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Abstract

We developed and tested the architecture of a bio-

inspired Spiking Neural Network for motion estimation. The

computation performed by the retina is emulated by the

neuromorphic event-based image sensor DAVIS346 which

constitutes the input of our network. We obtained neu-

rons highly tuned to spatial frequency and orientation of

the stimulus through a combination of feed-forward excita-

tory connections modeled as an elongated Gaussian kernel

and recurrent inhibitory connections from two clusters of

neurons within the same cortical layers. Sums over adja-

cent nodes weighted by time-variable synapses are used to

attain Gabor-like spatio-temporal V1 receptive fields with

selectivity to the stimulus’ motion. In order to gain the

invariance to the stimulus phase, the two polarities of the

events provided by the neuromorphic sensor were exploited,

which allowed us to build two pairs of quadrature filters

from which we obtain Motion Energy detectors as described

in [2]. Finally, a decoding stage allows us to compute optic

flow from the Motion Detector layers. We tested the ap-

proach proposed with both synthetic and natural stimuli.

1. Introduction

We are immersed in a world in constant motion. For

this reason visual motion perception has been the subject

of extensive research in the fields of perceptual psychology,

neuro-physiology, and computational vision. Widespread

evidence pointed out that the mammalian brain evolved

specific mechanisms responsible for the processing of vi-

sual stimuli in order to extract motion information [8, 16].

These mechanisms characterize the cortical “motion path-

way” that involves first and foremost, the primary (or stri-

ate) visual cortex (area V1), and, then, continues to the

middle temporal visual area (MT or V5) and other extras-

triate areas. According to the principle of “building-to-

comprehend”, advances in high-performance computing is

the best ally to understand the properties of cells belonging

to these cortical areas. Recent asynchronous event-driven

cameras combined with Spiking Neural Networks (SNNs)

allow, indeed, real time simulations of large scale neural

networks by monitoring and manipulating any variable in

each neuron or synapse.

From an application perspective, asynchronous event-based

artificial retinas and SNN processors turn out to be the best

solutions to achieve flexibility and real-time performance.

Dynamic vision sensors [13] do not provide conventional

frames, but asynchronous ON and OFF events that signal

scene reflectance changes. These continuous-time sensors

functionally emulate some key features of the human retina

and represent a major shift from conventional frame-based

sensors, owning to the advantages of high temporal resolu-

tion and low power consumption. Accordingly, they trans-

mit only pixel-level changes, at microsecond time, equiva-

lent to a high-speed camera at thousands of frames per sec-

ond, but with far less data.

The price we pay when following this approach lies in

the necessity of specific novel algorithmic solutions, since

those developed for frame-based visual input are no longer

applicable. Plausible design solutions can be inspired by

the computational paradigms adopted in the visual cortices,

as they conform more to intrinsic structural properties of

the visual signal than to abstract calculus (i.e., to the com-

putational theory of the problem). In general, early vision

perceptual processes can be interpreted as a “measuring”

operation on a visual signal [1], by which to extract, on

a local basis, specific characteristics of the signal (ampli-

tude and phase of spectral components, orientation, direc-

tion of motion, etc.). In such a way, a parametric repre-

sentation of input signal occurs, on which to base the sub-
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sequent interpretation of the events of the visual scene, by

eventually combining such local representation over larger

spatial neighborhoods. In this scenario, guided by neuro-

physiological and modeling findings on the properties of

visual cortical neurons, a first challenge is to demonstrate

how a variety of computational visual tasks can be built by

following a compositional approach, which hierarchically

provide more complex visual descriptors by combining a

limited set of stereotyped basic blocks. Interestingly, these

solutions can have direct correspondences with their clas-

sical counterparts, and several works (e.g., [15, 10]) have

demonstrated that firing rate models can properly solve the

computational problem with adequate efficacy, higher flexi-

bility, and robustness to adverse illumination conditions and

to low S/N ratios. Yet, a second and harder challenge is to

demonstrate that the design principles exploited in the large-

scale network of firing-rate model neurons can be equiva-

lently mapped through an event-based coding on SNNs.

In this paper, we faced this challenge by designing and

testing a complete multilayer SNN for an explicit motion

estimation, i.e., the optic flow, in order to assess the net-

work performances through realistic motion sequences. The

network functionally mimics the cortical motion pathway.

The proposed neural architecture refers to a variant of the

Heeger and Simoncelli model [12][23] and is described

through a three-layer architecture composed of distributed

populations of cells. In the first layer, Gabor-like spatial re-

ceptive fields allow a band-pass filtering on the events com-

ing from a neuromorphic sensor, the DAVIS346, in order

to extract early vision features as the spatial frequency and

orientation from a dynamic stimulus. In the second layer,

a bank of spatio-temporal oriented filters approximates the

receptive fields (RFs) of the simple cells’ population of area

V1, which are tuned to different motion directions and con-

tribute to build the population of complex cells as motion

energy units [2]. The responses of the complex cells are

combined in the third layer to obtain estimates of the mag-

nitude and direction of local velocities, as it happens in area

MT [21]. Unlike other neuromorphic solutions that are far

from a bio-inspired approach, our network tries to faith-

fully emulate cortical processing, both in the computational

paradigms and in the dynamics of individual neurons, which

can be used as building blocks to design visual feature de-

tectors of increasing complexity.

2. Related work

Our work is positioned within the framework of bio-

inspired neuromorphic systems, in which the use of event-

driven sensors is making its way. Nowadays, the high de-

mand of these sensors is due to the great advantage offered

in real-time computing, especially for robotics, self-driving

vehicles and wearable systems. Many other works have

proposed SNNs capable of estimating speed and direction

of motion and the extraction of the optic flow. The first

approaches attempted to adapt well-known solutions in the

field of computer vision to an event-based framework. For

example, Benosman et al. [6] translated, in an event-based

approach, the constraints from one of the most popular tech-

niques formulated by Lucas and Kanade [14], based on the

brightness constancy assumption. In [9] the authors pro-

posed a hierarchical architecture for optical flow estimation

that use a bank of spatio-temporal filters selective at differ-

ent speeds and directions of motion (Gabor filters), equiva-

lent to correlation detectors. A more bio-inspired approach

is described in [17], in which an unsupervised SNN im-

plements a novel spike timing-dependent plasticity (STDP)

rule, in order to learn the proper filters from event data. Bar-

ranco et al. [4] proposed a simple method for locating tex-

ture regions and a novel phase-based method for motion es-

timation. A remarkable work is [20], in which the authors

compared the accuracy and processing time of nine event-

based optical flow algorithms. The algorithms considered

were a direction selective filter [11], four variants of the

Lucas-Kanade algorithm, four variants of local plane fits

[5], and a flow estimation based on the camera’s gyro infor-

mation instead of visual motion cues. In order to compara-

tively evaluate these methods, the authors created a public

dataset composed of synthesized samples and real samples

recorded from a 240x180 pixel Dynamic and Active-pixel

Vision Sensor (DAVIS). Finally, mention goes to [25], in

which cortical mechanisms combining filters with spatio-

temporal tuning are emulated and also used for classifica-

tion purposes.

Undoubtedly, the greatest challenge in this specific area is

to propose solutions that are biologically plausible, in or-

der to have the double advantage of reflecting computations

actually present in the cortex and to better understand their

functioning through emulation. Clearly, they should also

have the proper features for an efficient implementation in

neuromorphic processors.

3. Cortical-style visual processing

The proposed neural architecture refers to a variant of

the Heeger and Simoncelli model [12][23] and is described

through a three-layer network composed of distributed pop-

ulations of cells. In the first layer, Gabor-like spatial recep-

tive fields (RFs) allows a band-pass filtering on the input. In

the second layer, a bank of spatio-temporal oriented filters

approximates the RFs of simple cells in area V1. These neu-

rons are tuned to different motion directions and contribute

to build the population of complex cells as motion energy

units [2]. The responses of the complex cells are combined

in the third layer to obtain estimates of the magnitude and

direction of local velocities, as in MT cortical area [21].

The schematic representation in Fig. 1 shows the entire ar-
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Figure 1. Overall network architecture. The network is composed of (i) an input stage where the events, provided by the sensor, are

split in the two polarities (ON and OFF), (ii) the Perceptual Engines, (iii) a Motion Detector stage and (iv) a decoding stage for velocity

components. All synaptic connections (both solid and dashed lines) starting from the sensor input and ending in the perceptual engines

are excitatory. The dotted lines in the latter, indicating the recursive connections, are inhibitory. In the third layer of motion detectors, the

dotted lines indicate inhibitory synaptic connections.

chitecture of the network. It is composed of three main

building blocks: (i) an input stage, (ii) perceptual engines

and (ii) motion detector units. The final block represent the

decoding process.

Retinal input Starting from the sensory input, events in

the pixel array are divided in two groups according to their

ON or OFF polarity. This distinction will serve to create, in

subsequent stages, two pairs of quadrature filters in order to

obtain invariance on the stimulus’ phase, an essential com-

ponent of the Energy Model [2]. Squaring the response of

quadrature cells acting on a gray-scale image is no longer

feasible in a spike-based encoding mechanism. Therefore,

pairs of counterphase receptive fields are used on both ON

and OFF events, which separately encode the increase and

decrease of the light stimuli, respectively.

Oriented perceptual engines In the second stage, the

two parallel ON and OFF channels are preserved. Both

channels share the same configuration: same feed-forward

convolutional kernels acting on input events and same clus-

tered recursive inhibitions. Specifically, the weights of the

excitatory feed-forward synapses are arranged and shaped

according to an elongated Gaussian function. This provides

the neurons of the second stage with an orientation prefer-

ence. Here, neurons in both channels also receive recurrent

inhibitory afferences from two laterally clustered groups of

cells of the same layer. These groups are located at a dis-

tance d along the direction orthogonal to the major axis of

the feed-forward kernel. This recurrent inhibitory schema,

better described in [22], gave us the great advantage of re-

ducing the number of required connections to obtain neu-

rons with highly-structured receptive fields that approxi-

mate two-dimensional Gabor functions, markedly tuned to

stimulus’ spatial frequency and orientation. Neurons’ sen-

sitivity can be controlled and sharpened by appropriately

changing the spatial distance and the extensions of these in-

hibitory kernels.

3



The neurons in this second stage are hereafter referred

to as “perceptual engines” because they provide compu-

tational primitives that can be composed to obtain more

powerful feature extractors by simply adjusting the weights

of specific efferences. The excitation of a neuron at this

stage, with orientation ✓ and in position n = (nx, ny),
could be formulated as:

e(n) = a
X

p2R

hff (n−p)s(p)−b
X

q2C

hfb(n−q)e(q) (1)

where a and b are respectively the strength of the feed-

forward (hff ) and recurrent (hfb) kernels, s is the visual

stimulus, R is the domain of the retinal driving input, and

C is the domain of the lateral cortical inhibition. Such

an equation describes the input/output relation of a lin-

ear recurrent inhibitory network characterised by a direct

(i.e., forward) feeding from an oriented neighborhood on

the retina layer and by clustered recurrent inhibitory con-

tributions from neurons lying along the orthogonal direc-

tion. The resulting spatial impulse response h of neuron n

is characterised by an even-symmetric spatial profile. The

final neuron ’firing rate’ response is obtained through a rec-

tified linear activation function: r(n) = F [e(n)].
We can consider the function h(n) as a primary char-

acteristics of the network and it represents an eigenmode

(the perceptual engine) that can be used to obtain more

powerful network responses. It has been demonstrated

[19] that by combining the responses of three neurons of

the V1 layer, the central one in position n and the lateral

ones at positions n − d and n + d, it is possible to obtain

Gabor-like functions of any phase  . The resulting filter

therefore represents a good approximation of a typical

kernel useful for computational vision processing:

g(n) = ↵h(n− d) + �h(n) + �h(n+ d) =

∼= Ce�n·n/σ2

cos(k0 · n+  )
(2)

where k0 represents the preferred spatial-frequency vector

of the neuron (with direction given by the tuning orien-

tation ✓) and � the extension of its receptive field. The

phase  can be then adjusted as desired by simply setting

appropriate values to the weights ↵, � and �. A general

expression for these variables, as functions of the phase  ,

can be formalized as follows:

8

<

:

↵ = −Bsin( )−Acos( )
� = cos( )
� = Bsin( )−Acos( )

(3)

where A and B are coefficients whose values can be chosen

as 0.5 and 1, respectively. In this way, we ensure that the

sum of the three weights is equal to zero, i.e., at least ideally,

the resulting RF will filter out the DC component.

For any given value of the spatial phase  , we will then

have three specific values for the weights. As an example,

consider the case of orthogonal responses (i.e. a quadrature

pair) g(n) = gc(n) + jgs(n). The two symmetries can be

straightforwardly obtained by posing ↵ = −0.5, � = 1,

� = −0.5 for the even response, while ↵ = −1, � = 0,

� = 1 for the odd one.

Motion detectors By introducing a temporal dependency

in the weighting coefficients ↵, �, and � of equation (3),

it is possible to obtain spatio-temporal filter. This mecha-

nism leads to a Gabor-like kernel with a time-variable spa-

tial phase  (t) = !0t, as a local travelling wave with con-

stant velocity vf . Such a filter will therefore be able to de-

tect the presence or absence of a stimulus moving along a

specific direction and at a specific speed.

The resulting filter is described by the following equa-

tion:

g(n, t) = C 0e�t/τe�n·n/σ2

cos(k0 · n± !0t) (4)

with !0 = vf · k0, where w0 and k0 are the preferred tem-

poral and spatial frequencies respectively and vf is the tun-

ing velocity of the neuron; the preferred direction of motion

along ✓ is determined by the sign of  (t). Finally, the term

e�t/τ represents a temporal envelope defined by the synap-

tic integration with time constant ⌧ .

A quadrature pair of spatio-temporal filters can there-

fore be directly obtained by considering two sets of synaptic

connections, for even and odd symmetries respectively, that

weight the responses of the three mentioned above neurons.

In Fig. 1 the subscripts e/o of the weight functions refer

the different symmetries. Specifically, in order to obtain an

odd symmetry, the argument of the cosine function in equa-

tion (4) should have an additional phase shift of −π

2
. Over-

all, a pair of quadrature filters was designed from both ON

and OFF channels, to achieve phase-invariant responses in

the post-synaptic neurons. Obviously, the addition of fur-

ther synapses with weights leading to different phase shifts

would improve the invariance property of such neurons to

the phase of the stimulus.

Due to these peculiar combinations of perceptual en-

gines, we obtain the “Motion Detector” units:

E(n, t; ✓, vf ) = rON

c (n, t; ✓, vf ) + rON

s (n, t; ✓, vf ) (5)

+ rOFF

c (n, t; ✓, vf ) + rOFF

s (n, t; ✓, vf ),

which constitute the third stage of our architecture. To re-

fine the tuning properties on both the velocity magnitude

and direction of motion, a competition mechanism has been

introduced via soft winner-takes-all (WTA). In more detail,

each neuron inhibits all other neurons having different ve-

locity (or motion-direction) selectivity but with RF centered

on the same retinal location.
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Decoding strategy From the motion detectors stage it is

possible to decode the motion energy responses along each

spatial orientation to compute component velocities vθ.

In order to estimate the component velocity vθ along the

preferred orientation of the cells, we use a center of mass

approach described in [18]:

vθ(n, t; ✓) =

PN
i vfiG(n) ∗ E(n, t; ✓, vf i)

✏+
PN

i G(n) ∗ E(n, t; ✓, vfi)
(6)

where E(n, t; ✓, vf i) is the output of the motion energy de-

tector tuned to the speed vf i (i.e., in a spike-based frame-

work, the instantaneous firing rate of such neuron), G(n)
is a Gaussian window used for pooling the motion detec-

tor over a spatial neighborhood, and ✏ is a positive (small)

constant that prevents division by zero.

Due to the aperture problem [3, 7], a motion estimation

based on the local computation of oriented RFs can recover

only the velocity component that is perpendicular to the

filter orientation. To this purpose, a measure of the full

velocity vector vp = (vx, vy) is achieved by means of

an intersection-of-constraints (IOC) mechanism. The

individual components of such vector are estimated as

described in [10], according to which the least square

solution of the IOC-based formulation for the computation

of full velocity can be written as:

vx(n, t) =
2

N

θN
X

θi=θ1

vθi(n, t)cos(✓i)

vy(n, t) =
2

N

θN
X

θi=θ1

vθi(n, t)sin(✓i)

(7)

The resulting velocity field, together with its confidence -

represented by the instantaneous firing rates of the spiking

motion detectors - represents the estimated optic flow.

4. Experiment

4.1. Event-based dataset

For characterizing the behavior of single neurons, we

used a set of stimuli consisting of drifting gratings with

different orientations ✓ and speeds vs. A drifting grating

is a sinusoidal oscillation in luminance L that moves at a

constant velocity (whose magnitude is determined by !s)

along the direction of the wave vector ks:

L(x) = m[1 + c sin(ks · x+ !st)] (8)

where x denotes the spatial domain, m the mean back-

ground luminance and c ∈ [0, 1] the spatial contrast. This

type of stimulation allows us to study the response of a neu-

ron to variations of vs = !sks and ks (both modulus and

direction ✓).

The moving grating was presented on a computer mon-

itor with resolution 1920 × 1080, refresh rate of about

144 Hz, and maximum brightness. The DAVIS346 event-

based camera, used for the recordings, was placed in front

of the monitor at a distance of 30 cm, in a specifically-

dedicated dimly lit room. The Python code handling the

simultaneous presentation of the moving stimulus, together

with the recording of the output events from the sensor,

leverages the multiprocessing technique. The communica-

tion with the neuromorphic camera is based on a serial con-

nection and all events were saved to disk as numpy arrays

for off-line processing. The computer managing both data

logging and stimuli display run under Ubuntu-Linux 20.04

operating system. All recordings lasted 2 seconds and were

performed by setting the neuromorphic sensor biases to the

default values. The pixel array was then cropped by tak-

ing only the central 100× 100 portion, in order to limit the

computational cost of the subsequent network simulation.

In all the experiments the gratings’ contrast c was kept

constant to the maximum value. Stimuli were presented

with 24 orientations evenly spaced in range [0 − 180) deg,

with a 15 deg step. The spatial frequency values ranged

from 0 to 1.6 cyc/deg with a 0.2 cyc/deg constant step. Fi-

nally, the following values were chosen for the stimulus ve-

locities: 1, 2, 3, 4 deg/sec.

4.2. Simulations

The network was simulated for 2 seconds, with a sim-

ulation time-step of 0.1 ms. In order to characterize the

motion detectors, we consider all orientations and speeds

of the grating stimuli for the fixed spatial frequency value

of 0.6 cyc/deg. Instead, for characterizing the perceptual

engines alone, we took all spatial frequencies.

In the context of this work, the simulator used was

Brian2 [24], an open source, intuitive and highly flexible

tool for spiking neural networks. The neuron model we

chose to adopt is an Adaptive Exponential Integrate-and-

Fire neuron model (AdEx). The AdEx model can produce

many complex firing patterns observed in biology by tuning

a limited number of parameters, e.g. spike-frequency-

adaptation, bursting, regular/irregular spiking and transient

spiking. The evolution of the membrane potential in the

AdEx model is described by a two-variable equation as

below:

Cm
dVm

dt
= −gL(Vm−EL)+gL∆T e

(Vm−VT )

∆T −w+I (9)

where Vm is the membrane potential, I is the input (post-

synaptic) current, Cm the membrane capacitance, gL the

leak conductance, EL the leak reversal potential, VT the
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Figure 2. Spatial frequency tuning in perceptual engines. Three tuning curves obtained from the perceptual engines stage. The black

arrows point to the spatial frequency value at which the population is most selective. The abscissas show the spatial frequency values and

the ordinates the normalized mean firing rate of the population.

threshold and ∆T is the slope factor. The adaptation current

w has its own temporal dynamics described by the equation:

⌧w
dw

dt
= ⌘(Vm − EL)− w (10)

where ⌘ is the adaptation coupling parameter and ⌧w is the

adaptation time constant. If the membrane voltage crosses

a certain threshold voltage VT , a spike is emitted and the

neuron is reset:

V → Vreset

w → w + 
(11)

where the parameter  is responsible for spike-triggered

adaptation. Note that the AdEx model can be simply re-

duced to the standard Leaky Integrate-and-Fire model by

taking the limit ∆T → 0 in equation (9) and deactivating

the coupling parameter in (10).

Concerning the synaptic transmission, the biological

mechanism follows a complex but well established process.

It is challenging to model such a process and its dynamics.

Nevertheless, many simple phenomenological models of

synapses can represent the time and voltage dependence

of synaptic currents fairly well. Therefore, we opt for

an exponential function in order to model the synaptic

dynamics. This functions describes the evolution of the

synaptic conductance and hence the dependence of the

post-synaptic current to an input spike at time t0:

gsyn(t) = ḡsynexp

✓

−
t− t0
⌧

◆

(12)

Because of the presence of a single time constant ⌧ , the

rising phase is instantaneous while the decay phase follow

the exponential term. In general this is far from a biological

condition, however provides a reasonable approximation for

many synapses.

5. Results

Spatial frequency tuning Firstly, we tested the percep-

tual engine stage of the network with a set of drifting grat-

ings having different spatial and temporal frequencies. The

aim was to ensure that the population, through the combi-

nation of feed-forward and recurrent contributions, was ca-

pable of acquiring selectivity at a specific spatial frequency

for all possible speeds of the input stimuli. As predicted

by the firing-rate model [22], the parameters that mostly in-

fluence such tuning are the geometrical dimensions of both

feed-forward and recurrent Gaussian kernels. Particularly,

the major impact is given by the standard deviation of both

kernels and the distance d between the two inhibitory clus-

ters. The resulting tuning curves, obtained by averaging

the activity of the entire cells’ population in the perceptual

engine stage, are shown in Fig. 2. Changing the relevant

parameters, we can obtain different spatial frequency se-

lectivity. We report three tuning examples at 0.4 cyc/deg,

0.8 cyc/deg and 1.2 cyc/deg. This behaviour is reproducible

for all tested speeds of the gratings.

Motion selectivity In order to make neurons selective to

the motion direction of the stimulus and to the desired set

of speeds vf , we had to impose the proper temporal fre-

quencies w0 to the time-variable synapses by acting on the

synaptic weights of equation (3). Since the tuning spatial

frequency of the neurons was set to 0.6 cyc/deg, in order

to achieve preferences to the speeds ± 1, 2, 3 and 4 deg/s,

we had to specify the following temporal frequencies: ±

0.6, 1.2, 1.8 and 2.4 cyc/s. Figure 3 shows the activity of

motion detectors with 4 different tuning speeds relative to

all possible speeds of the presented stimuli. The left plot
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shows the selectivity for positive speeds while the right one

for the negative motion. We can therefore notice that, as

in the classical energy model [2], our motion detectors are

able to discriminate fairly well the direction in which the

stimulus is moving and (although with some variability) the

speed value. Note that no decoding strategy was adopted to

plot these curves, but we only took the average activity of

sets of motion detector neurons.

stimulus speed [deg/s]stimulus speed [deg/s]

MFR [Hz]

1 deg/s 
2 deg/s 
3 deg/s 
4 deg/s 

30

35

25

10

20
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-4 -3 -2 -1 0 1 2 3 4

30

35

25

10

20

15

-4 -3 -2 -1 0 1 2

3 4

-1 deg/s 
-2 deg/s 
-3 deg/s 
-4 deg/s 

Figure 3. Speed tuning in motion detectors. The network was

fed with events relative to drifting gratings with both positive (on

the left) and negative speeds (on the right) at different values. The

peak of each curve indicates the speed at which the population is

more selective. Colour opacity decreases as the modulus of the

speed decreases

Since we have considered different possible tuning ori-

entations for the neurons in the perceptual engine stage, this

feature should be inherited by the subsequent motion de-

tector stage. Thus, when exposed to an oriented grating,

the motion detector neurons are capable to detect this in-

put characteristic. A motion detector neuron having tun-

ing for a specific orientation ✓ will therefore encode the

speed component that is orthogonal to such direction. In

order to demonstrate that such orientation selectivity is ac-

tually preserved, we show in the spider chart of figure 4 the

response of the motion detector neurons to variously ori-

ented gratings: we can notice a marked tuning for the ori-

entation feature of the grating stimulus. This ability is ac-

quired by appropriately setting the orientation of the feed-

forward kernel from the sensory input to the perceptual en-

gine stage, and by rotating accordingly the axis that aligns

the two inhibitory recurrent Gaussian clusters. In particular,

we have considered 12 values for the tuning orientations,

evenly spaced in range [0 − 180) deg, with a 30 deg step,

but we actually tested the network on 24 stimulus’ orienta-

tions. Such response, for any given tuning ✓ < 180, is the

average on n and on any positive speed +vf . The curves

for ✓ ≥ 180 instead were obtained by averaging the activity

of neurons with opposite motion direction preference (i.e.

negative speeds).

18

Figure 4. Direction tuning in motion detectors. Results from the

simulations with oriented drifting gratings. Each radius represents

the activity of a population at the last stage of the network, while

the different colors identify the orientations of the tested stimulus.

For the sake of clarity, the same colour has been used to indicate

selectivity at a given stimulus’ orientation and to the correspond-

ing one with a shift of 180 deg.

Real-world application. To validate the functionality of

the network, we tested it with natural stimuli, in particular a

shaking drumstick. The gesture of a drum player musician

moving the sticks can be characterised by different speeds

and different inclinations of them. Having acquired the sim-

ulation data from the motion detector stage, the last process-

ing stage is represented by the decoder, from which we were

able to extrapolate the optic flow. The result is shown in fig-

ure 5, in which we provide a frame, selected from a video,

of the event-based optic flow computation. The green ar-

rows identify the drumsticks’ direction and speed of motion

superimposed on a frame obtained by accumulating events

in a given time window (of 20 ms).

Figure 5. Optic flow. Optic flow from an example of real-world

application. The neuromorphic sensor was placed in front of a

subject moving the drumstick (in this case, upwards along a 45
�

direction).
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6. Conclusion

In this work we have presented the architecture of spik-

ing neural network for optic flow estimation. The network

is fully bio-inspired, both at the level of cortical stages

and processing, and of individual units, such as neurons

and synapses. The innovative feature of our approach con-

cerns having adapted and extended some known rate-based

mechanisms to a spike-based network. Notably, we have

described the application of particular synapses, having a

temporal dependence, in order to obtain spatio-temporal re-

ceptive fields from combinations of static Gabor-like spa-

tial filters. The first processing stage of our network (which

we defined as the perceptual engine) can be seen as a basic

building block. A simple but proper combination of these

elements gives rise to neuronal detectors of the desired com-

plex visual features. This architecture has therefore allowed

us to obtain velocity estimates for both synthetic and natural

stimuli. Our future goal is to extend the region of the pro-

cessed image by considering a larger portion of the sensor

input and include a multi-scale analysis that will therefore

increase the computational accuracy in more complex vi-

sual scenes.
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