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Abstract

One of the most fundamental and information-laden ac-

tions humans do is to look at objects. However, a survey

of current works reveals that existing gaze-related datasets

annotate only the pixel being looked at, and not the bound-

aries of a specific object of interest. This lack of object an-

notation presents an opportunity for further advancing gaze

estimation research. To this end, we present a challenging

new task called gaze object prediction, where the goal is to

predict a bounding box for a person’s gazed-at object. To

train and evaluate gaze networks on this task, we present

the Gaze On Objects (GOO) dataset. GOO is composed of

a large set of synthetic images (GOO-Synth) supplemented

by a smaller subset of real images (GOO-Real) of people

looking at objects in a retail environment. Our work estab-

lishes extensive baselines on GOO by re-implementing and

evaluating selected state-of-the-art models on the task of

gaze following and domain adaptation. Code is available1

on github.

1. Introduction

Everywhere we go, we see people looking at objects.

Knowing what someone is looking at often gives informa-

tion about that person. Someone looking at a map might

be a tourist looking for directions. A person looking at the

traffic light is probably planning to cross the street. In re-

tail, a salesperson who can identify the product a customer

is looking at can quickly offer assistance. Where and what

we look at potentially reveals something about us and what

we’re doing.

Emery [6] showed the neuro-scientific importance of

gaze by elaborating on how it is used for social interac-

tion, for indicating intention, and for communication be-

*Equal contribution.
1https://github.com/upeee/GOO-GAZE2021

tween people. Similarly, gaze can also be a crucial factor

for computer vision systems in understanding and interpret-

ing human actions in a certain scenario. Recasens et al. [21]

defined the task of gaze following for these systems as that

of determining the direction and the point a person is look-

ing at.

The potential applications of intelligent systems with the

ability to do gaze following lead to increased interest in

varying gaze-related subfields. Several datasets are created

for predicting saliency [2, 12, 25], or determining portions

of an image that is most likely to catch interest from a first

person point-of-view. Another subfield exists for tracking

eye-movement to predict the gaze direction from a second

person perspective [8]. Gaze prediction on humans in im-

ages viewed from third-person became the most commonly

researched subfield, after well-established baselines were

published using the GazeFollow dataset [21]. Subsequent

works [4,15] applied deep neural networks to achieve near-

human performance on this task, and developed methods

that can track human gaze in video.

Taking inspiration from how humans perform gaze fol-

lowing, we believe that identifying which object a person is

looking at holds more value than predicting a point. When

you follow another person’s gaze, it seems natural to take

into account the objects in the inferred direction to confirm

where and what exactly this person is looking at. Similarly,

teaching a system to be aware of the objects in a scene could

aid gaze following, and may result in more accurate predic-

tions.

To this end, we present a new task called gaze object

prediction, where one must infer the bounding box of the

object gazed at by the target person, which will be referred

to as the gaze object. Aside from being more challenging,

the task also encourages the use of objects present in the

scene to build better performing gaze systems. In environ-

ments with fewer objects, sparse object placement can be

used as cues for the model to affirm whether the estimated

direction is correct. Conversely, in environments with dense
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Figure 1: Samples of images from GazeFollow (1st row), GOO-Real (2nd row), and GOO-Synth (3rd row).

object placement, clustering of objects may hold important

features that the model can learn to be more robust in its

predictions. Our work focuses on the prediction of gaze

objects in retail, a task of fulfilling both sparse and dense

conditions, with promising applications in market research.

We demonstrate that existing gaze-related datasets lack the

annotation required for training on our proposed task.

To address this problem, we present a new image dataset

called Gaze On Objects (GOO), a dataset tailored for gaze

object prediction in retail environments. It is composed

of synthetic and real images, and is considerably larger

than existing datasets. Aside from the standard gaze an-

notation such as gaze point and the person’s head, GOO

includes additional detailed annotations such as bounding

boxes, classes, and segmentation masks for every object

in the image. Its differences with GazeFollow, which is a

favored dataset for evaluation on predicting gaze points in

third person, is discussed in detail at section 3.3.

We also establish comprehensive baselines on the GOO

dataset by evaluating existing state-of-the-art gaze networks

on the task of gaze following. Lastly, to provide insight into

how GOO can be used for domain adaptation, experiments

on the transferability of GOO’s synthetic features to the real

domain is provided.

2. Related Work

In the following, we discuss related datasets and justify

why they are not suitable for the task of predicting gazed-

upon objects.

iSUN [25], a subset of SUN [24] is annotated with first

person saliency heatmaps based on eye tracking. It is a

small dataset composed of 20,608 images.

CAT2000 is a compilation of various datasets (one if

which is also SUN [17]). With only 4,000 images, it is

much smaller than iSUN [25]. It is annotated with first per-

son saliency heatmaps via eye tracking.

SALICON [12], a subset of MSCOCO [17] composed

of 10,000 images, is annotated with first person saliency

heatmaps via mouse tracking.

EYEDIAP [8] is a video dataset in a second person view

of a person’s face. This person is the one whose gaze is

being predicted. There are 16 different participants with

4 hours of data. The gazed upon object is either floating

in front of the camera (visible in the video frame) or on a

screen behind the camera (not visible in the video frame).

None of these are suited for the task of predicting which

object a human is looking at given only a third person view.

This is primarily due to the different perspectives these



Dataset
Ground

Truth
Perspective Size

iSUN [24] Point 1st Person 20,000

SALICON [12] Point 1st Person 10,000

CAT2000 [2] Point 1st Person 4,000

EYEDIAP [8] Point 2nd Person N/A

GazeFollow [21] Point 3rd Person 122,143

GOO (Ours) Object 3rd Person 201,552

Table 1: Survey of saliency and gaze-related datasets. Pre-

vious datasets are small in terms of size save for GazeFol-

low, and only GOO (ours) has annotations for the gaze ob-

ject bounding boxes.

datasets were captured in. Furthermore, some of them do

not even have the ground truth gaze annotations as Gorji et

al. [10] had to manually add these for their work on aug-

mented saliency heatmaps. Finally, it is also worth noting

that these datasets are all very small with the largest image

dataset containing only around 20,000 photos.

GazeFollow [21] is currently the most suitable dataset

for the gaze following subfield which we focused on. This

dataset was published by Recasens et al. along with a gaze

heatmap prediction system, and has been used by other gaze

prediction methods such as that of Chong et al. [4] and Lian

et al. [15]. It is composed of 122,143 images compiled

from various preexisting datasets, which were then anno-

tated with ground truth gaze point locations. Thus, it is built

for gaze point prediction, and not for gaze object prediction.

The task for which they were designed is the main dif-

ferentiator between GazeFollow and GOO. This alone is not

enough to warrant the creation of a new dataset; after all, it

can be argued that GazeFollow could just be annotated with

ground truth gaze objects. Therefore, we enumerate more

differences between Gazefollow and GOO in their annota-

tions, size, context, suitability to task, and domain adap-

tation applications (See summary in Table 2). We further

explain the differences in Section 3.3.

In our work, we employ existing gaze following meth-

ods [4,15,21] with established baselines on the GazeFollow

dataset. In Section 4.2, we will discuss more thoroughly

what these works are and how we recreated and bench-

marked them on both GazeFollow and GOO. Finally, we

mention that to the extent of our research there is no work

yet that is specific for the task of gaze object prediction.

3. Gaze On Objects (GOO)

The GOO dataset is composed of images of shelves

packed with 24 different classes of grocery items, where

each image contains a human or a human mesh model gaz-

ing upon an object. All objects in the scene are annotated

with their bounding box, class, and segmentation mask. As

with existing gaze-related datasets, location and bounding

GazeFollow GOO

Size 122,143 201,552

Type Real Synthetic & Real

Head Bbox, Head Bbox,

Annotations Gaze point Gaze object,

Obj Segmentation

Context Varied Retail

Ppl./image Varied 1

Obj./image Few Many

Applicable for DA X

Table 2: Differences between GazeFollow and GOO.

box annotations for the person’s head are provided. With

these annotations, GOO can also be used for other tasks

such as object detection and segmentation.

GOO Dataset consists of two parts: a larger synthetic

set of images called GOO-Synth, and a smaller real set of

images called GOO-Real.

3.1. GOOReal

A mock-up of a retail environment was built. Several

grocery items were placed on the shelves to imitate a real

grocery store. GOO-Real consists of 100 humans (68 male

and 32 female ranging from 16 to 50 years old) and 9,552

images. For each image there are around 80 total grocery

items, each belonging to one of 24 different classes. The

shelves are completely filled up by 3 to 6 instances of the

same grocery item. Two cameras were used, one facing

each cabinet. For each volunteer the items were shuffled to

avoid overfitting when training models. The test set is made

up of 2,156 images with the remaining images comprising

the training set, split so that human volunteers in one do not

appear in the other.

For the creation of GOO-Real, videos were taken of each

volunteer. Each volunteer was asked to walk into the sim-

ulated grocery environment. They would then be told to

gaze at a total of 24 items for a few seconds each. Two im-

ages were extracted from the video for each item stared at.

A predetermined randomized list was used to instruct each

volunteer regarding which specific item he should look at

(e.g. Look at the box of cereal located at shelf 1, row 2, 2nd

from the left). These lists were later used by 11 annotators

when attaching ground truth labels assuring that the objects

being labelled as ground truth objects were indeed the items

being gazed upon.

3.2. GOOSynth

GOO-Synth forms the bulk of GOO’s training data with

192,000 images, to which the smaller GOO-Real will be

supplementary. For the creation of GOO-Synth, a realistic-

looking replica of the scene used in GOO-Real was created

in Unreal Engine [7]. Five cameras (randomly chosen from



Figure 2: Annotations for the GOO dataset. From left to right: RGB image, bounding boxes with object class, eye point and

gaze point, and segmentation masks. Bounding boxes and segmentation masks for the head and gaze object are indicated.

50 virtual cameras placed inside the simulated environment)

was used to capture images of one of 20 synthetic human

models interacting with the scene. These human models

were highly varied with respect to skin tone (black, white,

brown, etc.), gender (male, female), body form (fat, thin,

muscular, tall, short, etc.), and outfits. The grocery objects

were designed after real-life counterparts, with the packag-

ing of real objects scanned to be used as textures. Other ele-

ments of the scene were also varied such as skyboxes (back-

ground), and lighting. In total, there were 38,400 scene en-

vironments.

To simulate the act of looking, we created a gaze vec-

tor originating from a point between the eyes of the human

model and perpendicular to the face. This gaze vector was

directed towards the indicated ground truth object. Similar

to GOO-Real, the human models were split such that each

human model appeared exclusively in the training set or the

test set. The training set used 18 models, while the test set

used the remaining two models.

3.3. Comparing to GazeFollow

Annotations. For GazeFollow [21], the gaze point an-

notations were added manually; any additional annotations

such as object bounding boxes will also have to be done

manually. On the other hand, since the bulk of GOO is

synthetic, annotation is not only easier but also faster since

the task can be automated. Another difference is that an-

notations for GOO has better integrity. This is due to the

ground truth object being noted down in advance before hu-

man volunteers or models are made to look at it, as opposed

to GazeFollow which sets the gaze point ground truth based

on the judgement of volunteer annotators.

Size and Domain. Our dataset is much larger than

the GazeFollow dataset, with GOO having 201,552 images

compared to GazeFollow’s 122,143 images. This is due to

the bulk of GOO being synthetic, where unique images can

be generated by adjusting conditions in the simulated en-

vironment. It should be noted that only 9,552 samples of

GOO are real images, compared to GazeFollow which is

entirely real-world data; therefore, performance of models

trained on GOO in real scenarios depend mostly on how

well it can adapt learned synthetic features. We discuss

more of GOO for domain adaptation in section 3.4.

Context. Our dataset is focused on the retail environ-

ment. GazeFollow was built by the authors from a variety

of other datasets which are not necessarily suited for one

particular setting [21]. In contrast, GOO is tailor-made for

the task of object gaze prediction in a densely-packed envi-

ronment. While we do not claim that retail is the only envi-

ronment that would benefit from gaze following, we believe

that it is one of the fields where the advantages are very ap-

parent. For example, most grocery stores already have the

equipment in the form of security cameras. Furthermore, in

a retail setting, knowing what objects hold interest is useful.

Suitability to Task. GazeFollow consists of images bor-

rowed from a combination of different datasets. In these

datasets, there is a prevalence of scenes where objects are

few and sparsely placed. GOO’s retail setting provides an

aspect which GazeFollow generally does not, and that is

gaze estimation in an image densely packed with objects.

The task of predicting which object is being gazed at in

scenes with many objects is inherently harder when com-

pared to scenes with fewer objects. However, we hypothe-

size that models trained with dense objects are more likely

to learn important features making it more robust in its pre-

dictions.

3.4. Tasks

The extensive annotation of the GOO dataset makes it

applicable to training systems on a multitude of challenging

problems, especially along the fields of gaze estimation and

object detection. In this paper we highlight the applications

of GOO on three tasks, which we define as follows.

Gaze following. The task of gaze following as defined

by Recasens et al. [21] entails the prediction of the exact

point a person is looking at, given the image and the head

location. The task can be broken down into two stages,

namely: 1) the estimation of gaze direction from the head

and scene features and 2) the regression of confidence val-

ues for a gaze point heatmap. The GOO dataset can provide



benchmarks on this task by defining the ground truth ob-

ject’s center as the gaze point.

Gaze Object Prediction. The action of predicting the

gaze point remains a challenging problem. However, in

practical applications such as identifying the object being

looked at, current works trained on estimating a single point

would require separate systems for classification and detec-

tion. We propose a novel task called gaze object predic-

tion: the goal is for an intelligent system to learn to classify

and predict boundaries for the object a person is looking

at. We believe this presents a much more challenging prob-

lem compared to gaze following, as learning features that

are important to gaze must be balanced with features tan-

tamount to object detection. The GOO dataset’s scope lies

on applying this task to retail environments, where multiple

products in close proximity provide difficult yet rewarding

samples for a model to learn from. However, the current

works on gaze estimation do not predict the gaze objects.

Thus, we will leave performance measurements for gaze ob-

ject prediction for future work.

Domain Adaptation. Considering that GOO is com-

posed of a .95 to .05 split between synthetic images and

real images, exploring how well features learned on GOO-

Synth can adapt to the domain of GOO-Real is also a prob-

lem that merits interest. We benchmark the gaze predic-

tion networks trained with the GOO-Synth dataset on the

task of domain adaptation, specifically on transferring the

learned features from the synthetic domain onto the real do-

main. This task evaluates the performance of the baselines

when trained with simple transfer learning on the GOO-

Real dataset, comparing architectures with prior training on

GOO-Synth to those without.

4. Methodology

In this section we discuss the methods selected to pro-

vide benchmarks on the GOO dataset, along with the crite-

ria followed in choosing these methods. A comprehensive

discussion of each baseline is provided, where stages and

techniques are outlined to give insight into how the task of

gaze following is accomplished in a modular fashion.

4.1. Baseline Selection

To verify the accuracy of our implementation of the base-

lines, it is highly beneficial to have an existing performance

benchmark on another dataset to serve as a point of compar-

ison. The GazeFollow dataset is an important cornerstone

of the gaze following task, and a considerable amount of

state-of-the-art methods already have a benchmark on this

dataset; thus, we use these benchmarks to guarantee the cor-

rectness of our implementation of the baselines before eval-

uating on the GOO dataset.

The input to the network architectures should only in-

clude the full input image along with the head location. This

Figure 3: Where are They Looking? by Recasens et al. [21]

criteria rules out methods that use video, preceding frames,

or 3D annotations as supporting data for the gaze prediction.

However, such methods that can be modified to follow cor-

rect inputs can be considered. The output of the baselines

should include a final gaze heatmap of no specific dimen-

sions. The point in the heatmap with the highest confidence

value shall indicate the gaze point, and both heatmap and

gaze point are used for the evaluation on the previously dis-

cussed tasks.

4.2. Baseline Methods

Considering the above criteria, the works of Recasens et

al. [21], of Lian et al. [15], and of Chong et al. [4] are se-

lected as baselines to be evaluated on the GOO dataset. The

contrived architectures of these works set the precedent of

dividing the task of gaze following into three sub-problems,

to be solved by different modules. We define both the mod-

ules and their respective sub-problems and enumerate them

as: 1) the scene module, which performs feature extraction

on the entire image; 2) the head module, which performs

feature extraction on the cropped head image and location;

and 3) the heatmap module, which uses the scene and head

feature maps to predict a gaze point confidence heatmap.

Each network architecture discussed in this section is visu-

alized in terms of these three modules.

Random. When quantitatively benchmarking the per-

formance of multiple networks, it would be best to have

a lower bound for performance. For this we establish the

same random baseline used by [21], where a heatmap is

generated per pixel by sampling values from the standard

normal distribution. This heatmap is then treated as the out-

put heatmap and evaluated against the ground truth.

Where are they Looking?. An architecture for gaze fol-

lowing can be observed in Figure 3, representing the work

of Recasens et al. [21]. Their work sets a precedent in their

approach of having two distinct input pathways: one mod-

ule for the full image and another module for the cropped

head image. They design the scene module inspired by

saliency networks, which highlights important subjects in

the image, including objects that a person might look at.

The head module is then designed to infer the general di-



Figure 4: Believe It or Not, We Know What You are Look-

ing At! by Lian et al. [15]

rection of the person’s gaze. Both of these modules use

AlexNet [14] for feature extraction, which uses pretrained

weights for ImageNet [22] and the Places dataset [27] to

initialize the head and scene module respectively.

The feature maps from the first two modules are then

combined using element-wise multiplication. The result-

ing product is passed onto the network’s heatmap module,

marked as the green module in Figure 3. To produce the

final heatmap, their work uses a shifted-grids approach, di-

viding the full image into five N × N grids of different ratios

where each cell is treated as a binary classification prob-

lem (if the cell contains the gaze point). Per shifted grid,

a fully-connected layer predicts confidence values for each

cell, and the outputs from predicting on multiple grids are

merged to form the final gaze heatmap.

Believe It or Not, We Know What You are Looking

At!. Subsequent work conducted by Lian et al. [15] intro-

duced state-of-the-art CNNs in gaze networks. They pro-

posed a new architecture as seen in Figure 4 where the head

module infers the gaze direction from the head image us-

ing ResNet-50 [11]. The head location is encoded by fully-

connected layers before being concatenated with the head

feature map. Instead of producing a directional gaze mask,

their architecture’s head module estimates a 2-dim gaze di-

rection vector.

The gaze direction vector is then used to create multi-

ple direction fields, which are empirically generated field-

of-view cones represented by a heatmap. These fields are

concatenated with the full image, and is fed into a feature

pyramid network (FPN) [16], followed by a final sigmoid

layer to ensure gaze point confidence values fall into stan-

dard [0,1] range. This proposed architecture discards the

need for a separate scene module, and uses the FPN with

sigmoid to perform both the feature extraction and gaze

heatmap regression.

Detecting Attended Visual Targets In Video. Chong

et al. [4] proposed to use both spatial information in static

images and temporal information on video to obtain a bet-

ter gaze heatmap prediction. Their novel architecture in-

troduces a more complex interaction between the head and

Figure 5: Detecting Attended Visual Targets in Video by

Chong et al. [4]

scene feature maps, as well as convolutional-LSTMs [23]

that are able to extract temporal features. Similar to the

work of Lian et al., both the head and scene modules

use ResNet-50 to perform feature extraction on the input

images. However, their work also introduces additional

element-wise connections and operations between the head

and scene module, which can be observed in Figure 5.

The heatmap module uses two convolutional layers to

encode the combined head and scene features. For the pur-

poses of the original authors, a convolutional-LSTM layer

comes after the encoding layers for temporal feature extrac-

tion. However, for our tasks we only evaluate on static im-

ages. Thus, the aforementioned layer is removed. A net-

work composed of three deconvolutional layers and a point-

wise convolution upscales the features into a full-sized gaze

heatmap. Parallel to this is their novel in-frame branch,

which computes a modulating feature map that is subtracted

element-wise from the gaze heatmap if it estimates the gaze

point to be out of frame.

5. Experiments

We evaluate the performance of the methods discussed in

Section 4 on the tasks of gaze following and domain adapta-

tion. Several baselines [4, 15, 21] are initially benchmarked

on the GazeFollow [21] dataset to check the accuracy of our

Model
Published Ours

AUC ↑ Dist. ↓ Ang. ↓ AUC ↑ Dist. ↓ Ang. ↓

Random 0.504 0.484 69.0° 0.501 0.474 68.4°

Recasens et al. [21] 0.878 0.190 24.0° 0.870 0.205 28.8°

Lian et al. [15] 0.906 0.145 17.6° 0.921 0.151 18.2°

Chong et al. [4] 0.921 0.137 n/a 0.918 0.140 17.8°

Table 3: Results on GazeFollow Test Set.

Model AUC ↑ Dist. ↓ Ang. ↓

Random 0.497 0.454 77.0°

Recasens et al. [21] 0.929 0.162 33.0°

Lian et al. [15] 0.954 0.107 19.7°

Chong et al. [4] 0.952 0.075 15.1°

Table 4: Benchmarking Results on GOO-Synth Test Set.



Model
No Pretraining Pretrained

AUC ↑ Dist. ↓ Ang. ↓ AUC ↑ Dist. ↓ Ang. ↓

Recasens

0-shot 0.543 0.359 78.2 0.706 0.313 74.0

1-shot 0.746 0.263 49.7 0.872 0.196 38.5

5-shot 0.850 0.220 44.4 0.903 0.195 39.8

Lian

0-shot 0.502 0.420 69.2 0.773 0.275 49.6

1-shot 0.723 0.688 71.2 0.866 0.178 34.4

5-shot 0.840 0.321 43.5 0.890 0.168 32.6

Chong

0-shot 0.670 0.334 66.6 0.710 0.255 47.9

1-shot 0.723 0.301 63.2 0.839 0.188 36.0

5-shot 0.796 0.252 51.4 0.889 0.150 29.1

Table 5: Performance on GOO-Real Test set. Models that receive pretraining on GOO-Synth before being few-shot trained

on GOO-Real are compared to their performance when GOO-Synth pretraining is skipped.

replication when compared to the results achieved in their

respective publications. We then present the benchmarks of

these methods on the GOO-Synth and GOO-Real datasets.

We leave experimentation with new architectures, loss func-

tions, and metrics for gaze object prediction to future work.

5.1. Implementation Details

All baseline methods are implemented in a unified, mod-

ular codebase based on the PyTorch framework. Train-

ing and evaluation of networks are performed on a sin-

gle machine using a GeForce GTX 1080Ti. All necessary

pretraining and initialization methods are lifted from each

method’s respective publications to recreate results as ac-

curately as possible. In the absence of disclosed training

hyper-parameters such as in the case of [21], training is em-

pirically tuned to obtain values nearest to the original im-

plementation. We also made the codebase available in the

interest of reproducibility and future work.

5.2. Evaluation

The standard metrics for evaluating gaze following are

used not only for the GazeFollow dataset, but also for the

GOO dataset. We consider the standard metrics to be as fol-

lows: Area Under the ROC Curve (AUC) is implemented

as described in prior work [13], where the prediction and

ground truth heatmap are downscaled and used as confi-

dence values to produce an ROC curve. L2 distance (Dist.)

is the euclidean distance between the predicted and ground

truth gaze point when the image dimensions is normalized

to 1×1. Angular error (Ang.) is the angular difference be-

tween the gaze vectors when connecting the head point to

the predicted and ground truth gaze points.

Given the synthetic and real partitioning of the GOO

dataset, experiments on domain adaptation through simple

transfer learning are conducted. Models which have been

trained until convergence on GOO-Synth are subjected to

0-shot, 1-shot, and 5-shot training on GOO-Real before

being evaluated on its test set. Models which have not

been given GOO-Synth pretraining are also trained with

the same hyper-parameters, and quantitative comparisons

between the two setups are made using the previously dis-

cussed metrics.

5.3. Results & Analysis

GazeFollow. Shown in Table 3 is our re-implementation

of the discussed algorithms and their benchmarks in com-

parison with the results published in their respective papers.

Our version of Recasens et al. has the greatest discrepancy

between the authors’ results and ours, which we attribute

to lack of training details provided in the paper, in addition

to their model being implemented in a different framework.

The performance of the works of Lian et al. and Chong et

al. achieves much more accurate values due to the respec-

tive authors making their code available online.

GOO-Synth. We present the results on the GOO-Synth

dataset for both the gaze following and gaze object predic-

tion task, shown in Table 4. By comparing the benchmarks

achieved on GOO-Synth to the results on GazeFollow, some

analysis can be drawn regarding the differences in context

between the two datasets. On the task of gaze following,

baselines achieve higher performing values on AUC and L2

distance. This is hypothesized to be because of the singu-

lar context of retail for the GOO scenes as opposed to the

varying scene context of GazeFollow data, making point es-

timates and heatmaps easier to learn for the models. On an-

gular error however, baselines perform worse on the GOO-

Synth dataset. We determine this to be the effect of images

in GOO where the human head is facing opposite the cam-

era but towards the shelves, making it hard for models to

make use of head features to estimate direction. In sum-

mary, the scene module of the baselines perform better on

the GOO dataset where only the retail scenario exists, while

the head module performs slightly worse due to cases where

the head is facing away from the camera.

GOO-Real. Results for baseline evaluation on GOO-

Real can be observed in Table 5. The values consistently



Figure 6: Sample predicted points and heatmaps using Chong et al.’s gaze network. Green line represents the ground truth

gaze vector and gaze object bounding box, while the red line is the model prediction. When evaluated on GOO-Real, models

that have been pretrained on GOO-Synth produces more precise heatmaps than models only pretrained with GazeFollow.

show how models trained on the GOO-Synth dataset before

being trained on GOO-Real achieve higher performance

on all metrics compared to models without. Performance

shown in 0-shot by pretrained models indicate better ini-

tialization of model weights across all the baselines; 1-shot

evaluation shows that these models achieve competitive per-

formance with less training iterations; and lastly, 5-shot

training results imply that GOO-Synth pretrained models

are able to adapt the learned synthetic features to obtain

higher performance approaching convergence.

Qualitative. Sample gaze point and heatmap predictions

using Chong et al.’s gaze network are shown in figure 6.

After 5-shot training and evaluation on GOO-Real, mod-

els with pretraining on GOO-Synth achieve higher qual-

ity heatmaps and more precise point predictions. Models

with no GOO-Synth pretraining seems to be unable to con-

fidently classify background pixels, producing the blue tint

on the heatmap outputs in column 1. The sample in row

2 implies that the GOO-Synth pretrained model is more

robust to subjects with their back and head completely

turned away from the camera. The model initialized only

with GazeFollow tends to produce heatmaps with multiple

hotspots, which was alleviated by the synthetic pretraining

as reflected in row 3.

6. Conclusion

In this paper, we present Gaze On Objects (GOO), a

dataset for gaze object prediction set in a retail environ-

ment, consisting of 192,000 images from a simulated envi-

ronment (GOO-Synth) and 9,552 images from a real-world

setup (GOO-Real). We introduce the task of gaze object

prediction, which would hopefully inspire novel architec-

tures and training methods for gaze systems to infer the

class and boundaries of the specific object being looked at.

We provide thorough baseline experiments for benchmark-

ing existing gaze following methods on our dataset. Our

work also provides a comprehensive evaluation of networks

on GOO-Real given whether they were pretrained on GOO-

Synth or not, in the interest of domain adaptation.

7. Future Work

The benchmarks shown in this paper focused only on ex-

isting metrics on gaze estimation. However, to fully com-

plete the gaze on objects task, it is necessary to also formu-

late new metrics to measure the performance of predicting

the gaze object. This includes measuring the correctness of

both the bounding box and the class of the object. This was

excluded since the current works on gaze estimation do not

predict bounding boxes nor classes. We hope to include this

in future work on gaze object prediction.
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