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Abstract

Appearance-based gaze estimation problem received

wide attention over the past few years. Even though

model-based approaches existed earlier, availability of

large datasets and novel deep learning techniques made

appearance-based methods achieve superior accuracy than

model-based approaches. In this paper, we proposed two

novel techniques to improve gaze estimation accuracy. Our

first approach, I2D-Net uses a difference layer to eliminate

any common features from left and right eyes of a partic-

ipant that are not pertinent to gaze estimation task. Our

second approach, AGE-Net adapted the idea of attention-

mechanism and assigns weights to the features extracted

from eye images. I2D-Net performed on par with the ex-

isting state-of-the-art approaches while AGE-Net reported

state-of-the-art accuracy of 4.09◦ and 7.44◦ error on MPI-

IGaze and RT-Gene datasets respectively. We performed

ablation studies to understand the effectiveness of the pro-

posed approaches followed by analysis of gaze error distri-

bution with respect to various factors of MPIIGaze dataset.

1. Introduction

The ability to estimate where a person is looking at opens

up a plethora of opportunities. A few examples include

understanding human vision like visual scan path analysis

[15], reading analysis [7] and screening for dyslexia [27].

This technology also enable us to develop novel applica-

tions in human computer interaction across various domains

like automotive [29], aviation [26] and accessibility [30, 8].

Even though various techniques like electrooculography ex-

isted earlier [6], use of imaging technology and advanced

computer vision techniques enabled us to estimate gaze in

non-intrusive manner. Commercial eye gaze trackers relies

on infra-red based imaging to obtain eye-images to circum-

vent the effects of ambient illumination. These commercial

gaze trackers claim to provide gaze accuracy of <1.9°error

across 95% of population under real-world usage conditions

Figure 1. Illustration of the proposed approaches. Feature manip-

ulation is performed on the features extracted from left and right

eye images.

[2] and applications have been deployed using such gaze

tracking systems to control cursor movement on a Windows

PC [3].

Recent gaze estimation research focused on utilizing

commodity hardware like webcam or the front-facing cam-

eras available in ubiquitous mobile phones and tablet PC

devices. Since this approach do not require additional hard-

ware like infra-red illuminators, advancements in this direc-

tion allow eye gaze tracking to reach wider user groups.

Gaze estimation literature can be classified into feature-

based, model-based, appearance-based approaches [19].

Numerous model-based and appearance-based methods

were proposed for 3D and 2D gaze estimation problem

and recent investigations [40] indicate that appearance-

based methods obtained better gaze estimation accuracy

than model-based approaches. This is made possible due

to the availability of large datasets and novel deep learn-

ing techniques. In this paper, we proposed two feature ma-

nipulation approaches, I2D-Net and AGE-Net to improve

gaze estimation accuracy. The first approach, I2D-Net re-

lies on the intuition that omitting any person-dependent fea-

tures which are extracted from eye images will help the

deep neural network models to generalize well over unseen

users. This approach assumes that these person-dependent



appearance-related features are present in both left and right

eye images and hence obtaining a difference of left and right

eye features should allow us to omit such person-specific in-

formation and retain only those features which are pertinent

to person-independent gaze estimation.

Our second feature manipulation approach, AGE-Net is

inspired from attention-mechanism, originally proposed for

neural machine translation task. Attention-mechanism en-

ables the model to search for a set of positions in a source

sentence where the most relevant information is concen-

trated [4]. We adapt this idea of soft-selection of features

for performing gaze estimation instead of using all features

extracted from eye images. We believe that this is particu-

larly relevant in cases where the input images contain vari-

ations in terms of appearance, illumination and head pose.

Our proposed method have two branches, a feature extrac-

tion branch and an Attention-branch which produce feature

vector and weights-vector respectively, of same dimension.

The weight-vector assigns weights to each feature of the

feature vector indicating their relevance for a given image.

We performed experiments using these two approaches

on MPIIGaze [42] and RT-Gene [16] datasets. We demon-

strated that the proposed feature manipulation techniques

achieved state-of-the-art results under standard evaluation

protocols. We analyzed the effectiveness of the proposed

approaches using ablation studies. We also compared the

performance of AGE-Net with I2D-Net under factors like

illumination, head pose variations.

We summarize the contributions of this paper below:

• We proposed I2D-Net using difference layer and AGE-

Net adapting attention-mechanism for gaze estimation.

• I2D-Net achieved on par performance with existing

state-of-the-art methods while using fewer parameters

(∼87M).

• The proposed AGE-Net achieved a state-of-the-art per-

formance of 4.09◦ and 7.4◦ error on MPIIGaze and

RT-Gene datasets using ∼105M parameters.

In the next section 2, we present a review of existing

gaze estimation approaches. In section 3, we present the

proposed approaches with details related to the network ar-

chitectures. We present the experiments conducted on MPI-

IGaze and RT-Gene datasets along with results and ablation

studies in section 4. We present analysis of both proposed

approaches in section 5. Section 6 contains the discussion

on the presented work followed by conclusion in section 7.

2. Related Work

2.1. Feature and Model­Based Approaches

Commercial gaze-trackers like Tobii X-series [2] are pre-

dominantly feature-based systems. An external IR light

source using either bright or dark pupil method [1] is used to

obtain eye features like corneal reflections [18] to perform

gaze estimation.

On the other hand, model-based methods extract visual

features from eye images like pupil center, iris contours and

eye corners to fit a geometric 3D eye model to perform gaze

estimation. Early model-based methods used infra-red il-

luminators and high-resolution cameras [20, 37] but recent

approaches [33, 28, 5] overcome such requirements by ex-

tracting features from webcam images. They also empower

their feature detectors with machine learning approaches to

obtain robustness with respect to illumination variations.

2.2. Appearance­Based Approaches

In contrast to the earlier mentioned approaches,

appearance-based methods attempts to directly map the

images captured using commodity cameras to gaze di-

rection vectors without any handcrafted features. These

appearance-based methods are strongly supported by the

creation of large datasets [17, 42, 16, 21] and advance-

ments in deep learning techniques. We can classify the

appearance-based approaches proposed so far into single

channel and multi-channel methods.

One of the first attempts of appearance-based gaze esti-

mation was GazeNet [42], a single channel approach where

a single eye image is used as the input to an architecture

based on 16-layer VGG CNN. Head pose information was

concatenated to the first fully connected layer after convo-

lutional layers. GazeNet reported a 5.4°mean angle error on

the evaluation subset of MPIIGaze, termed as MPIIGaze+.

This work was followed by Spatial-Weights CNN, another

single-channel approach [41] where full face images were

provided as input instead of eye crops. They used spatial

weights technique to give significance for those regions of

face which are pertinent for gaze estimation.

As an alternative to single-channel approaches, numer-

ous multi-channel approaches were proposed. iTracker [23]

was one of the first multi-channel architecture which uses

left eye image, right eye image, face crop image and face

grid information as inputs. Multi-Region Dilated-Net pro-

posed by Chen and Shi [9] employed dilated convolutions in

their proposed model and uses both eye images along with

face image as inputs. This approach also reported the same

result of 4.8◦ mean angle error as [41] did on MPIIGaze+

in cross-participant evaluation. Further, they extended their

work by proposing GEDDNet [10], which uses gaze de-

composition along with dilated convolutions and reported

4.5°error on MPIIGaze+. Most recent work based on multi-

channel architecture is FAR*-Net [12] which proposed to

utilize the asymmetry between two eyes of same person to

obtain gaze estimates. In this work, they generated confi-

dence scores for the gaze estimates obtained from two eye

images to choose the more accurate prediction.



Wang et al [34] proposed to use bayesian framework

for better generalization performance of gaze estimates than

appearance-based approaches. They proposed to use an ad-

versarial component along with CNN-based gaze estimator

to learn generalizable gaze-responsive features.

Most of the above mentioned works used the features

extracted from eyes and face images directly for the gaze

vector regression. We observed that only Spatial-weights

CNN [41] and Bayesian approach [34] proposed to employ

feature extraction that focuses on obtaining features perti-

nent to gaze estimation. Due to the huge variance in terms

of illumination and head pose variations in addition to the

inherent person-specific variations, we believe that either

person-specific or image-specific feature-manipulation can

lead to obtain more accurate gaze estimates.

In the following section, we introduced our proposed

feature manipulation approaches based on difference and

attention mechanism.

3. Proposed Approach

3.1. I2D­Net

I-Gaze estimation using dilated and differential layer

network (I2D-Net) primarily relies on two modules. Chen

and Shi [9] showed that extracting features using dilated

convolutions instead of regular convolutions improve gaze

estimation accuracy. They argued that a series of maxpool-

ing layers might not capture the finer details in eye images

which are significant for gaze estimation. They also argued

that the dilated convolutions preserve the resolution of fea-

ture maps while obtaining larger receptive fields on contrary

to the use of maxpooling layers where larger receptive fields

are obtained at the cost of feature map resolution.

The second module is the differential layer that obtains

an absolute difference of the left and right eye features

which are extracted using dilated convolutions. Zeiler and

Fergus [38] demonstrated that shallow layers of CNNs cap-

ture low-level information such as edges and low-level con-

tours while deeper-layers of CNNs attempts to learn higher

level features like parts of the object with significant pose

variation. In a specific example, they showed that the eyes

and nose of the dog has been observed when the feature map

of Layer 4 of AlexNet [24] was visualized. Based on this

observation, we proposed the following approach.

We used shared-convolutional layers to extract features

from the normalized right and left eye images. This fea-

ture extraction network is illustrated in figure 2c where we

employ dilated convolutional layers. We changed the num-

ber of feature maps in each layer and dilation rate from our

baseline [9] and added dilated convolutions to face channel

as well (figure 2e).

These obtained feature maps might contain higher level

features that encode information about various portions of

the eye images like eyeball, sclera region or brow region.

Such finer details vary from person to person and are present

in both left and right eyes images. We argue that ob-

taining the absolute difference of these extracted features

from left and right eye images removes common, redundant

appearance-related information and hence retains only rel-

evant features from both eyes. We posit that the resultant

feature vector acts as a better feature transformation than

the case where the features from both eyes are concatenated

for subsequent fully connected layers. The entire network

architecture of I2D-Net is illustrated in Fig 2a.

Reader may note that this proposed approach is funda-

mentally different from the Diff-NN [25]. We focused on

improving person-independent gaze estimation task and we

do not rely on any person-specific calibration samples as

[25] did. Further, Diff-NN proposes to use images belong-

ing to same eye (either left or right) and train the model to

learn the gaze difference. We propose to obtain the differ-

ence between features extracted from left and right eye of

same person to circumvent person-dependent features.

3.2. AGE­Net

Attention-based Gaze Estimation Network (AGE-Net)

proposes to adapt the attention-mechanism which was used

in Natural Language Processing (NLP), Computer Vision

[36] tasks, speech systems [13], recommender systems [32]

and to predict the steering angle for self-driving cars [22].

In neural machine translation task, encoder generates the

annotations for a given input sentence which in turn shall

be used by decoder to generate the output sentence in a dif-

ferent language. Bahdanau et al proposed attention mecha-

nism [4] to select specific words from input sentence those

are significant for the translation task. They proposed to use

weighted sequence of annotations instead of using them as

is to generate output sequence.

Adapting this idea to gaze estimation task, we propose

to assign weights to the features extracted from eye im-

ages. We propose to add an Attention-branch in parallel

to feature-extraction branch to perform the intended feature

manipulation. Both feature extraction branch and attention

branch contains shared convolutional layers that takes eye

images as the input. Feature extraction branch, indicated

in figure 2c produces feature vectors from both left and

right eye images while attention branch provides the nec-

essary weight vectors for both left and right eye features.

We used sigmoid activation function for the last layer of the

attention-branch as illustrated in figure 2d to obtain weight-

vectors with values in the range of (0-1). The feature vectors

obtained from both eyes are multiplied with the correspond-

ing weight vectors to obtain weighted features which will be

passed further through the network for the regression task.

The AGE-Net architecture is illustrated in Fig 2b.

Figures 2c, 2d and 2e indicate various parameter values



Figure 2. Network Architecture of proposed approaches. (2a) I2D-Net architecture (2b) AGE-Net architecture (2c) CNN-Backbone for

Eye Channel (2d) CNN-Backbone for Attention-Branch (2e) CNN-Backbone for Face-Channel.

for each layer of the architecture like feature map size, ker-

nel size and activation function for fully connected layers.

We used ReLu activation function for all convolution and

dilated convolution layers. The dilation rate parameters r1,

r2, r3 and r4 for the face channel(figure 2e) assumes differ-

ent values for AGE-Net and I2D-Net. We used 3, 5, 7 and

11 for r1, r2, r3 and r4 respectively for AGE-Net. In case of

I2D-Net, these parameters take 2, 3, 5 and 11 values as the

dilation rates. The normalized face images are first passed

through the first six layers of VGG-Net [31] pre-trained on

the ImageNet dataset [14] before feeding them to the CNN-

backbone of face channel (figure 2e). Each layer in our pro-

posed architectures is followed by batch normalization.

In the next section, we present the experiments con-

ducted using both proposed approaches.

4. Experiments - I2D-Net & AGE-Net

4.1. Datasets

MPIIGaze

We conducted experiments on MPIIGaze, which was

collected in real-world conditions with illumination and

head poses variations. The dataset was collected with

15 people from diverse ethnic backgrounds and includes

appearance-variations like wearing spectacles. We normal-

ized face and eye images from the evaluation subset of MPI-

IGaze [42] using landmark annotations [41]. The evaluation

subset of the dataset contained 45000 samples in total with

3000 samples from each person.

We utilized the method mentioned in [39] for normaliz-

ing the images and ground truth gaze labels. The normal-

ization process, in summary, cancels out roll component of

head pose in the captured image and positions the image

at a desired distance dv from the virtual camera with a fo-

cal length of fv. In addition to the image normalization,

we also transformed ground truth gaze label from camera

co-ordinate system to normalized space with angular rep-

resentation. We used dv as 600 for eye image normaliza-

tion and 1000 for face images. We selected the resolution

of normalized eye images to be 36x60 while the normal-

ized face images are of 120x120. Further, we selected fv

for both eye and face normalization to be 960. We applied

histogram equalization on the resultant images to obtain the

normalized eye and face images which shall be used for the

subsequent stages.

RT-Gene

RT-Gene [16] dataset contains 122,531 images of 15

participants using wearable eyetracking glasses. Unlike

MPIIGaze dataset where participants are sitting near to

their computers, they are located at 0.5 to 2.9 meters from



Model MPIIGaze RT-Gene

iTracker (AlexNet) [23] 5.6° -

MeNet [35] 4.9° -

Spatial-Weights CNN [41] 4.8° 10.0°

Dilated-Net [9] 4.8° -

RT-GENE (1 model) [16] 4.8° -

RT-GENE (4 model) [16] 4.3° 8.6°

FAR* Net [12] 4.3° 8.4°

Bayesian Approach [34] 4.3° -

I2D-Net (Proposed) 4.3° 8.44°

AGE-Net (Proposed) 4.09° 7.44°

Table 1. Comparison with existing Gaze estimation models.

the camera during this dataset creation. This dataset also

has higher variation in head pose and gaze angles. Since

the images captured in RT-Gene dataset contains eyetrack-

ing glasses along with the person, they used semantic in-

painting to paint the area covered by eyetracking glasses

with skin texture. Hence, the authors provided both origi-

nal and in-painted version of the images after normalizing

them. The resolution of the normalized eye and face images

is 36x60 and 224x224 respectively. We did not do any fur-

ther processing of these images apart from resizing of face

images to 120x120. We observed noises in the in-painted

set as [12] reported and hence used only the original dataset

for experiments. We used grayscale images for all our ex-

periments on both datasets.

4.2. Training & Results

We performed leave-one-out cross validation on MPI-

IGaze as mentioned in other works [41, 12, 9] using both

proposed models. We leave one participant out for testing

and considered other 14 participants for training. We imple-

mented proposed models using Tensorflow and Keras. We

have used 15% of the training data for validation split. Since

most of the gaze labels are less than 1, we scaled them up

by 100 and we used mean square error as the loss function.

We have trained each model for 30 epochs with a batch size

of 32 and we used Adam optimizer.

We conducted experiments on RT-Gene dataset as per

the evaluation protocol provided by the dataset. We divided

the original dataset into 3 folds and we performed a 3-fold

cross validation. We followed similar training procedure as

we did for MPIIGaze dataset, but we trained the model for

50 epochs due to the higher number of training samples.

We presented experimental results of the proposed ap-

proaches on both MPIIGaze and RT-Gene datasets and com-

pared them against the various gaze estimation approaches

which either use face or multi-channel approach in Table

1. The proposed I2D-Net achieved 4.3 ± 0.97 and 8.44 ±

1.08 degree mean angle error on MPIIGaze and RT-Gene

Architecture Mean Angle Error

No Attention 4.54◦

Eye+Attention 4.64◦

AGE-Net w/o Dilated Conv 4.24◦

Table 2. Ablation study results of AGE-Net on MPIIGaze

datasets respectively. I2D-Net is on par with existing state-

of-the-art methods like FAR* Net [12] and bayesian adver-

sarial learning method [34] on both datasets. Since we used

dilated convolutions in feature extraction phase, we con-

sider Dilated-Net [9] as our baseline and hence the proposed

differential feature transformation in I2D-Net achieved 10%

improvement over the baseline. Diff-NN [25] reported

4.59°average error after applying their adaptation method

with 9 reference samples and 4.64 with their default param-

eter setting. Hence the proposed I2D-Net with a difference

layer of features extracted reported superior performance

than the Diff-NN which proposes to use two same eye im-

ages of a person to learn the gaze difference.

The other proposed approach, AGE-Net achieved a state

of the art performance of 4.09 ± 0.9 degree and a 7.44 ±

1.59 degree mean angle error on MPIIGaze and RT-Gene

datasets respectively. We infer that the proposed attention-

branch which assigns weights to the extracted features im-

proved the overall mean angle error by 14.8% over the base-

line. AGE-Net also achieved around 5% and 11.5% im-

provement on MPIIGaze and RT-Gene datasets respectively

over the existing state of the art.

In addition to that, the proposed approaches I2D-Net

(∼87M) and AGE-Net (∼105M) utilizes less number of

parameters than their counterparts like FAR* Net [12]

(∼848M), Spatial Weights CNN [41] (∼196M), RT-GENE

[16] (∼122M) and GEDD Net [10] (∼107M) and hence

these approaches result in lower memory footprint.

4.3. Ablation Study

We investigated the significance of various modules that

form the proposed architectures by performing ablation

studies using MPIIGaze dataset.

AGE-Net Table 2 summarizes ablation study results on

AGE-Net. First, we experimented with the CNN-backbones

for face and eye channels alone as illustrated in figure 2c

and figure 2e without the proposed attention branch and

observed a 4.54°error. We have changed the number of

features and the dilation rates used in each layer from the

baseline [9] and formed these CNN backbones. Yet, the

performance is on par with GEDDNet [10] which utilizes

both dilated convolutions and gaze decomposition tech-

nique. Next, we experimented with CNN backbone for eye

channel along with attention branch without using face in-

formation and observed a 4.64°error.

We then experimented by investigating the importance



Model Mean Angle Error

Gaze-Net 5.4◦

AR-Net 5.65◦

ARE-Net 5.02◦

AGE-Net (Eyes Only) 4.64◦

I2D-Net (Eyes Only) 5.08◦

Table 3. Comparing eye image-based methods on MPIIGaze

of dilated convolutions in the proposed AGE-Net architec-

ture. We redesigned the architecture to achieve 90% of the

input size as the receptive field without using dilated convo-

lutions. First, all dilated convolution layers in both face and

eye channels are replaced with regular convolutional layers.

We added two more maxpooling layers in eye channel, one

each after seventh and eighth convolutional layers. Furhter,

we added three more maxpooling layers in face channel,

one each after fourth, sixth and eighth convolutional lay-

ers. We obtained a 4.24°error using this approach which in-

dicated that dilated convolutions indeed help the proposed

network to achieve better performance. In summary, pres-

ence of attention branch to the CNN-backbones improves

gaze estimation accuracy by 10% and presence of dilated

convolutions improves the accuracy by 3.5%.

I2D-Net We investigated the significance of difference

layer and face channel for I2D-Net. We first experimented

with the depicted CNN-backbone in figure 2a including

both eye channel and face channel with out difference layer.

This model recorded a 4.6°error, a slight drop from the

CNN-backbone used for AGE-Net, possibly due to the dif-

ferent dilation rates. This indicates that the presence of dif-

ference layer improves the performance by 6.5%.

Excluding face channel from the proposed I2D-Net re-

sulted in 5.08°error. We observed that omitting face in-

formation from both proposed architectures resulted in sig-

nificant drop in performance. Yet, AGE-Net without face

channel obtained better gaze error when compared to other

eye-only methods. As reported in Table 3, eye image-based

methods like Gaze-Net [42], AR-Net and ARE-Net [11] re-

ported 5.4, 5.65 and 5.02 degree error respectively against

4.64 and 5.08 degrees achieved by AGE-Net and I2D-net

respectively without face information.

5. Analysis

In this section, we analyzed the proposed methods with

respect to individual participant, illumination level, hori-

zontal difference of mean illumination, gaze point and head

pose in the MPIIGaze since factors like illumination varia-

tions are not reported for RT-Gene. We also present compar-

ative analysis between AGE-Net and I2D-Net to understand

the areas where AGE-Net performed better than I2D-Net.

Figure 3. Participant-wise accuracy of MPIIGaze

Figure 4. Gaze error distribution w.r.t. Illumination

5.1. Participant­wise Analysis on MPIIGaze

We analyzed the performance of various gaze estimation

methods on each participant of the MPIIGaze dataset. We

observed that both proposed approaches perform better than

the baseline except for p03, p07 and p09. Further in figure

3, we compare our proposed methods with FARE Net [12].

Out of 15 participants, AGE-Net performed better for 11

participants while I2D-Net performed better for 9 partici-

pants than FARE-Net. We undertook paired t-tests which

revealed that both proposed approaches, I2D-Net (t[14] =

2.17, p = 0.047, Cohen’s d = 0.5) and AGE-net (t[14] =

2.84, p = 0.01, Cohen’s d = 0.7) performed statistically sig-

nificantly better than the baseline [9]. Further, it is observed

that AGE-Net without face channel performed statistically

significantly better (t[14]=2.72, p=0.016, Cohen’s d = 0.36)

than another eye-image based method, ARE-Net [12].

We also analyzed yaw and pitch errors for each partic-

ipant. We observed absolute mean yaw error of 2.66 and

3.042 degrees and absolute mean pitch error of 2.56 and

2.98 degrees for AGE-Net and I2D-Net respectively.

5.2. Effect of Illumination

We analyzed the gaze errors obtained during cross-

participant evaluation on MPIIGaze dataset with respect to



Figure 5. Gaze Error Distribution w.r.t. Mean intensity difference

the mean intensity of the face image. For this purpose, we

grouped the mean intensity values into bins of width 5 and

grouped the images accordingly. We obtained mean gaze

errors corresponding to each bin and we plot the same for

both I2D-Net and AGE-Net in figure 4. For illustration pur-

pose, we omitted the mean gaze error for the first bin [0-5)

since I2D-Net and AGE-Net reported 23.9 and 18.9 degree

error respectively. We observed that for the mean intensity

between 60 and 210, gaze errors of I2D-Net and AGE-Net

lie with in the range of 3.96 ± 0.4 and 3.85 ± 0.33 degree

respectively indicating the models’ generalization perfor-

mance across wide range of illumination variation. We also

observed that the gaze error decreases with brighter illumi-

nation but increases when the mean intensity falls beyond

the range of (5-200). This might be due to the less number

of training samples in the mentioned range as reported in

the dataset characteristics [42].

5.3. Effect of Horizontal Difference of Illumination

One of the challenging scenario that MPIIGaze dataset

captured is the horizontal difference of illumination across

the face image. We analyzed the performance of the pro-

posed approaches under such scenarios. We used similar

approach as described in sec 5.2 and we plotted the results

in figure 5. We could not visually inspect the difference

between the trend lines of both proposed approaches from

figure 4, but in figure 5, it is evident that the AGE-Net re-

ported lower mean gaze error than I2D-Net. We observed

that AGE-Net reported lower gaze error than I2D-Net in the

range of [-135, -50] and [80, 135]. The trend line of the

mean gaze error across the horizontal intensity difference

for both proposed approaches is close to a flatline, reiter-

ating the models’ generalization ability across the range of

horizontal illumination difference.

5.4. Effect of Gaze Direction

The performance of a gaze estimation system may also

vary based on where the person is gazing. We investigated

the gaze error of our proposed models based on the ground

Figure 6. Gaze error analysis w.r.t Gaze region-AGE-Net

Figure 7. Gaze error analysis w.r.t Gaze region - I2D-Net

truth gaze direction. We split the ground truth gaze pitch

and yaw components into 5 bins each and hence we split

the entire normalized gaze space into a grid of 25 cells. We

have grouped the input images falling in these 25 cells and

obtained mean gaze errors for each cell. In figure 6 and

figure 7, we present the mean gaze errors by AGE-Net and

I2D-Net respectively across all the 25 cells. We can ob-

serve a clear monotonic increase in the gaze error for AGE-

Net in figure 6 as the pitch angle increases and such pattern

is not observed in figure 7 for I2D-Net though. Both pro-

posed methods reported similar trend of mean gaze error

with respect to change in yaw angles and report best accu-

racy along the central column.

5.5. Effect of Head Pose

We investigated proposed models’ performance with re-

spect to head pose of the participant which is a significant

variable in the dataset. Similar to the analysis based on gaze

location presented in 5.4, we have split the entire yaw and

pitch range of head orientation into 50 bins each and hence

the normalized head pose space is split into a total of 2500

cells. We have clustered the images corresponding to these

cells and we considered the cells with at least three images.

We obtained mean gaze errors from both AGE-Net and I2D-



Figure 8. Gaze Error w.r.t Head Pose-AGE-Net

Figure 9. Gaze Error w.r.t Head Pose-I2D-Net

Net for each cell and plotted in figure 8 and figure 9 respec-

tively. In comparison, AGE-Net have more uniform gaze

error distribution with respect to head pose than I2D-Net.

Further, clusters with high mean gaze error can be located

only on the boundaries of the head pose distribution indi-

cating that extreme head poses results in high gaze predic-

tion errors. For AGE-Net, this means that a clear region of

head pose variations, indicated with black lines in figure 8,

is identified which shall result in an almost uniform distri-

bution of gaze error. Such regions are helpful in defining

the range of operation when this model is deployed for the

real-time usage.

6. Discussion

Our first feature manipulation approach, I2D-Net re-

ported on-par performance with existing state-of-the-art

methods like FAR* Net on both MPIIGaze and RT-Gene

datasets while the other feature manipulation approach,

AGE-Net reported a state-of-the-art performance on both

datasets. In addition to that, AGE-Net also found to have

better generalization performance over I2D-Net based on

the analysis presented in section 5. Both methods reported a

flat trend of gaze errors across the range of horizontal differ-

ence of illumination and a linear trend across mean illumi-

nation range. Further, the distribution of gaze error with re-

spect to head pose using AGE-Net provided a clear bound-

ary with uniform error which is useful in defining range of

operation when used for real-time interaction. AGE-Net

also reported a clear trend of increasing error as the pitch

component of gaze direction increases. This might be due

to the occlusion of eyeball region by eyelids when pitch

component of gaze vector is higher. Since the majority of

existing laptops and tablet computers have cameras placed

above the screen, this limitation need to be overcome to ob-

tain uniform gaze error across the viewing range.

We experimented AGE-Net architecture without dilated

convolutions with ∼27M parameters and observed an er-

ror of 4.24 compared to AGE-Net’s 4.09 and ∼105M pa-

rameters. This approach can be taken further to investigate

if we can improve gaze error with less number of parame-

ters. Such smaller memory footprint models can be useful

for achieving less latency and less stringent requirements of

high end GPUs for real-time gaze estimation. A real-time

demonstration of the current AGE-Net system can be seen

at https://youtu.be/2pyX6O2xTFw. On the other hand, we

did not use attention-branch for face channel in our pro-

posed architecture which is another avenue for exploration.

In section 5, we compared and analyzed the performance

of the proposed approaches with respect to various parame-

ters in MPIIGaze dataset. We performed cluster-wise anal-

ysis on the gaze errors rather than individual-image wise

analysis. Even though we obtained a macro-level trend of

gaze errors with respect to each parameter, further investi-

gation is required to understand the factors behind images

which reported high error. Such failure mode analysis is im-

perative to understand the influence of the inherent visual-

optical axis offset and model’s shortcomings in the observed

gaze error to build robust gaze estimation models.

7. Conclusion

In this paper, we proposed feature manipulation tech-

niques based on differential feature vector and attention-

mechanism for appearance-based gaze estimation task. The

proposed I2D-Net reported on-par performance and AGE-

Net reported superior performance when compared with ex-

isting state-of-the-art methods on both MPIIGaze and RT-

Gene datasets. Our approaches also shown to be robust to

various factors like illumination, head-pose and horizontal

difference of mean intensity. Further, we have demonstrated

the significance of the proposed techniques using ablation

studies. Finally, we discussed the implications and prospec-

tive extensions to our proposed approaches to further im-

prove the gaze estimation accuracy.
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