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Abstract

This paper presents a novel 3D human pose estimation
approach using a single stream of asynchronous events as
input. Most of the state-of-the-art approaches solve this
task with RGB cameras, however struggling when subjects
are moving fast. On the other hand, event-based 3D pose
estimation benefits from the advantages of event-cameras,
especially their efficiency and robustness to appearance
changes. Yet, finding human poses in asynchronous events
is in general more challenging than standard RGB pose
estimation, since little or no events are triggered in static
scenes. Here we propose the first learning-based method for
3D human pose from a single stream of events. Our method
consists of two steps. First, we process the event-camera
stream to predict three orthogonal heatmaps per joint; each
heatmap is the projection of of the joint onto one orthogo-
nal plane. Next, we fuse the sets of heatmaps to estimate 3D
localisation of the body joints. As a further contribution,
we make available a new, challenging dataset for event-
based human pose estimation by simulating events from the
RGB Human3.6m dataset. Experiments demonstrate that
our method achieves solid accuracy, narrowing the perfor-
mance gap between standard RGB and event-based vision.
The code is freely available at https://iit-pavis.

github.io/lifting_events_to_3d_hpe.

1. Introduction

Natural selection has empowered us with an efficient

perception system, enabling our brain to process visual

information and respond to threats promptly. Biological

evidence suggests that humans and other animals process

visual cues differently from traditional cameras [34, 61].

Instead of handling frames at fixed time intervals, mam-

mals collect visual cues asynchronously and elaborate in-

formation on demand. This observation pushed the re-

search community and engineers to develop new sensors,

Figure 1: Our method computes the 3D pose of a subject

from event-camera streams. We first aggregate events into

meaningful representations that are then used to estimate

the final 3D pose of the subject.

event-cameras, with a neuromorphic inspiration that pro-

vide crucial advantages in time-critical tasks and applica-

tions [31, 4].

Indeed, one of the most important activities we are daily

involved in is interacting with other human beings. For this

reason, we developed the ability to forecast human motion

and adapt our behavior accordingly [50, 25, 15]. However,

in order to encode asynchronous quick reactions to human

activities, a basic but fundamental task to solve is the es-

timation of human pose from event-based streams. Hu-

man pose estimation is already widely adopted in action

recognition [29, 30], human tracking [28], sport assistance

[56], and virtual reality [55]. Most of the adopted solu-

tions involve using multiple cameras and require the sub-

jects to wear special markers suites [55]. Despite their effi-

ciency and broad adoption, these techniques rely on delicate

synchronization and are difficult to deploy in real environ-

ments. For these reasons, monocular human pose estima-

tion represents a fascinating research challenge with grow-

ing interests in the industry [10, 51, 48]. There are two

different families of solutions to solve 3D human pose es-
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timation: skeleton-based and model-based solutions. The

former regresses skeletal 3D joints from a planar image

[38, 43, 44], while the latter fits a tri-dimensional paramet-

ric model of the human body to the subjects in the scene

[16, 3]. Recently, Xu et al. adapted a model-based approach

to event-cameras [57]. Although they underline an interest-

ing solution, their approach requires RGB images to guide

the tracking and cannot be used for real-time applications,

as it relies on a time-consuming optimization phase.

We propose instead an event-only approach to predict

skeletal poses from a single stream of events (Figure 1).

Our pipeline consists of two steps. First, a Convolutional

Neural Network predicts the projection of each joint of the

skeleton onto three orthogonal planes. Instead of predict-

ing the positions directly, we constrain our approach onto

estimating intermediate heatmaps of probabilities for each

joint. Second, we triangulate the sets of 2D positions of

each joint to predict the 3D joint pose. Similar workss adopt

raw events to solve pose estimation tasks [54, 57]. On the

other hand, we aggregate events into tensor-like representa-

tions. Although event-representations have been widely in-

vestigated and validated [52, 27, 62, 13], no previous work

has explored these approaches for monocular human pose

estimation. Moreover, differently from standard computer

vision, where transfer learning across different tasks has

been widely investigated [60], it is still unclear whether pre-

training on related tasks can improve event-based human

pose estimation. To fill these gaps, we compare different

pre-training tasks and different event-representations.

Experiments on natural and synthetic events validate

our approach. For validating performance on real event-

camera recordings, we adopt the recent DHP19 dataset [5].

DHP19 provides recordings of 33 activities from four dif-

ferent points of view. Despite the excellent contribution to

event-based vision, DHP19 provides few self-occlusions or

hard situations, as most of the activities are conducted on

the spot. To fill these gaps, we propose a new, challenging

event-based dataset for Human Pose Estimation by simu-

lating events from the standard Human3.6M dataset [21].

The event-camera community proposed numerous simula-

tion tools to tackle the absence of data [46], and these so-

lutions have been successfully adopted in recent work [47].

Human3.6m provides challenging scenarios, such as peo-

ple walking and moving extensively in the scene, that are

intrinsically harder. In fact, we test our proposal on both

DHP19 and Event-Human3.6 and provide different abla-

tions and experiments to support our claims. To summarize,

our proposal consists of three main contributions:

• A pipeline to predict human poses from a single stream

of events;

• A new, synthetic dataset for benchmarking event-based

Human Pose Estimation;

• Extensive experiments to validate transfer learning and

pre-training approaches for event-based human pose

estimation.

2. Related work

In this Section, we discuss skeleton-based approaches

for solving monocular Human Pose Estimation and un-

derline their critical points. To solve the limitations, pre-

vious works have focused on high-speed cameras; these

approaches suffer, however, from high computational and

storage limitations. Event-cameras can be a solution to

these problem. Indeed, recent works have adopted event-

by-event approaches to track objects and subjects in real-

time. On the other hand, our approach aggregates events

into tensor-like representation, which can be fed to standard

Deep Learning models. Moreover, we recognize a gap of

challenging datasets for event-based human pose estimation

and discuss events simulation and its benefits.

Monocular Human Pose Estimation. Industry and

academia are looking at human pose estimation with in-

creasing interest [10, 51, 48]. Commercial solutions usually

require special markers suite to track subjects from mul-

tiple point of views [55]. Despite their satisfactory per-

formances, these approaches are extremely costly and re-

quire careful setup choices to perform well at high speeds

[39]. For these reasons, monocular approaches have been

widely researched [58]. Along with background, light con-

ditions, texture, and image imperfection, monocular solu-

tions must also handle the intrinsic ambiguity of monocu-

lar vision and therefore pose unanswered challenges to the

research community. Model-based solutions are an estab-

lished line of work on this problem. These approaches es-

timate the full 3D body and shape of the subjects by fitting

a model of human body [32]. Although recent model-based

works achieve impressive performances [16, 3, 18], here we

will focus on skeleton-based solutions. Skeleton-based ap-

proaches aim to regress 3D joints of the skeleton directly

from images. As machine learning models deal with prob-

ability better than with scalar values, recent solutions pre-

dict dense probability maps (denominated heatmaps) of the

location of the skeletal joints onto the image plane. In par-

ticular, Newell et al. made a break-trough in the field by

proposing Stacked-hourglass model [42]. The authors stack

multiple Convolutional Neural Networks to extract expres-

sive heatmaps and apply a differentiable sort-argmax opera-

tor to retrieve the 2D pixel location of each joint. Although

we can adapt stacked-hourglass models to predict 3D (volu-

metric) heatmaps [44], this path is widely open for improve-

ments, especially since Volumetric Heatmaps are computa-

tional and memory demanding [33]. Indeed, Mehta et al.

factorize volumentric heatmaps into three 2D heatmaps to

lower computational costs [38]. The authors train a deep

learning model (VNect) to predict x, y, and z axes as dense



Figure 2: (a) A moving subject is recorded with an event-camera. (b) The recording is an asynchronous train of events; each

event is characterized by an image plane coordinate (x, y), a timestamp (t), and a positive or negative polarity (respectively,

blue and black in the figure). (c) batches of events are accumulated to build frames. Our model processes frames of events (d)

in multiple stages. The model output are three set of independent planes; each subject’s joint (i.e., head, left and right wrists,

and so on) is onto three independent planes(e). Next, it triangulates the planar predictions (f) and estimates the position of

each joint. The output (g) is the subject’s skeleton in tridimensional coordinate.

2D heatmaps and combine the predictions through triangu-

lation. The computational and resources savings of VNect

come with a price in terms of accuracy, as this method

reaches higher Mean Per-Joint Precision Error (MPJPE) on

common benchmarks. Nibali et al. develop this approach

further and propose a model (Margipose) to predict xy, zy,

and xz heatmaps and regress the final 3D pose [43]. Others

advancements in 3D human pose estimation include GANs

[7] and temporal convolutions [9].

Event-based approaches. Real-time applications re-

quire a careful design to meet strong computational, speed,

and energy requirements. This premise is especially true

when fast-moving human subjects are involved, such as in

sport assistance and virtual reality. Monocular solutions in-

volving RGB-D sensors [59] and high-speed cameras [26]

have been explored, although they cannot meet the com-

putational requirements of real-time applications. On the

other hand, event-cameras achieve high recording speed

without saturating bandwidth and resources. For these rea-

sons, human pose estimation performed with event-cameras

is both interesting and challenging for the community. Ap-

proaches that extrapolate information from single events

would be ideal, as these methods allow to exploit the in-

teresting advantages of event-cameras. Initial proposals

leveraged event-cameras to match events with known ob-

jects in the scene [54, 23]. Rebecq et al. exploit a similar

caveat [45] to predict semi-dense 3D structure of a scene.

More recently, Xu et al. [57] employ events to (1) track

features across frames and (2) enhance the intensity out-

puts of a DAVIS camera. Next, they predict human-poses

with VNect [38] and Openpose [6] models and optimize

a multi-step optimization scheme to refine the prediction.

Despite its efficiency, their approach relies on a heavy pre-

processing phase to extract 3D mesh of the subjects and

involves multiple components, each with its own hyper-

parameters. Instead of processing events in small batches,

numerous works accumulate events into tensors representa-

tions, conducing events in the realm of synchronous deep

learning models [12]. To predict human poses through

event-cameras, previous works aggregate events to predict

2D poses from multiple point of views and finally triangu-

late subjects’ 3D poses [5, 2]. On the other hand, our ap-

proach is the first attempt to estimate 3D human pose based

on a single DVS camera. We prove that human pose es-

timation from event-only DVS camera is feasible. For an

in-depth discussion of event-cameras and their applications,

we refer to the excellent event-cameras summary [12].

Datasets for event-based Human Pose Estimation.

Few datasets have been recorded using event-cameras,

especially if compared with the huge amount of RGB

datasets. For human pose estimation, Calabrese et al. re-

leased DHP19, a dataset with recordings of 17 subjects and

33 movements. On the other hand, simulating events from

RGB videos is a promising path of research, especially

since multiple works proved the soundness of training on

simulated events. Mueggleret al. [40] generate synthetic

events from RGB images and compare real and synthetic

events for ego-pose estimation in various scenarios. More

recently, simulated events have been employed for image

reconstruction [47], depth estimation [14], and motion seg-



mentation [53], especially in high-speed scenarios where

RGB ground-truth are hard to collect. In this work, we pro-

pose a pipeline to generate synthetic events from the Hu-

man3.6m dataset [20, 21] and compare our approach with

standard RGB methods to establish a strong benchmark for

further research.

3. Method

Our goal in this paper is to fill the gap between RGB-

based and event-based monocular human pose estimation.

In particular, we propose an end-to-end pipeline to predict

the skeleton of a subject from the stream of a single event-

camera. Figure 2 provides an overview of our methodol-

ogy. An event-camera collects an asynchronous stream of

events of a subject moving in the scene. Instead of track-

ing events as previous works [57], we aggregate them into

tensor-like frames. Next, we predict three heatmaps planes

of the cuboid surrounding the subject and finally build his

final 3D pose through triangulation.

Events. Event-cameras have peculiar pixel sensors that

capture information asynchronously. In particular, event-

cameras have no central clock; each pixel senses the light

variations of the scene independently according to

∆L(xk, tk) > pkC, where

∆L(xk, tk)
.
= L(xk, tk)− L(xk, tk −∆tk),

(1)

where at each pixel xk we compute the difference in light

intensity ∆L(xk, tk) between the current and previous time

instance every ∆tk seconds. If this difference exceeds a

fixed threshold C, the pixel emits an event. An event-

camera stream is a sequence of events, each characterized

by the image coordinate pair (x, y), a polarity (related to a

positive or a negative change of intensity), and a timestamp.

Events aggregation. Instead of relying on raw asyn-

chronous events, recent literature has shifted toward aggre-

gating events together to build synchronous events repre-

sentation. Common approaches range from simply inte-

grating batch of events (constant-count) to representations

involving stochastic modelling of events [52] and temporal

sparsity [62]. As temporal information is critical in 3D hu-

man pose estimation [8], our first question is to understand

if 3D Human Pose Estimation benefits from specific spatio-

temporal representations. To provide an answer, we com-

pare constant-count representation with spatio-temporal

voxel grids [62]. While constant-count simply aggregates

a constant number of events into an image, spatio-temporal

voxel-grid preserves the timestamp contribution of events

by building B temporal bins and have been already adopted

in image reconstruction [47, 49] and depth estimation [14].

Given a set of N events {(xk, tk, pk)}k=0...N , we com-

pute t∗k as the normalized timestamp of event k into range

[0, B − 1]. Each event (xk, tk, pk) contribute to each bin B

(a) (b)

Figure 3: (a) We define the canonical 3D skeleton pose into

a normalized cube [36, 1] and reproject the cube into the

camera image plane using camera calibration parameters.

(b) For each joint, our method extracts the three orthogonal

faces of the cube to generate three marginal heatmaps.

of voxel V proportionally to its normalized timestamp t∗k,

as:

V(x, t) =
N
∑

k=0

pk max(0, 1− |t− t∗k|),

where t∗k
.
=

B − 1

tN − t0
.

(2)

We set N = 7500 for both representations and B = 4 for

spatio-temporal voxel-grid.

Skeleton normalization and projection. Instead of re-

gressing 3D joints directly, our method relies, as a proxy, on

their 2D projections onto specific planes [43]. We generate

ground-truth as follows. First, we project the coordinates

pxyz of a joint on a plane parallel to the image plane and

placed at depth zref (we adopt the z value of the head joint

as zref). After that, we map the space to a normalized cube

pNDC
xyz (Normalized Device Coordinate - NDC [36, 1]): the

three coordinates assume values in the range [-1, 1], as in

Figure 3a. Last, we project pNDC
xyz onto the three orthogonal

faces of the cube and blur the projection on each face with a

Gaussian Filter to generate ground-truth marginal heatmaps

Hxy, Hzy and Hxz (Figure 3b).

Predicting marginal heatmaps. We design our ap-

proach upon marginal heatmaps [37, 43] and first predict

three 2D heatmaps from our monocular input. Figure 4

summarizes our model. We first process the event-frame

input with a backbone to extract intermediate representa-

tions. In particular, we adopt a ResNet-34 [17] which is

cut after the second residual block. The feature extrac-

tor initialization is a critical design choice of our approach

and we experimentally ablate possible alternatives in Sec-

tion 4.3, where we compare different initialization and pre-

training strategies and provide evidence of the benefits of

RGB-to-events transfer learning. The main model consists

in three branches, one for each marginal projection (xy, zy,

and xz). Each branch is further made of three stages (Fig-

ure 4(a)), each consisting in a hourglass-like CNN, as de-



tailed in Figure 4(b). For each stage we compute an in-

termediate loss. The result of each stage is also aggregated

(summation) with the previous output to feed the next stage,

in a residual-like fashion. According to [42], intermediate

losses help alleviating the problem of vanishing gradients.

Aggregating marginal heatmaps. Our model is trained

jointly to predict the intermediate heatmaps as well as the

normalized skeletal coordinates. We apply the soft-argmax

operator [41] to extract the normalized coordinates of each

joints onto the xy, xz, and yz planes. We choose the pre-

dictions from the xy-plane for the xy coordinate of the final

prediction p̂xyz , as they match naturally with the input im-

age. For z, we average the zy and xz predictions. Eq. 3

summarizes these steps as:

Ĥi
xy, H

i
xz, Ĥ

i
yz = Model(x)

[

xi
xy, y

i
xy

]

= soft-argmax(Ĥi
xy)

[

xi
xz, z

i
xz

]

= soft-argmax(Ĥi
xz)

[

yizy, z
i
zy

]

= soft-argmax(Ĥi
zy)

p̂ixyz =
[

xi
xy, y

i
xy,

zi
xz+zi

zy

2

]

.

(3)

(a) Overview of our model

(b) Overview of one stage.

Figure 4: (a) We process event-frames with a backbone that

outputs features of depth d. Next, we adopt three sequen-

tial stages to output 3×J intermediate heatmaps. We apply

an intermediate loss to each stage [41] and accumulate the

losses to solve the vanish gradient problem. (b) Each stage

process its input with three deep Convolutional Neural Net-

work through an auto-encoder architecture.

Losses. As the full pipeline is differentiable, we can

back-propagate the geometrical error between joints pre-

dictions and ground-truths and train our model end-to-end.

Moreover, we can interpret marginal heatmaps as proba-

bility distributions of joints locations. In this framework,

we apply the Jensen–Shannon divergence (Equation 4) be-

tween predicted heatmaps Ĥi for stage i and ground-truth

heatmaps H . JSD is based on the Kullbeck-Leibler diver-

gence (KL), it is symmetric and has only finite values given

by:

JSD(H, Ĥ) =
1

2
KL(H‖Ĥ) +

1

2
KL(Ĥ‖H). (4)

The Jensen-Shannon divergence and the geometrical loss

for each stage i are aggregated into the final loss L as:

L =
∑

i

Lgeometrical(p̂
i
xyz, pxyz) + JSD(Hxy, Ĥ

i
xy)+

JSD(Hxz, Ĥ
i
xz) + JSD(Hzy, Ĥ

i
zy),

(5)

where Lgeometrical(p̂
i
xyz, pxyz) = ‖p̂ixyz − pxyz‖2.

4. Experiments

We test our approach on our novel Event-Human3.6m

dataset and provide extensive comparison to support our

claims. Moreover, we experiment on real events from the

event-based DHP19 dataset. For both the dataset, we ad-

dress the scale-depth ambiguity using a ground-truth depth

point and calculate the Mean Per-Joint Precision Error

(MPJPE) between the de-normalized predictions and the

ground-truths [43, 33].

4.1. Datasets

DHP19 dataset. DHP19 [5] contains 33 recordings of

17 subjects of different sex, age, and size. Each subject

is recorded with four DVS cameras from different angles.

Nevertheless, the range of movements in the recordings is

narrow. Most of the activities, such as legs kicking and arms

abductions, are conducted on the spot, with the exception of

slow jogging and walking. Moreover, few recordings spot

real life activities. These gaps in the data limit its applica-

tions in real scenarios.

Event-Human3.6m dataset. In the previous section we

highlight some limitations of the DHP19 dataset [5], espe-

cially related to the narrowness of movements and activities

that it provides. To solve these gaps, we contribute with

a new simulated datasets based on the Human3.6m dataset

[20, 21]. Human3.6 recordings include 11 subjects and dif-

ferent activities from real scenarios, such as walking with

a dog, talking at the phone, and giving directions. Con-

sequently, extensive research has adopted the standard Hu-

man3.6m dataset to evaluate monocular Human Pose Esti-

mation methods [43, 38, 44]. We believe event-based re-



search will benefit from our Event-Human3.6m, as it ex-

tends DHP19 with more challenging scenarios and provides

a new benchmark for monocular human pose estimation al-

gorithms. We adopt the ESIM-Py simulator [46] to convert

the RGB recordings of Human3.6m into events and syn-

chronize raw joints ground-truth with events frames through

interpolation (Figure 5). As a result, Event-Human3.6m and

DHP19 have comparable ground-truths and event frames.

In the following sections we reports extensive experiments

on both DHP19 and Event-Human3.6m to test the benefits

of our proposal.

(a) (b) (c)

Figure 5: We simulate raw events from Human3.6m record-

ings (a) with the open-source simulator ESIM-Py [46]. We

set the simulators parameters cp = cn = 0.2, log-eps =
1e−3, and refractory-period = 1e−4, as this setting pro-

duces synthetic events similar to DHP19 event-cameras

recordings. Next, we accumulate events into event-frames

(b) and interpolate ground-truths to match timestamps (c).

Training details. We explore different hyper-parameters

settings empirically. In the following experiments, we train

our method on 4 Tesla V100 16Gb GPUs and adopt a batch

size (per GPU) of 32. For updating the gradients, we opt

for Adam optimizer [24] with learning rate of 0.0003. We

interrupt the train at local convergence through an early-

stopping strategy. We evaluate our approach with 1 stage

(7M of parameters, 91 MB of storage) and 3 stages (21M

parameters, 300MB of storage).

4.2. Results

Here we discuss the performance of our approach and

validate it on the two datasets.

Evaluation on DHP19. We test 1-stage and 3-stage

models with spatio-temporal voxel-grid and constant-count

representations. Table 1 reports the Mean Per Joint Preci-

sion Error (MPJPE, in mm) and summarizes the results. As

reference, we compare to the stereo approach of Calabrese

et al. [5]. As a first observation, our methodology per-

forms only slightly worse than the stereo approach (13mm

difference). In this setting, constant-count representation

performs better than voxel-grid. In the ablations, we elab-

orate on the differences between the two representations

when different backbones are adopted as feature extractors.

Moreover, we provide results for our single stage and 3-

stages model and compare them. Table 1 shows that multi-

ple stacked stages and intermediate losses provide sensible

performance benefits, at the cost of an increase in computa-

tional costs and model size.

Table 1: Results refer to DHP19 dataset [5]. We compare

our approach with 1 and 3 stack of stages across constant-

count and voxel-grid representation.

Method input MPJPE(mm)

Calabrese et al. [5] stereo 79.63

Constant-count – stage 3 monocular 92.09

Voxel-grid – stage 3 monocular 95.51

Constant-count – stage 1 monocular 96.69

Voxel-grid – stage 1 monocular 105.24

Evaluation on Event-Human3.6m. For each subject,

we keep 13 out the 32 provided joints to build skeletons that

are compatible with DHP19 ground-truths and evaluate our

approach on a cross-subject protocol. We train our models

on subjects 1, 3, 5, 7, 8 and test on subjects 9 and 11. Simi-

lar works [43, 33, 44] evaluate monocular approaches on ev-

ery 64th frame of the recordings. We adapt this evaluation

protocol to our asynchronous Event-Human3.6m by tak-

ing event-frames corresponding to the same testing frames.

Table 2 reports the results of our approach with constant-

count and voxel-grid representations. Moreover, we com-

pare our methodology to state-of-the-art RGB approaches

[22, 43, 44, 33]. Despite the gap with standard computer-

vision techniques, our approach performs fairly against ex-

isting RGB approaches.

Table 2: Comparison between RGB approaches on Hu-

man3.6m and our approach on its synthetic counterpart. We

adopt a standard cross-subject protocol to validate on the

same testing strategy as RGB approaches.

Method input MPJPE(mm)

Metha et al. [38] (ResNet-50) RGB 80.50

Kanazawa et al. [22] RGB 88.00

Nibali et al. [43] RGB 57.00

Pavlakos et al. [44] RGB 71.90

Luvizon et al. [33] RGB 53.20

Cheng et al. [9] RGB 40.10

Spatio-temporal voxel-grid (Ours) Events 119.18

Constant-count (Ours) Events 116.40

4.3. Ablation study

In this Section, we deepen different aspects of our ap-

proach in more detail. In particular, we are interested to ex-

plore what movements cause our approach to fail and how



backbone initialization impacts performance. In the follow-

ing, we discuss these questions in more details.

Transfer learning and pre-training tasks. Event repre-

sentations and RGB images share some commonalities, es-

pecially edges and corners. However, if we compare them

closely, we find subtle differences, since event-cameras

recordings are highly correlated to the dynamic of the scene.

If the RGB/event-frames analogy held, event-based vision

could benefit widely from advancements in standard com-

puter vision. As an example, recent computer vision re-

search provides strong evidence in support of transfer learn-

ing from large dataset, e.g., the ImageNet dataset [11, 19].

Further works explore and validate the correlation between

3D Human Pose Estimation and reconstruction tasks [60].

These insights are supported by common intuition, as both

tasks involve an understanding of the structure of the scene.

Despite the differences between event and standard cam-

eras, recent works validate the transfer learning hypothesis

from RGB to constant-count representation [35] and learn-

able representations [13]. Moreover, Rebecq et al. provide

evidence for direct transfer learning by predicting natural

images from spatio-temporal event-frames [47].

Our work contributes further to this line of research with

two evaluations. First, we compare ImageNet and random

initialized models for solving monocular human pose esti-

mation with both constant-count and voxel-grid represen-

tations. Second, we attempt to validate if different pre-

training tasks help with event-based Human Pose Estima-

tion. For this purpose, we train an auto-encoder consisting

of a ResNet-34 as encoder and a small DeconvCNN as de-

coder. For comparison, we train a ResNet-34 and a ResNet-

50 CNN on action recognition task, which has lower corre-

lation with human pose estimation. Next, we test our ap-

proach with 4 backbones (random-initialized, action recog-

nition task, reconstruction task, and ImageNet initialized)

and compare the results on DHP19 dataset. Table 3 reports

the MPJPE for both constant-count and voxel-grid repre-

sentations. Constant-count frames benefit more from stan-

dard computer vision, especially from ImageNet transfer-

learning. In fact, our model with ImageNet-pretrained

ResNet34 outperforms all others approaches when we adopt

constant-count representation.

Spatio-temporal frames have few similarities with stan-

dard RGB images; in fact, it is unclear if this approach can

benefit from ImageNet transfer learning. Our experiments

reflects these differences, as ImageNet pretrained ResNet-

34 and ResNet-50 backbones have lower performance than

the random-initialised counterpart.

We discuss Table 3 to explore further if recent research

in pre-training tasks [60] is valid in event-based vision. De-

spite the correlations evidences in RGB settings, we find

that auto-encoders backbones are performing worse than the

classification counterpart; this conclusion is valid from both

representations. Indeed, action-recognition pre-training

emerges favorably, especially for spatio-temporal voxel-

grid. Our interpretation is that pre-training assumptions

fail because of the spatial sparsity of event-representations.

Further research is mandatory to unlock better pre-training

strategies for event-based vision.

Table 3: We report the Mean Per Joint Precision Error

(MPJPE, in mm) of our 3-stages approach equipped with

different initialization strategies. ResNet-34 with ImageNet

initialization emerges favorably for constant-count repre-

sentation. Moreover, we find no benefits in adopting a

reconstruction task as pre-training task, although standard

computer vision research suggests the opposite[60].

Repr. Model Initialization MPJPE (mm)

co
n

st
an

t-
co

u
n

t

ResNet-34

Random initialized 92.22

Action recognition 95.19

Reconstruction 98.89

ImageNet 92.09

ResNet-50

Random initialized 92.22

Action recognition 92.26

ImageNet 92.51

v
o

x
el

-g
ri

d ResNet-34

Random initialized 93.06

Action recognition 95.26

Reconstruction 105.44

ImageNet 95.51

ResNet-50

Random initialized 93.88

Action recognition 93.54

ImageNet 93.98

Per-movements comparison. Events are highly cou-

pled with the dynamic of the scene. If parts of the body

are static, fewer events are recorded. As a consequence,

spatial sparsity increases and makes prediction tasks more

challenging. To evaluate the impact of static body parts

on our approach, we propose a per-movements study for

our ImageNet-pretrained method. Table 4 compares our

constant-count and spatio-temporal voxel-grid approaches

with DHP19 [5] event-based stereo approach. Differently

from [5], our approach is based upon the more recent state

of the art solutions [42, 43] and reaches a higher per-

movement accuracy and lower per-movement standard de-

viation. As expected, performance decreases when sub-

jects perform movements with only parts of the body (e.g.,

Punch up forwards left implies static legs). This drop in per-

formance matches the results of the stereo-vision approach

(e.g., Punch forwards left/right). On the other hand, we

notice above average performances for movements that in-

volve the whole body, such as knee lift and hand movements

(during these movements, subjects move on the spot and the

whole body generates events).



(a) (b) (c) (d) (e) (f) (g)

Figure 6: Our approach achieves good performance when subjects are actively moving, as in (a)–(d), but fails to predict the

skeletons satisfactorily when some parts of the body remain static during the movements, as in (e)–(g).

Table 4: We compare the per-movement MPJPE between

ours and DHP19 [5] stereo approach. Both fail when parts

of the body are static and shine when the scene is more

dynamic. In bold we highlight worst results per column

while with an underline we show best results per column.

Stereo [5] Voxel-grid Constant-count

Left arm abduction 115.04 82.32 80.41

Right arm abduction 99.65 81.92 79.68

Left leg abduction 84.65 110.07 105.39

Right leg abduction 78.35 99.87 93.81

Left arm bicep curl 103.29 90.49 86.40

Right arm bicep curl 121.06 80.75 95.73

Left leg knee lift 74.97 71.60 72.14

Right leg knee lift 71.95 78.47 72.49

Walking 3.5 km/h 58.75 86.88 84.74

Single jump up-down 82.23 80.11 76.73

Single jump forwards 80.53 89.92 85.10

Multiple jumps 53.57 99.47 93.83

Hop right foot 55.56 89.51 84.16

Hop left foot 54.21 97.86 91.60

Punch forward left 148.57 114.97 117.87

Punch forward right 135.92 98.35 93.69

Punch up forwards left 111.35 124.89 124.81

Punch up forwards right 131.46 103.01 106.56

Punch down forwards left 106.92 105.98 105.04

Punch down forwards right 98.28 90.02 89.90

Slow jogging 55.16 98.05 89.11

Star jumps 76.23 108.89 106.77

Kick forwards left 111.66 117.92 93.07

Kick forwards right 112.49 117.91 109.85

Side kick forwards left 118.00 128.38 120.39

Side kick forwards right 104.67 115.76 111.86

Hello left hand 96.22 89.08 87.22

Hello right hand 101.32 71.82 69.83

Circle left hand 110.59 99.17 95.89

Circle right hand 112.44 84.00 76.55

Figure-8 left hand 110.69 90.95 88.10

Figure-8 right hand 123.59 72.42 72.49

Clap 122.93 81.03 77.77

Mean (standard deviation) 98.06 (±16.60) 95.51 (±15.30) 92.09 (±14.49)

5. Discussion and Conclusions

We have proposed a deep learning approach for event-

based human pose estimation from a single event-camera.

Our method aggregates events into synchronous tensor rep-

resentations to feed a multi-stage Convolutional Neural Net-

work. Our architecture predicts three orthogonal heatmaps

which are triangulated to obtain the final 3D pose. We

validated our approach on the event-based DHP19 dataset,

where it showed satisfactory per-movement performance

against DHP19 stereo approach [5]. Moreover, we proposed

Event-Human3.6m, a new dataset of simulated events from

the standard Human3.6m [21]. Event-Human3.6m extends

DHP19 with more challenging movements and actions. We

conducted experiments on the synthetic dataset and adopted

a cross-subject protocol which is comparable to the stan-

dard RGB testing. Although we recognize the differences

between synthetic and RGB datasets, our proposal achieved

an accuracy comparable to RGB approaches. These experi-

ments demonstrated the effectiveness of our method.

Figure 6 reports challenging examples where our method

underperforms. Static parts of the body generated fewer

events and are difficult to predict accurately. We leave this

issue for further investigations. Next, we conducted exten-

sive ablations studies to understand how event-based vision

can benefit from RGB transfer learning and pre-training.

Experiments showed that ImageNet pre-training boosts our

approach more than pre-training tasks. Moreover, action

recognition pre-training task archived higher performances

than reconstruction pre-training, although extensive com-

puter vision research suggests the opposite. Future research

should consider closely the relationships between events

and RGB cameras in transfer-learning and multi-task learn-

ing settings. Further works to answer these open questions

can benefit from our synthetic Event-Human3.6m.
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