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Abstract

Visual Focus of Attention (VFOA) estimation in conver-

sation is challenging as it relies on difficult to estimate in-

formation (gaze) combined with scene features like target

positions and other contextual information (speaking sta-

tus) allowing to disambiguate situations. Previous VFOA

models fusing all these features are usually trained for a

specific setup and using a fixed number of interacting peo-

ple, and should be retrained to be applied to another one,

which limits their usability. To address these limitations, we

propose a novel deep learning method that encodes all input

features as a fixed number of 2D maps, which makes the in-

put more naturally processed by a convolutional neural net-

work, provides scene normalization, and allows to consider

an arbitrary number of targets. Experiments performed on

two publicly available datasets demonstrate that the pro-

posed method can be trained in a cross-dataset fashion

without loss in VFOA accuracy compared to intra-dataset

training.

1. Introduction

Estimating the visual focus of attention (VFOA) of peo-

ple from videos is an important problem in interaction anal-

ysis, with application in many fields like multiparty con-

versation [10], human-computer/-robot interaction [1], and

psychological studies [15] among others. Formally, VFOA

can be defined as the target that a person is looking at and is

in that sense a discretization of the continuous gaze direc-

tion.

VFOA estimation is a challenging task as it relies on

many features like the head pose and gaze of the person,

and also scene information to know the positions of the per-

son and VFOA targets or other potential contextual infor-

mation (e.g. who is speaking), which can be difficult to

estimate accurately depending on the setup. In particular,

despite recent progress, the accuracy of gaze estimation is

often limited when recording naturally acting people with

remote sensors due to low image resolution and high vari-

ability in appearance (pose, eye), in particular for large head

poses.

When handling 3D scenes, one simple way to estimate

the VFOA consists of comparing the gaze direction and

target positions using an angular distance measure. This

method is always applicable but neglects the use of scene

cues like conversation regime [9] (which encodes the prior

that people tend to look at their interlocutor or the speaker)

or task context [20] that were shown to improve VFOA es-

timation accuracy and counterbalance ambiguities due to

close VFOA targets and noisy gaze estimates. Principled

methods have been proposed to integrate such cues in the

VFOA inference, like bayesian [3, 13], random forest [5]

and deep learning [17] schemes, but they usually rely on

predefined target sets leading to fixed input/output sizes and

inference structures. Thus, these models are usually trained

for a specific setup and should be retrained to be applied to

another one, which limits their usability as VFOA annota-

tions can be difficult or expensive to gather. Having a model

that can generalize to new setups and situations (geometry,

number of people, and salient objects) would be useful.

To work towards this goal, we propose to reformulate

the problem. The main idea is to reformat the input features

into several 2D maps associated with the subject’s field of

view, allowing to encode all inputs and contextual cues (4

maps for head pose, gaze direction, directions of speaking

sources, and person speaking status) within a single referen-

tial, as well as providing as input a visual saliency 2D map

encoding an arbitrary number of candidate VFOA targets.

This leads to a fixed number of maps that can be stacked as

a tensor and processed as an image to produce a 2D map of

VFOA direction probabilities, whose maximum is used in

the final VFOA classification (details in Sec. 3). This has

four advantages:



• it normalizes the inputs, removing spatial and feature

dependencies to the camera view points and more gen-

erally the setup;

• it allows to consider an arbitrary number of targets and

to encode all contextual cues in the same referential;

• it makes the input more suited to be processed by con-

volutional neural networks (CNN), as images naturally

encode proximity in space and channels;

• it makes data augmentation easier (an important step

for generilizing to other situations), as targets can eas-

ily be be added and removed or context be modified

during training.

Our contribution is thus a novel method to estimate

the VFOA of a subject given an arbitrary number of tar-

gets and contextual cues, which combines the above ad-

vantages and allows the application of a learned model

to different setups. We evaluated this method and the

impact of the different input features on two publicly

available datasets, namely UBImpressed [15] and KTH-

Idiap Group-Interviewing [16], including convincing cross-

datasets/setup experiments.

2. Related works

Back when accurate gaze trackers were not available,

VFOA was inferred from head pose using behavioral mod-

els [22]. Inference mechanisms like GMM, HMM, or Dy-

namical Bayesian Networks [18, 3] were used to estimate

the VFOA directly from the head pose, potentially taking

into account context information [9, 20] or modeling the

joint VFOA of all participants [4, 13]. Nevertheless, with

the recent improvement of gaze estimation, even simple

frame-based geometrical models were shown efficient to es-

timate VFOA [24]. However, remote gaze estimation is of-

ten noisy and unreliable in extreme head pose cases, which

limits the accuracy of such methods. To address this prob-

lem, as with earlier methods, the gaze direction is usually

combined with other cues like the head pose [2] or the par-

ticipants’ speaking status [21, 14]. On the methodological

side, recent works rely more on deep learning, as it provides

more efficient ways to fuse different cues and learn more

complex inter-modality and cue relations. In this context,

temporal neural networks (CNN, RNN) were shown more

accurate than their Bayesian counterparts [17].

However, although VFOA models were improved using

new methods and additional context features, with the aim

of modeling conversations, little work was done to improve

their flexibility. Indeed, conversation models have the ad-

vantage of representing all participants’ behaviours together

to take into account dependencies between them and they

were shown to be effective at learning models for VFOA

estimation in setups for which annotations are available.

However, such models are often trained on a single specific

setup, in which a defined number of static visual targets are

usually assumed and 3D scene representation is sometimes

absent, leading the model to learn feature clustering rather

than geometrical reasoning, so it can not generalize to un-

seen setups with a different number of people or a differ-

ent geometry and can not handle people that join or leave

the conversation. [12] addresses this issue by learning two-

person VFOA predictors (do they look at each other or not),

but their work addresses 2D VFOA estimation in images

which is not multimodal and different from VFOA estima-

tion in 3D scenes, as it relies on image processing rather

than on geometrical reasoning. Here we propose a new in-

put data format that is more naturally processed by CNNs

and allows the same trained model to handle an arbitrary

number of targets as well as different setups. In this regard,

unlike the above methods, the proposed method estimates

the VFOA of each person individually (rather than jointly)

using 2D maps while still encoding the conversation fea-

tures from all subject features as well as scene information.

Representing the gaze direction as an image was already

studied in the context of gaze refinement in a screen-based

setting [19], where it was used to align the point of gaze

with the screen image content. In this work, we extend this

idea by representing all subject’s and scene’s features as im-

ages (i.e. 2D maps) and by considering the whole 3D field

of view of the subject. In contrast to [19], we do not have

access to what the subject sees or the gaze ground truth,

so we must work in a virtual field of view that we fill with

the scene information. Also, we must handle aversion cases

without knowing where the subject is effectively looking.

3. Method

The proposed method is presented in Fig. 1. It can be

divided into three main parts:

1. the extraction of the required features (head pose, gaze

direction, target directions, and speaking status) from

the input video and scene information;

2. the translation of these features into a fixed number of

2D maps;

3. the estimation of the VFOA from the 2D maps.

They are described in more detail below.

3.1. Features extraction

We consider the case where the scene is monitored, i.e.

that the 3D positions and the speaking status (binary) of

each person involved in the interaction are available. Our

goal is to express all features (head pose, gaze, and target



Figure 1. Proposed workflow. First, head pose (cyan) and gaze direction (yellow) are estimated from the RGB-D video while target

directions (purple) and people speaking status are recovered from scene monitoring. Second, all these features are expressed in the body

frame (red-blue-yellow) and represented as yaw and elevation angles which are then further encoded into five 2D maps. The resulting input

tensor is processed by a CNN to generate a VFOA probability map whose maximum is used to derive the actual VFOA. Network layer

types are represented by colors: 3x3 conv. layers (blue, with mentioned activation), encoder residual blocks (orange), decoder residual

blocks (red), 1x1 conv. (purple), activation alone (white), and up-/downsampling (green). Elements for computing the loss are indicated at

the bottom right.

directions) as yaw and elevation angles in a frame associ-

ated with the body orientation. In this way, the represen-

tation can potentially exploit coordination patterns between

the body, the head pose, and the gaze, and allows to nor-

malize the data independently of the camera position. Tar-

get directions are easily computed as the eye-to-target (most

forward of both eyes) vector and then translated to angles,

while head pose and gaze direction are extracted from RGB-

D video capturing the subject, as summarized below.

Body frame estimation. The 3D positions of the subject’s

joints are extracted by combining the body 2D keypoints

from OpenPose [6] and the depth provided by RGB-D cam-

eras. To catch the orientation of the subject, the body frame

is built using the vector going from the right to the left

shoulder and the vertical axis of the camera frame. The

latter axis was selected since available videos only provide

upper body views of the people, so the hip keypoints are not

available and the estimation of the vertical axis of the body

is then difficult. We consider it a minor drawback, as most

of the body rotations are done in the yaw direction in our

conversation scenarios.

Head pose. It is estimated from the subject’s video us-

ing the Headfusion method [23], which processes RGBD

videos and provides both the 3D position (define as the

nose’s tip) and the orientation of the subject’s head. This

method relies on the online fitting and tracking of both a 3D

Morphable Face Model and a 3D raw representation of the

head. The use of depth information and head reconstruction

makes the method much more robust to large head poses

variations, compared to 2D landmarks based methods. Fi-

nally, the head pose angles are expressed in the body frame,

so the head yaw angle is 0 when the head is in a neutral

position, even if the subject is not facing the camera.

Gaze estimation. Using the head pose, the 3D textured

mesh obtained from RGB and depth image is rotated to get a

frontal image of the face [8]. Then, a facial landmark detec-

tor [11] is applied to this frontal image to locate the position

of the eye corners and crop the eye images (36x60 pixels).

This method normalizes the size and appearance of the eye

images. Then, to estimate the gaze direction, we used the



GazeNet [25] architecture trained on the Eyediap dataset [7]

(floating target, mobile pose), as this dataset provides depth

and thus allows the same eye image normalization method

as above. We obtained state-of-the-art results of 6.3◦ mean

angular error on the Eyediap test set.

3.2. 2D feature maps

The proposed method takes five types of features as in-

put: head pose angles, gaze direction angles, speaking sta-

tus of the subject, the directions of potential VFOA targets

(i.e. visual saliency), and the directions associated with

speaking targets (i.e. audio saliency). To bring all these

features in the same space and allow an arbitrary number

of targets to be represented, we set in place two main el-

ements. First, as explained earlier, all directions, whether

from the scene (target directions) or from the human sub-

ject (i.e. head pose, gaze) have been expressed in the same

reference frame (the subject’s body frame). Secondly, each

input feature type is encoded as a 2D map with a resolution

of 180x180 pixels, in which each pixel represents an angle

of 1 degree in both yaw and elevation axes. As a result, the

2D maps represent a unified view of the gazing activity and

scene information in front of the person.

To generate these maps (see one example of such maps

in the top left of Fig. 1), we proceed as follows. If {pi, i =
1, . . . , N} denotes the set of directions to be encoded in the

map D, we simply place 2D gaussians of covariance Σm

at each direction pi to provide information regarding this

direction while taking into account the estimation noise or

the size of targets. More formally:

D(p) ∝ max
i=1,...,N

N (p− pi; Σ
m) (1)

Using this process, the head pose map is created by using

as pi the (single) head pose direction, the gaze map is built

using the gaze direction, the video saliency map is produced

using as pi the set potential VFOA target directions (people

in the conversation in our case), and the audio saliency map

using the directions of people who are talking. The map

associated with the speaking status is the exception. As it is

not associated with any direction, we chose to fill it with its

value, i.e. it is full of ones when the subject speaks and full

of zeros otherwise.

Finally, all the five above maps are gathered into a single

tensor, so that it can be processed as a 5-channel input by a

convolutional neural network.

3.3. VFOA network and classification

Architecture. It is similar to the one in [19] and is a kind of

hourglass network with one initial 3x3 convolutional layer,

3 down- and upsampling layers built from residual blocks

(two blocks per encoder, one per decoder, as shown in at

the bottom left of Figure 1), and two final 3x3 convolu-

tional layers ending up with sigmoid activation. Down- and

upsampling are done using maxpool and upsample layers

respectively.

VFOA classification. The predicted VFOA map is trans-

formed into yaw and elevation angles by taking the angle

coordinates of the map’s maximal value. Then, VFOA clas-

sification is performed using the angular distance (i.e. co-

sine distance) to each target: it is an aversion if the mini-

mal angular distance to all targets is above a given threshold

τvfoa and the nearest target otherwise. and the decision is

made by comparing cosine distance between vectores:

Training. The VFOA map network is trained frame by

frame using the binary cross-entropy (BCE) loss distin-

guishing two cases, as shown in the bottom right of Fig. 1.

When the subject is looking at another person (focused),

we want the output VFOA map to fit the target position,

and the loss is the BCE between the output map and a tar-

get map featuring only the ground truth VFOA target. In

case of aversion, we want the output VFOA map values to

be low where there are targets, so the loss is the BCE be-

tween a zero map and the output map masked by the visual

saliency map to only keep VFOA outputs close from tar-

gets (and thus remove outputs far from targets which can be

considered as valid outputs). So, we have:

LV FOAmap = f · Lfocused + (1− f) · Laversion, (2)

Lfocused = BCE(Mout,Mtar), (3)

Laversion = BCE(
Mvsal

max(Mvsal)
·Mout, 0map), (4)

where Mout, Mtar, Mvsal, and f are respectively the output

map, the target map, the visual saliency map (consisting of

all potential targets), and a binary indicator equal to 0 if the

ground truth VFOA is ”aversion” and 1 otherwise.

Data augmentation. To increase the generalization abili-

ties of the trained model, we use several data augmentation

strategies:

• target removal: a random number of targets (between

0 and the total number of targets minus 1) are removed

from visual and audio saliency maps. If a removed

target corresponds to the VFOA ground truth, the label

is turned to ”aversion”;

• target addition: a random number of fake targets (be-

tween 0 and 2) are added to the visual saliency map.

Their locations are sampled using the mean of the real

target positions and a variance scaled by 1.5 in the yaw

direction. Each fake target can also appear on the audio

saliency map, as if it was speaking, with a probability

of 0.5;

• global noise: random white noise (σ = 5◦) is added to

all angles (head pose, gaze, and target positions).



Figure 2. Picture of the KTH-Idiap (left), UBImpressed ’Inter-

views’ (center) and UBImpressed ’Desk’ (right) setups.

• feature noise: random white noise (σ = 2◦) is added

to each angle separately (head pose, gaze, and target

positions).

When data augmentation is used, these four strategies are

applied to each samples, meaning that the number of train-

ing samples does not increase.

4. Experiments

4.1. Datasets

In this work, we rely on two conversation datasets, which

present different setups (see Fig. 2) in terms of scenario,

length, and number of participants, but provide the same

kind of data (RGB-D recording and speaking turns of each

person).

UBImpressed dataset [15]. It consists of short dyadic in-

teractions (five to ten minutes) in which a participant inter-

acts with an actor in two different scenarios: a job interview,

in which the two persons are sitting in front of each other in

a formal setup, and a reception desk, where they are stand-

ing and moving freely. Data were acquired with Kinect2

sensors (RGB-D, HD color images, 30 fps) placed on the ta-

ble, recording each participant individually with a sideway

point of view. Also, a microphone array recorded the con-

versation and indicated who is talking in each video frame.

VFOA was annotated on the first minute plus 5 additional

segments of 10 seconds every minute in 4 ’Interviews’ and

4 ’Desk’ sessions (so 16 videos in total). Removing sam-

ples where the subject is blinking or when the annotation is

uncertain, sums up to around 36K annotated samples, with

39% of aversions.

KTH-Idiap dataset [16]. It consists of one-hour four-party

meetings in which three students present their projects to an

interviewer who leads the discussion. Compared to UBIm-

pressed, this setup presents a more relaxed and more dy-

namic type of social interaction, with alternation of mono-

logue, dialogue and discussions.

Data were acquired with Kinect1 sensors (RGB-D, VGA

color images, 30 fps) placed on the table at around 0.8 me-

ters in front of each participant, and lapel microphones in-

dicating who is talking in each video frame. VFOA was

annotated on the first minute of interaction and 9 additional

segments of 30 seconds spread on the entire video in all 5

sessions (so 20 videos in total). In this dataset, annotated

samples sum up to around 115K, with 17% of aversions.

Scene monitoring. As specified in Section 3.1, both

datasets provide the speaking status of each participant at

each video frame. They also provide the recording of each

participant and the relative position of their corresponding

cameras, so that the target (i.e. people) positions can be

extracted by processing each target person video using the

Headfusion method (see Section 3.1) and by projecting their

3D positions in the subject’s camera coordinate system, be-

fore expressing them in the subject’s body frame.

4.2. Baseline model

We looked for a baseline that is comparable to our

method in terms of input features and usability, i.e. a

method allowing to predict the VFOA for an arbitrary num-

ber of targets without retraining. However, to the best of

our knowledge, previous state-of-the-art methods focused

on predicting VFOA in scenarios involving a fixed num-

ber of people in the conversation and within a fixed set-

ting [4, 17, 5]. No cross-dataset experiments were per-

formed. As discussed in Section 2, applying these meth-

ods to a new setting with a different geometry or number of

participants is not trivial without retraining the model from

scratch, since these models do not introduce explicit spatial

relationships, and they do not handle moving people.

Thus, we propose to use as baseline a strong multimodal

statistical binary classifier predicting the probability that a

subject looks to a target given the target direction, the sub-

ject’s gaze and head pose, and the speaking status of all

persons in the scene. Doing so allows this classifier to be

applied to any number of potentially moving targets with-

out retraining or fine-tuning and uses the same features as

the proposed method.

More formally, let us denote Fi the subject’s focus status

toward the target i (1 when being focused on target, and 0
otherwise) g his/her gaze direction, h his/her head pose, ti
the direction of target i, and S the speaking status of the

scene, defined as the combination of three speaking status

S = (Ssubject, Starget, Sother) and can thus take 8 values.

For example, it can take values such has (0, 0, 0) (nobody

speaks) or (0, 1, 1) i.e. the subject does not speak, but the

target and at least another person speak. Note that g, h and

ti are all expressed as 2D angles. With these notation, we

define the probability of the subject’ focus status as follows:

p(Fi|Zi, S) ∝ p(Zi|Fi)p(Fi|S), (5)

with Zi = [g − ti, h− ti]
T (6)

where we made the assumption that the gaze and head pose

errors g − ti and h − ti do not depend on the speaking

status. We then further define the likelihood p(Zi|Fi) as

a multivariate Gaussian for each possible value of Fi. It can



formally be written as:

p(Zi|Fi) = Fi N (0,Σfoc) + (1− Fi)N (0,ΣUnf ). (7)

Regarding the prior p(Fi|S), it is defined as a categorical

distribution over the eight speaking status.

Finally, at inference, to make a decision we first find the

target î for which the likelihood p(Fî|Zî, S) of looking at

this target is maximal. Then, if

p(Fî = foc|Zî, S) > p(Fî = Unfoc |Zî, S),

î is set as the subject’s VFOA, otherwise it is defined as

being aversion.

4.3. Experimental Protocol

Performance measure. To compare methods, we report

the mean and standard deviation of VFOA classification ac-

curacy of the subjects, where the accuracy per subjects is

computed as:

vfoaAcc =
1

T

T∑

t=1

✶
f̂t=ft

, (8)

where f̂t is the estimated VFOA and ft the ground truth.

Moreover, we report the mean of VFOA classification

macro F1-score of the subjects, to ensure that the model

does not exploit classes’ unbalance to reach a good accu-

racy.

Experimental protocol. Regarding the protocol, our

method and the baseline are first evaluated on both datasets

separately with a leave-one-out protocol, reporting the aver-

age of the mean VFOA accuracy computed on each subject.

For cross-datasets experiments, a single model is trained on

one of the datasets and evaluated on the second dataset with-

out any adaptation, and we also compute the mean VFOA

accuracy for each subject in the test dataset and report their

average. Finally, our method is evaluated by training and

testing a model on both datasets together (all-datasets ex-

periments), for which we use a 4-fold cross-validation pro-

tocol, with 1 KTH-Idiap, 1 UBImpressed ’Interviews’, and

1 UBImpressed ’Desk’ sessions per fold. We compute the

mean VFOA accuracy for each subject and report their aver-

age by dataset to allow comparison with other experiments.

Parameters. We fixed the VFOA classification threshold

τvfoa (see Section 3.3) to 10◦, which corresponds to a tol-

erance of 35cm at 2 meters. In addition, in our experiments,

to produce the feature maps, we used an isotropic Gaussian

kernel Σm with a standard deviation of 10◦ for all maps, ex-

cept for the head pose map where we used 20◦ which better

encompasses the range from the head pose where the gaze

can be.

Table 1. VFOA classification accuracy mean, standard deviation,

and macro F1-score across subjects. (Abbreviations: ’h’ stands for

head pose, ’g’ for gaze direction, ’vsal’ for visual saliency, ’asal’

for audio saliency, and ’spk’ for subject’s speaking status).

Method UBImpressed KTH-Idiap

vfoaAcc F1 vfoaAcc F1

a) Overall results

baseline 0.84 ± 0.13 0.80 0.80 ± 0.11 0.74

VFOAmap Net 0.85 ± 0.13 0.82 0.81 ± 0.15 0.75

VFOAmap Net + dataAug 0.82 ± 0.12 0.78 0.82 ± 0.15 0.74

b) Input ablation study

headGaze (h-g) 0.80 ± 0.15 0.78 0.60 ± 0.17 0.56

onlyScene (vsal-asal-spk) 0.60 ± 0.14 0.37 0.63 ± 0.15 0.51

noGaze (h-vsal-asal-spk) 0.67 ± 0.12 0.55 0.73 ± 0.14 0.59

noHead (g-vsal-asal-spk) 0.83 ± 0.12 0.79 0.82 ± 0.15 0.74

noAudio (h-g-vsal) 0.88 ± 0.10 0.80 0.78 ± 0.14 0.70

c) Cross-datasets evaluation

baseline 0.71 ± 0.11 0.58 0.62 ± 0.15 0.56

VFOAmap Net 0.74 ± 0.14 0.65 0.70 ± 0.15 0.61

VFOAmap Net + dataAug 0.85 ± 0.12 0.82 0.79 ± 0.13 0.71

c) All-datasets evaluation

baseline 0.80 ± 0.10 0.77 0.82 ± 0.12 0.75

VFOAmap Net 0.85 ± 0.09 0.85 0.85 ± 0.17 0.75

VFOAmap Net + dataAug 0.87 ± 0.10 0.83 0.85 ± 0.17 0.77

4.4. Results

Intra-datasets evaluation. Intra-dataset results are re-

ported in Tab. 1a. Given the difficulty of the task, we can see

that the multimodal baseline already produces very good re-

sults on both datasets. Looking at the standard deviation, we

can also notice an important differences between subjects,

which remains in all experiments. In intra-dataset experi-

ments, the proposed method achieves marginally better than

the baseline. Also, the F1-score, which puts more weight on

incorrectly classified cases compared to accuracy, shows a

similar trend, showing that performances are not only due

to more target and fewer aversion predictions but to good

recognition of all classes. The data augmentation does not

help here, which is probably due to the amount of avail-

able data compared to the relatively low target positions

variance in the datasets, and the actual potential overfitting

when conducting such intra-dataset experiments.

Input ablation study. In the proposed approach, the input

consists of five 2D maps and we are interested in testing

the contribution of the different features to the overall per-

formance. To do so, we removed some maps to see how it

affects performance. We tested five combinations of inputs,

and results are given in Tab. 1b.

Results confirm that VFOA estimation benefits both

from subject features and scene information, as experi-

ments with only head and gaze (headGaze) or scene cues

(onlyScene, an experiment which allows to check the impact

of only prior on results), do not reach the performance of

the proposed approach. In addition, while adding head pose

improves the performances of onlyScene (noGaze experi-

ments), it is not as strong as adding gaze alone (see noHead)

which almost reaches the performance of the proposed ap-

proach (VFOAmap Net), indicating that in our data, the



Figure 3. Confusion matrices for UBImpressed (left) and KTH-

Idiap (right) datasets after cross-dataset training with data augmen-

tation.

head pose does not contribute much when the gaze is avail-

able. Finally, audio information (subject’s speaking status

and audio saliency) seems to be more relevant in the multi-

target case of the KTH-Idiap dataset (compare noAudio to

VFOAmap Net), which is expected as in such a case, the ten-

dency of looking at the speaker can help to solve ambigu-

ities. These results show that the proposed method mainly

exploits gaze and visual saliency when they are available,

but that all inputs contribute to robustness (even if they are

redundant, e.g. head pose).

Cross-datasets evaluation. Tab. 1c reports the resulting

VFOA accuracy when the model is trained on the other

dataset (i.e. trained on KTH-Idiap and evaluated on UBIm-

pressed and vice-versa). These clearly demonstrate the gen-

eralization capabilities of the proposed method. In particu-

lar, while the results achieved only with the available train-

ing data are below the intra-dataset results by 10%, using

data augmentation (dataAug) allows to close the gap and

to achieve results as good as if the method was trained on

the dataset itself. For comparison, the baseline’s accuracy

decreases of respectively 13% and 18%, which shows that

generalizing from a dataset to another is not trivial.

All-datasets evaluation. In our case, training on both

UBImpressed and KTH-Idiap together (see Tab. 1d) slightly

improves the performances compared to cross-datasets ex-

periments (+2% and +6% with data augmentation). Also,

data augmentation only marginally improves the results,

probably for the same reasons as in the intra-dataset case.

These results, which are the best among our experiments,

show the advantage of the proposed method that can suc-

cessfully train a single model using several datasets with

different setups and target numbers.

Confusion matrices. Figure 3 shows the confusion matri-

ces for the models trained in a cross-dataset fashion with

data augmentation. We did not report the confusion matri-

ces for the intra-dataset experiments as they are very similar

to these. In the KTh-Idiap case, computing a confusion ma-

trix is difficult as when the VFOA ground truth is a target,

the network can output aversion (false negative), the correct

target (true positive), or another target. We fixed the latter

case by adding an other target column in the confusion ma-

Figure 4. Accuracy, as well as the precision and recall curves of

the aversion class against the VFOA classification threshold for

UBImpressed (left) and KTH-Idiap (right) datasets, after cross-

dataset training with data augmentation. The red vertical line in-

dicates the default value of τvfoa = 10◦ used in our experiments.

trix.

Looking at the resulting matrices, the proposed method

has more difficulties to detect aversions, as it achieves a bet-

ter target recall (0.98 for UBImpressed and 0.88 for KTH-

Idiap) compared to aversion recall (0.67 and 0.32 recall re-

spectively).

Looking at the KTH-Idiap dataset, most of the errors

come from the model predicting a target instead of aver-

sion. This and the very low aversion recall can be explained

by the class imbalance, as only 17% of VFOA are aver-

sions. Nevertheless, class balancing strategies might not be

desired, as this imbalance is a characteristic of multi-party

meetings and from an application viewpoint, there is no ob-

vious reason to favor recall over accuracy. The low aversion

recall might also be explained by the defined loss, which

does not set a precise prediction target in aversion cases. It

should be noted that we reported only the confusion matri-

ces for a VFOA threshold τvfoa of 10◦, without searching

to maximize the recall.

Accuracy versus VFOA classification threshold. In the

above experiments, we set the VFOA classification thresh-

old τvfoa to an arbitrary value of 10◦. Figure 4 shows the

impact of this parameter on the accuracy, precision, and re-

call of the aversion class. All these metrics were computed

for each subject, and we report their average for each value

of τvfoa.

Overall, the accuracy is maximal in a region between 5◦

and 15◦, which is probably due to the choice of the Gaus-

sian kernel’s standard deviation. Also, one can see that we

could increase aversion recall without losing accuracy by

choosing a smaller threshold.

Looking at the KTH-Idiap case, the accuracy peak is

smaller and increasing the threshold makes the accuracy

saturate toward a value of 0.77, which is near to that tar-

get class ratio in the dataset. This may suggest that the net-

work’s good score is particularly due to its ability to chose

between the different targets. Still, when the threshold is

around 5◦, both accuracy and aversion recall are above 0.60,



showing that the network is somehow able to distinguish

aversion from target.

5. Conclusion

In this work, we propose a deep learning based method

that estimates VFOA estimation from visual and audio fea-

tures encoded as 2D maps, which provides setup normaliza-

tion and allows to consider an arbitrary number of targets.

Especially, the proposed method was shown successful in

cross-datasets experiments, which is a promising step to es-

timate VFOA in new setups without needing to retrain or

fine-tune the model.

One limitation of the proposed method is the need for

the 3D position and speaking status of all participants in the

scene. It is usually considered as available in research tar-

geting HHI [4, 14, 17, 5] or HRI [20] applications where

one of the main goals is to monitor the conversation and in-

teractions between participants, including the speaking sta-

tus. However, in other applications, e.g. TV shows or in-

ternet videos, how to extract this information reliably and

the impact on performance will require further investigation

Future work will also consist of testing our method on other

datasets with even more intra-setup variance in terms of tar-

get position and number. Indeed, in both presented datasets,

the number of targets does not change during the interac-

tion, even if cross-dataset results are promising. Also, the

proposed network could be enhanced with temporal infor-

mation, using recurrent layers for example, or by adding

other maps like encoding the gaze of the targets. Finally, it

would be interesting to see if this approach could be applied

to different tasks, like gaze refinement or gaze synthesis.
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