

mum Mean Discrepancy between source and target distribu-

tions, a metric that measures the discrepancy between them.

By doing so, the final layers of the network are encouraged

to produce domain-invariant features.

AFN. Xu et al. [35] pointed out that the main difficulty

in classifying on target domain is due to target vectors hav-

ing smaller feature norms if compared to that of the source

domain. To tackle this issue, the authors proposed to itera-

tively increase the expectations of the L2-norms of the deep

embeddings of source and target domains.

Rotation. Xu et al. [34] proposed to add an auxiliary

self-supervised task to the main loss, which consist in pre-

dicting the absolute rotation of images from both the source

and target domains. Loghmani et al. [19] extended it to

multi-modal images, asking the network to predict the rela-

tive rotation between two modalities.

Entropy. Grandvalet et al. [13] proposed to represent

the uncertainty on the target domain and add a regulariza-
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Figure 3. Our multi-modal DA architecture. Data coming from the

source and target domains are processed separately during train-

ing. Source, labelled, data is used for supervised classification in

G, while both target and source data are fed to the DABlock. Fea-

tures are extracted from each modality using different extractors

FI and Fǫ, shared across domains, and then concatenated before

prediction. The dashed data path is finally removed, along with

features concatenation, when just the event modality is used.

tion term to the classification loss that helps soften the do-

main shift effects between source and target distributions.

4.2. Network Architecture

In Figure 3 we outline the structure of the proposed net-

work. We indicate with IS images from the source domain

and with IT those from the target. Given the sets of input

RGB images (IS , IT ), events in the source domain are ob-

tained from the ESIM simulator [24], and that in the target

domain using an event-based camera. Event data is then

split into B = 9 evenly spaced temporal bins from which

independent voxel-grids are extracted as described in [36],

resulting in a multi-channel representation (RS

E
,RT

E
). Both

the RGB and event inputs are then fed to two separate

ResNet feature extractors (respectively, FI and FE ), which

are shared between source and target. The first convolu-

tional layer of FE is replaced with a new one matching the

B input channels and randomly initialized. Both source and

target features are fed to the DABlock that implements one

of the techniques presented in Section 4.1, while the final

classifier G is trained on the source domain features only.

Implementation Details. The two backbones Fǫ and FI

are implemented with a ResNet18 [14] pretrained on Im-

ageNet. Both voxel-grid representations and RGB images

are augmented during training following [23]. We train all

network configurations for 30 epochs using SGD as opti-

mizer and weight decay 0.003.

5. Experimental Results

In this evaluation we focus specifically on how UDA

techniques are effective in reducing the synth-to-real do-

main shift, by analysing their impact first on event data in-

dividually, and then in a multi-modal setting.
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Single modality Benchmark. Table 1 reports top-1 ac-

curacy results obtained in the synth-to-real scenario, where

the source is Syn-N-ROD (i.e., events simulated on syn-

thetic data) and the target is N-ROD (i.e., events captured

with a neuromorphic camera from real RGB images). For

each modality, the baseline results are referred to as “Source

Only” and they are obtained by training on source and test-

ing on target samples without applying any UDA approach.

We remark that, in this setting the RGB modality is favored

by robust pre-trained layers. Results show that, among all

modalities, the event one is that receiving the highest ben-

efits from UDA (20.6% compared to Source-Only, while

RGB and depth have smaller improvements of, respectively,

9.9% and 14.4%). The event modality focuses on geometric

components and object shapes, contrary to the RGB which

is biased towards texture. This intrinsic peculiarities make

UDA techniques more effective on events, as shape infor-

mation is per se more robust [12] in the transition from the

synthetic to real domain and thus easier to be aligned, as

opposed to the information encoded in RGB.

Multi-modal Benchmark. It is well known that the

complementarity of different input modalities, such as RGB

and depth, can be exploited to improve adaptation perfor-

mance in cross-domain scenarios [19]. Since a multi-modal

RGB-E analysis is still unexplored in the literature, we pro-

pose a first approach to the problem relying on the one com-

monly used for RGB-D data [1] (see Section 4.2). The re-

sults in Table 1 show that the validity of the DA approach

is confirmed in the multi-modal setting, as all methods con-

sistently improve over the Source Only baseline, as in the

single modal setting. Rotation [34] provides more interest-

ing results to be discussed. Indeed, when absolute rotation

is applied on each modality individually, this method is the

one achieving the lower performance gain if compared to

all the others. Instead, when extended to the RGB-E con-

text by applying the Relative Rotation [19] between the two

modalities, it interestingly reveals to be the UDA method

performing the best. This brings to light the importance

of leveraging over the complementarity of multiple modali-

ties even in the event field. This result emphasizes the need

to further push research towards networks specifically de-

signed to make the two modalities efficiently cooperate.

Synth-to-Real vs Sim-to-Real. Using simulation on

one side and real event data on the other indirectly intro-

duces the sim-to-real gap studied in [11, 30]. In order to un-

derstand how much this second domain shift affects perfor-

mance, we compare our results with the ones which would

been obtained by using simulation even to extract events

from real (target) image. We can consider this experiment

as a relaxed setting where the sim-to-real gap is not present.

To this purpose, Table 2 compares our single-modal results

obtained by generating target events with a neuromorphic

camera (Source: Sim, Target: Real) with the ones obtained

Table 1. Top-1 accuracy (%) of UDA methods on synth-to-

real shift (Syn-N-ROD → N-ROD). Bold: highest mean result,

underline: highest single- and multi-modal results. indicates the

improvement of the avg of UDA methods over the baseline Source

Only.

SYNTH-N-ROD =⇒ N-ROD

Single-modal Multi-modal

Method RGB Depth Event RGB+D RGB+E

Source Only 52.13 7.56 21.78 47.70 50.78

GRL [10] 57.12 26.11 33.09 59.51 57.15

MMD [20] 63.68 29.34 42.05 62.57 61.78

Rot [34][19] 63.21 6.70 31.26 66.68 68.54

AFN [35] 64.63 30.72 55.12 62.40 64.04

Entropy [13] 61.53 16.79 50.14 63.12 64.08

Avg
62.03 21.93 42.33 62.86 63.12

+9.9 +14.4 +20.6 +15.2 +12.3

Table 2. Top-1 accuracy (%) on events, in two different scenarios:

sim-to-real and sim-to-sim. In bold the highest mean result.

SYNTH-N-ROD =⇒ N-ROD

Source Target Source Only GRL MMD Rot AFN Entropy Avg

Sim Real 21.78 33.09 42.05 31.26 55.12 50.14 42.33

Sim Sim 40.47 44.52 48.29 42.98 53.50 49.29 47.68

through simulation (Source: Sim, Target: Sim).

By considering the results on Source Only, we notice

that, without any kind of adaptation, performance decreases

by up to 20%. This quantifies the sim-to-real gap and high-

lights the need of a method to reduce the gap between sim-

ulated and real data. The proposed approach once again re-

veals the effectiveness of using UDA techniques in the event

context, which consistently improve performance, reducing

this gap to be only 5%.

6. Conclusions

This paper presents N-ROD, a new neuromorphic dataset

explicitly designed for supporting research in domain adap-

tive event-based object classification. This dataset opens

new research opportunities for studying both the synth-to-

real and sim-to-real domain gaps. Moreover, we believe

that this work will become a valuable starting point for the

community also for further research towards new ways of

integrating event data with other modalities.
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