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Abstract 

Event cameras are robust neuromorphic visual sensors, 

which communicate transients in luminance as events. 

Current paradigm for image reconstruction from event data 

relies on direct optimization of artificial Convolutional 

Neural Networks (CNNs). Here we proposed a two-phase 

neural network, which comprises a CNN, optimized for 

Laplacian prediction followed by a Spiking Neural Network 

(SNN) optimized for Poisson integration. By introducing 

Laplacian prediction into the pipeline, we provide image 

reconstruction with a network comprising only 200 

parameters. We converted the CNN to SNN, providing a full 

neuromorphic implementation. We further optimized the 

network with Mish activation and a novel convoluted CNN 

design, proposing a hybrid of spiking and artificial neural 

network with < 100 parameters. Models were evaluated on 

both N-MNIST and N-Caltech101 datasets. 

1. Introduction 

Some of the first and greatest successes in neuromorphic 

computing architectures have been in vision and sound 

processing [1]. Most neuromorphic vision sensors 

communicate transients in luminance via the Address Event 

Representation (AER) protocol. They are comprised of an 

array of silicon neurons; each generates spikes in response 

to a change in luminance in one particular location (or 

pixels). Spikes are time-multiplexed over an asynchronous 

data bus via an address encoder, which designates each 

spike with a corresponding address (usually, the neuron’s 

x-y pixel coordinate). These frame-less and event-driven 

neuromorphic Dynamic Vision Sensors (DVSs) can resolve 

thousands of frames per second, have a fine temporal 

resolution, high dynamic range, no motion blur, and high 

signal-to-noise ratio. Moreover, since DVSs perform 

sensor-level data compression, they optimize data transfer, 

storage, and processing [2]. 

Recent works have narrowed the gap between 

conventional frame-based computer vision and that of an 

event-driven camera by using Convolutional Neural 

Networks (CNNs), which were optimized to reconstruct 

natural videos from events. For example, by utilizing a 10M 

parameters CNN termed U-net [3], Scaramuzza and 

colleagues reconstructed a video from its events, achieving 

state-of-the-art results [4] [5]. Recently, combined with 

recurrent connections and residual blocks, a CNN was used 

to reconstruct images with a smaller number of parameters, 

demonstrating a fast, lightweight network with only a minor 

drop in performance [6].  

Here we proposed a Neural Engineering Framework 

(NEF)-based Spiking Neural Network (SNN) [7] for image 

reconstruction from event cameras, demonstrating a 

complete neuromorphic (brain-inspired) process. The 

Neural Engineering Framework (NEF) is one of the most 

utilized theoretical frameworks in neuromorphic computing. 

It brings forth a theoretical framework for a neuromorphic 

encoding, decoding, and transformation of mathematical 

constructs with spiking neurons, allowing the 

implementation of functional large-scale neural networks 

[8]. NEF was used to design a broad spectrum of 

neuromorphic frameworks ranging from robotic control [9] 

and visual processing [10] to perception [11]. It serves as the 

foundation for Nengo, a Python-based "neural compiler," 

which translates high-level descriptions to low-level neural 

models [12]. A version of NEF was compiled to work on 

both analog and digital neuromorphic circuitry [13], 

including the TrueNorth [14], the Loihi [15], the NeuroGrid 

[16], and the SpiNNaker [17]. 

In our proposed framework, events are driven into a 

convolutional SNN for processing, enabling process 

execution by neuromorphic hardware, considered energy-

efficient [18]. Using Poisson integration [19]  to reconstruct 

the image's intensity from its Laplacian, we demonstrate a 

reduced number of trainable parameters. Furthermore, we 

propose an even more compact non-spiking CNN, with 

Mish activation [20], achieving adequate image 

reconstruction with less than 100 parameters.   We 

demonstrated our approach using the N-MNIST and N-

Caltech101 datasets [21].  
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2. Related works 

Poisson image reconstructions are commonly used to 

reconstruct an image from its gradients [22]. Previous 

works solved the events-to-intensity reconstruction 

problem using an estimated gradient map of the image and 

integrated the gradients via Poisson integration. For 

example, Kim and colleagues used an extended Kalman 

filter to estimate a 2D gradient image from a rotating event 

camera. They used the gradient image to reconstruct the 

image by Poisson integration [23] [24]. Rebecq and 

colleagues extended the algorithm to cope with 3D scenes 

and 6-DoF motion [25]. Barua and colleagues also 

proposed reconstructing images from events by optimizing 

a sparse patch-based dictionary to match event patches with 

gradient patches using a simulator [26]. Their approach also 

utilized Poisson integration for image reconstruction. 

Previous studies applied adversarial learning, through the 

use of Generative Adversarial Networks (GANs), to 

reconstruct High Dynamic Range (HDR) imagery from 

events [27] [28] [29]. GANs comprise a generator and a 

discriminator. The generator (usually composed of a U-Net 

architecture) aims to reconstruct an intensity image from 

events, which the discriminator cannot distinguish from the 

Ground Truth (GT) intensity image. Although GANs are 

unstable and hard to train [30], they have provided state-of-

the-art performance on real-world event camera-generated 

datasets. Recently, Mohammad and colleagues proposed an 

intricate architecture, which involves optical flow 

estimation, feature enhancement, and super-resolution 

networks for image reconstruction in super-resolution and 

HDR [31]. These networks, however, are not based on 

SNNs and entail high parameter space.  

Several works used events from event-based vision 

sensors as inputs to neuromorphic hardware-implemented 

SNN. For example, Riccardo and colleagues used Loihi-

implemented SNN for event-driven gesture recognition 

[32]; Osswald and colleagues used SNNs to 

neuromorphically solve the stereo correspondence [33]; 

Jiand and colleagues used event-driven SNNs for object 

tracking [34], Seifozzakerini and colleagues used them for 

line detection [35], and Ezra Tsur and colleagues used evets 

to elucidate optical flow [10]. They were not used, however, 

for image reconstruction. 

 Here, we aim to solve the event-to-intensity 

reconstruction task on both N-MNIST and N-caltech101 

event-based datasets with an SNN. Algorithm was based on 

a CNN optimized for Laplacian Prediction, which was 

 
 
Figure 1. Visualization of the model’s inputs. (A) An example image from the N-Caltech dataset and its corresponding events and 

event-frame tensors �; (B). Event frame tensors stacked and imaged by averaging and coloring each two consecutive frames (1st and 

2nd frames averaged and visualized as red, the 3rd and 4th as green, and the 5th and 6th as blue). 
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transferred to an SNN for inference. Inferred image 

Laplacian was introduced to a second SNN, optimized to 

solve the Poisson equation image reconstruction (filling-in 

SNN). We demonstrate that: 

• CNN, optimized for Laplacian prediction, following the 

Poisson integration neural network, enable image 

reconstruction with compact parameter space. 

• Image reconstruction can be entirely realized using a 

spiking CNN and a feedforward SNN, which can be 

implemented on neuromorphic hardware. 

• Image reconstruction can be achieved with a neural 

network with shared-event filters CNN and Mish 

activation with less than 100 parameters. 

3. Methods 

3.1. Input representation and pre-processing 

N-MNIST and N-Caltech101 are preprocessed as 

follows: each event-camera file was converted to an event-

frame tensor �, which has the dimensions � � � � �, 

where � and � were shaped to 34 and T, the number of 

event-frames constituting each image in the dataset, is 90 

and 120 for the N-MNIST and N-Caltach101 datasets, 

respectively. The N-Caltach101 was down-sampled from 

180 � 240 pixels. � is defined using: 

 

���, �, �� � ∑ ��
�����∙∆�
���∙∆� ,        (1) 

 

where ∆� = 50 mSec, �� ∈ ��1,1� is the polarity (increasing 

or decreasing luminance change event) of the event in time 

step t, � ∈ ��1,1�. Furthermore, each event frame is pre-

processed by applying a spatial median filter, reducing 

noise with a 3x3 kernel. Input representation and pre-

processing are described in Figure 1. 

 

3.2. CNN Laplacian Prediction  

Our approach initiates with a CNN, which predicts the 

Image’s Laplacian given frame tensors, followed by a SNN 

optimized for Poisson Integration (Figure 2). We propose 

a five-layer CNN, where the first two comprise single-

strided 3x3 convolutions (without down-sampling), and the 

last three layers comprise a single-strided 1x1 convolution 

kernel. 

We used the Mean Absolute Error (MAE) loss in 

conjunction with the Structural Similarity Index Measure 

(SSIM) loss [36] and an Edge loss [37]: 

 

 � !! � "� ∙ #$�%�, �&' 

               (") ∙ *1 � ++,# -.,���, .,% �&'/0   
               ( "1 ∙ �234_� !! -.,���, .,% �&'/, 

 

                 (2) 

 

where "� � 1, ") � 0.25, "1 � 0.25, � and �& are the actual 

image and predicted Laplacians, respectively, and ., is the 

Poisson integration algorithm [22]. Note that while MAE 

loss was calculated directly from actual and predicted 

Laplacians, SSIM and edge loss were calculated from the 

reconstructed and predicted images. Edge loss allows the 

preservation of edges in the reconstructed image by 

considering edge similarity between the ground-truth 

intensity image and the reconstruction. We derive edges by 

calculating the squared sum of the image’s derivatives in 

both vertical and horizontal directions. Derivative maps 

were thresholded to create binary maps. Finally, we use 

mean binary cross-entropy between the two maps to 

calculate the edge loss. Neurons’ activations were defined 

as Rectified Linear Units (ReLU) [38]. The CNN was 

implemented using Keras [39]. 

We divided the N-caltech101 dataset sequences into 

6097 training event sequences for network training, 1306 

validation event sequences, and 1306 testing event 

 
 

Figure 2. SNN architecture. At training time, CNNs are train to predict the Image’s Laplacian. The trained CNNs are converted to 

SNNs for inference. At inference time, the predicted Laplacian is driven to a SNN, which performs Poisson integration, providing a 

fully spiking implementation of image reconstruction from event camera. 
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sequences. We use Adam optimizer [40], with a batch size 

of 16 and an initial learning rate of 0.005. We set a 20% 

learning rate scheduling when reaching a plateau, with a 

minimum value of 2 ∙ 1089. We consider training plateau, 

after six epochs, with non-improving validation loss, with: 

 

:4!�;<= > :4!�?@A�1 � B�,      (3) 

 

where B is the minimal required relative improvement (we 

use B=0.005). We stop training when mean validation 

SSIM has not improved over 20 epochs, with: 

 

:4!�;<= > :4!�?@A � ∆,                           (4) 

 

where ∆ is the minimal required absolute improvement (we 

use ∆=0.005). We set the earliest stop epoch to 150. 

3.3. CNN to SNN conversion 

The trained CNN was converted to SNN using the Neural 

Engineering Framework (NEF)-based NengoDL library 

[41]. Here, ReLU activations were converted to Spiking 

rectified linear activation in the SNN, with which neurons’ 

firing rate is proportional to positive input. Neural activity 

is rectified at zero. This spiking activation scheme is 

defined using a synaptic time constant (specifying a low-

pass filter) and a maximal firing rate. Here we used a 

synaptic time constant of 10 mSec and a maximal firing rate 

of 100 and 5,000 Hz. Due to the temporal nature of SNN, 

each input image was presented to the model for 100 mSec. 

Spiking CNNs are used as differentiable approximations of 

their non-spiking versions. Network architecture is 

visualized in Figure 3. 

 

3.4. Filling-in SNN  

To neuromorphically implement Poisson integration, we 

designed a feedforward SNN. By using a finite difference 

numerical method, the Poisson equation can be rewritten as 

a linear system [42]:  

 

 

$GH⃗ � J HHH⃗ ,         (5) 

 

where K is the image to be reconstructed, GH⃗  is a column 

vector representing the pixels of the image K arrange in a 

natural ordering and $ is the Laplace matrix defined as: 

 

A = 

⎣
⎢⎢
⎢⎢
⎢
⎡ O �, 0
�, O �,
0 �, O

⋯
0 0 0
0 0 0
0 0 0⋮ ⋱ ⋮

0 0 0
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⋯
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⎥⎥
⎥
⎤

 , 

 

where , is the identity matrix, and O is defined as:  

 

D = 

⎣
⎢⎢
⎢⎢
⎢
⎡ 4 �1 0
�1 4 �1
0 �1 4

⋯
0 0 0
0 0 0
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⋯
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�1 4 �1
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⎥⎥
⎥
⎤

. 

 

The size of $ depends on the image dimension. Here, we 

assume a fixed � matrix, where � � $8�. The 

reconstructed image vector GH⃗  can be calculated using: 

 

GH⃗ � �J HHH⃗         (6) 

 

This solution was implemented as an SNN by connecting 

two neuron ensemble layers with a weight matrix �. 

Notably, W is calculated once for all the inputs, and it is not 

trainable, thus dramatically reducing the number of the 

network’s parameters. The dimensions of � for input with 

spatial dimension V � W are VW � VW.  

 

 
 

Figure 3. Shared-event filters CNN architecture. A < 100 parameters CNN for image reconstruction from event data. 
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3.5. Direct reconstruction 

As our network design comprises two parts for image 

reconstruction: one for Laplacian prediction and the other 

for filling-in, we further compared it to a similar-size CNN, 

optimized for direct reconstruction (event-data to a 

reconstructed image). To train these networks, we modified 

the loss function, specified in Equation 2 as follows: 

 

� !! � "� ∙ #$�%,, ,X' 

              ( ") ∙ �1 � ++,#�,, ,X�)   
              ( "1 ∙ �234_� !!�,, ,X�, 

 

                 (7) 

 

where "� � 1, ") � 0.25 and "1 � 0.25,  , is the actual image, 

and  ,X is the reconstructed image.  

3.6. Shared-event filters CNN 

We utilized a novel CNN design with which the number 

of trainable parameters is further diminished to < 100 by 

curing the input as a video-like signal.  The input batch is 

of dimension : � � � � � �, accounting for batch size, 

height, width, and the number of frames, respectively. 

Inputs are reshaped and transposed to �: ∗ �� � � � � 

dimension and processed with a set of Z convolutional 

filters. Following this phase, the �: ∗ �� � � � � � Z data 

is reshaped and transposed again, resolving with a : � � �
� � �� ∗ Z� tensor. A second set of convolutions is 

applied, with a final single convolutional layer, resulting in 

a : � � � � tensor. While the early layers can be thought 

of as performing preprocessing at the frame level, the 

second stage combines these preprocessed frames to 

compute the Laplacian. See Discussion for further details.  

4. Results 

To evaluate our proposed framework, we trained six five-

layers Laplacian predicated CNNs with varying width 

constituting a different number of parameters (see Table 1 

for further details). Model #5, which comprises only 277 

trainable parameters, was converted to SNN to evaluate a 

full neuromorphic pipeline. Predicted Laplacians were 

driven to the Filling-in SNN, which was described above.  

4.1. Reconstruction via Laplacian predication 

Table 1 summarizes CNN architectures and their 

corresponding performance measured on the test set for 

each network. Notably, the network’s number of 

parameters is not directly correlated to performance as a 

smaller network (model #4) outperformed more extensive 

networks. We measured Peak signal-to-noise ratio (PSNR), 

SSIM, and Mean Square Error (MSE). 

Predicted intensity images for the N-MNIST dataset 

from CNN model #6 are shown in Figure 4. Examples of 

predicted intensity images for the N-Caltech101 images 

from three selected CNN models (#1, #4, #5) are shown in 

Figure 5. Our results show that although having only 1,691 

parameters, model #4 has comparable performance to 

model #1, which features 53,941 parameters. We 

demonstrate reasonable results with networks comprising 

only [ 200 parameters (models #5 and #6). 

To demonstrate a fully spiking architecture, we 

converted model #5 (due to its relatively small number of 

trained parameters and high performance (Table 1)) to an 

SNN as was described earlier. Selected results are presented 

in Figure 5 (model 5 SNN). As expected, while providing 

adequate results with a maximal firing rate of 100 Hz, the 

spiking version of model 5 is noisier than its non-spiking 

version. These results are dramatically improved when the 

maximal firing rate is set higher. As shown in Figure 5 and 

Table 1, a 5,000 Hz SNN is comparable to its non-spiking 

version. We note, however, that a high spiking rate takes a 

toll on the system's energy efficiency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. N-MNIST results. � , �&, , , ,X are the Ground Truth 

(GT) Laplacian, the predicted Laplacian, The GT image, and 

the reconstructed image, respectively. 
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4.2. Direct reconstruction 

We further compared our reconstruction via Laplacian 

prediction neural network to a similar-size CNN, optimized 

for direct. With direct reconstruction, there is no need for a 

Poisson integration process. We used CNNs models #1, #4, 

and #5 to directly reconstruct the image from the event 

tensors (see Methods).  

Results are summarized in Table 1. Model #1 (the 

largest) achieved the best performance among the direct 

prediction models. Results show that with the specified loss 

function (Equation 7) and a 5-layers CNN, direct 

reconstruction only predicts the image’s edges. Selected 

reconstructed images are shown in Figure 4. Notably, even 

though model #1 comprises > 50,000 parameters, a 205 

parameters model (#6) when Laplacian prediction is 

involved outperforms it. 

4.3. Shared-events filters CNN 

To further optimize the number network’s parameters, 

we designed a smaller, more intricate architecture, 

achieving adequate results with < 100 parameters (see 

Methods for further details). We tested this architecture 

with both ReLU and Mish activations. Mish is a smooth 

nonmonotonic function defined using \��� � � ∙
tanh �ln�1 ( 4a��. Mish was recently shown to outperform 

traditional activations in various cases, probably due to its 

positively unbounded, negatively bounded, smooth, and 

nonmonotonic characteristics [20]. 

Selected reconstructed images are shown in Figure 4. 

Even though this network is small, its performance is 

comparable to other, much larger networks (Table 1).  

 

 

 

 
 

Figure 5. Selected image reconstructions. GT stands for ground truth (for reference); models #1, #4 and #5 stands for the neural 

networks, which feature Laplacian prediction followed by Poisson integration (reconstruction via Laplacian prediction); S-E stands 

for the Shared-events filters CNN; and D-R stands for the direct reconstruction CNN. 
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5. Discussion  

We introduced CNNs for image reconstruction from 

event cameras via the prediction of the image’s Laplacian 

and Poisson integration solved with an SNN. As Poisson 

integration is solved with an SNN, which does not require 

any learning procedure, the number of trainable parameters 

is dramatically improved. We further converted the CNNs 

to SNNs for a complete neuromorphic design. Our results 

demonstrate that conventional CNNs, with a low number of 

parameters, without a U-net, not auto-encoders, 

successfully reconstructs images from the N-Caltech101 

and N-MNIST dataset. We show that while conventional 

simple-layered CNN, optimized for direct image 

reconstruction from events, can only reconstruct the 

image’s edges, it can be used to elucidate the image 

Laplacian reasonably accurately. Thus, when used in 

conjunction with a filling-in neural network, it can be used 

to create an efficient neural network from image 

reconstruction. 

While the Poisson integration SNN does not require 

training, it entails resolving a large matrix with nine 

constant parameters. This SNN can be further improved by 

dividing the event frames into patches, independently 

predicting and reconstructing them, finally, stitching them 

together to produce a full reconstructed image.  

We further demonstrate our Laplacian prediction- and 

Poisson integration-based reconstruction with a 

dramatically reduced number of parameters by utilizing a 

novel CNN design and Mish activation. We demonstrate 

adequate image reconstruction with < 100 parameters 

CNN.  This network reduces the number of parameters by 

curing the input as a video-like signal where each non-

spatial dimension corresponds to a time slice. Most models 

use 2D convolutions as the first processing stage. 2D 

convolutions consider both spatial and time dimensions, 

with each filter defining a different convolution volume. 

We perform the same computation on all the frames to 

reduce the number of parameters, transforming the events 

embedded within them to a different, more useful 

representation. This shared-events filters CNN was not 

converted here to a fully spiking implementation. In future 

work, it might be implemented as SNN by utilizing 

recurrent network topology. In this network design, each 

event frame should be separately processed in the first two 

spatial convolution layers. With SNN, an integrator, 

defined with a recurrent connection, can be utilized as a 

memory unit, comprising � � � � �� ∗ Z� dimensions, 

collecting Z temporal features. Three additional 

convolution layers will be applied to the integrator to 

process the whole Spatio-temporal data to predict the 

Laplacian. 

We show that SNNs perform fairly well, despite 

featuring a slow maximal firing rate of only 100 Hz. Note 

that in contrast to its non-spiking version, inputs are 

sequentially presented to the network for only 100 mSec 

each. Along with the low-pass synapse filters that average 

input information over time, allow previous input data to 

persist in the network and interfere with the generation of a 

new predicted intensity image. A reset switch can be further 

implemented, with which reconstruction might be 

improved. 

Our models were demonstrated on the N-MNIST and N-

Caltech101 datasets, which were “artificially” created with 

a saccade-moving event camera [21]. Data acquisition was 

based on a fixed non-biologically plausible three saccades. 

Our method is therefore limited to this precise method of 

data acquisition. However, we hypothesized that our 

Laplacian prediction- and Poisson integration-based 

methods could be utilized for arbitrary event data with 

relatively simple modifications. A recurrent architecture 

can be used without a U-shaped network in which skip 

connections are utilized to fill in pixel intensity within the 

image’s gradients.  
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 # filters  params PSNR SSIM MSE 

b& +
P

I 

1 50,100,50,20,1 53,941 24.29 0.864 0.0042 

2 50,50,50,20,1 28,891 24.31 0.859 0.0042 

3 20,20,20,20,1 5,581 24.47 0.858 0.0042 

4 10,10,10,10,1 1,691 24.67 0.861 0.0039 

5 3,3,3,3,1 277 24.23 0.844 0.0042 

6 3,1,3,1,1 205 23.86 0.838 0.0047 

SM 3*,2*,3,3,1 93 23.04 0.824 0.0058 

SR 3*,2*,3,3,1 93 11.40 0.326 0.0734 

SNN.1 3,3,3,3,1 277 17.90 0.679 0.0217 

SNN5 3,3,3,3,1 277 19.36 0.756 0.0147 

c&  

1 50,100,50,20,1 53,941 19.53 0.519 0.0117 

4 10,10,10,10,1 1,691 19.60 0.512 0.0114 

5 3,3,3,3,1 277 19.22 0.490 0.0124 

 

Table 1. Architecture and Performance table. �& ( ., stands for 

the neural networks, which feature Laplacian prediction followed 

by Poisson integration (reconstruction via Laplacian prediction). 

,X stands for direct reconstruction. SM and SR stand for shared-

event filters CNN, with Mish and ReLU activations. respectively. 

Filters marked with * were applied to each temporal channel (see 

text). SNN.1 and SNN5 stand for a full spiking implementation of 

model #5, with a maximal firing rate 100 Hz and 5 kHz, 

respectively. PSNR, SSIM and MSE metrics were calculated on 

the final reconstructed image. 
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