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Abstract

We present a new state-of-the-art on the text-to-video re-

trieval task on MSRVTT and LSMDC benchmarks where

our model outperforms all previous solutions by a large

margin. Moreover, state-of-the-art results are achieved us-

ing a single model and without finetuning. This multido-

main generalisation is achieved by a proper combination of

different video caption datasets. We show that our practical

approach for training on different datasets can improve test

results of each other. Additionally, we check intersection

between many popular datasets and show that MSRVTT as

well as ActivityNet contains a significant overlap between

the test and the training parts. More details are available

at https://github.com/papermsucode/mdmmt.

1. Introduction

Video is a quite popular data format. More than 500

hours of video are uploaded on YouTube every minute. Per-

sonal mobile phones store gigabytes of video. Since video

format gets more popular every year, the importance of

modern search methods increases as well.

In this work we present our research on text-to-video re-

trieval task. In this task, system should return the most rel-

evant video segments for an input textual query. The query

is a textual description of what we want to find in the video

gallery. The query may describe objects, actions, sounds

and relations between them.

There are two major approaches to evaluation of the rel-

evance between a textual search query and a video segment.

The first approach is single-stream methods [28]. Here,

a single network processes queries and videos simultane-

ously. The schematic illustration of this approach is de-

picted in Fig. 1a.

This type of approaches has an access to all input data

from the beginning, thus they can produce accurate estima-

tion of the relevance. Unfortunately, these approaches have

a significant drawback, they are not scalable. For each input

query, the search system should calculate the full forward

pass for every video from the gallery.

The second approach is two-stream neural networks

(a) Scheme for a single-stream

neural network.

(b) Scheme for a two-stream

neural network.

Figure 1: Two types of fusion

[20, 7]. Here a textual query and a video are processed by

two different neural networks. As a result, the networks pro-

duce embeddings inside the same embedding space, where

semantically similar textual queries and video segments are

close to each other. The schematic illustration is depicted in

Fig. 1b.

Two-stream models are scalable: they allow to precom-

pute video embeddings for all videos from the gallery. Thus

we can rapidly obtain relevances to all videos from the

gallery. We need to run one forward pass of the textual net-

work and compute the cosine similarity between the new

query embedding and all precomputed video embeddings.

To make a strong video retrieval solution, it is important

to show to the model a lot of scenes, actions and objects

from the real life. Although there are a lot of datasets, how-

ever none of them covers all the aspects of life. To address

this problem, we need to formulate rules for combining dif-

ferent existing datasets into one large training dataset.

To train a text-to-video retrieval neural network, the

training dataset should consists of pairs: (a video segment,

a textual description of this video segment). There is a

number of video captioning datasets with similar structure

of data that we can use for the text-to-video retrieval task

also [35, 14, 25, 1, 15, 2, 38, 9, 27, 19].

The most common datasets for text-to-video retrieval are

MSRVTT [35], ActivityNet [14] and LSMDC [25]. Nowa-

days, these datasets are quite popular for evaluation of so-

lutions for text-to-video retrieval.

One of the first works addressed to text-to-video re-

trieval is [30]. One of the most universal solution for

video retrieval task is Multi Modal Transformer [7]. It

uses BERT [3] for encoding textual queries and the trans-



former encoder backbone [33] for encoding videos. The

transformer encoder allows to process temporal dependen-

cies inside the multi modal data source in a natural way.

Our work is based on the MMT approach and their code-

base. We use all datasets described above for training.

Our main contributions in this work are the following:

• We present a new state-of-the-art (SotA) result on

MSRVTT and LSMDC benchmarks;

• We present a model that shows good results on three dif-

ferent benchmarks at the same time without finetuning:

MSRVTT (SotA), LSMDC (SotA) and ActivityNet;

• We present a practical approach which helps us to find the

overlap between the training and the test parts of datasets.

2. Related Work

2.1. Datasets

MSRVTT [35] is traditionally used by researchers as the

main dataset for testing text-to-video retrieval models. This

dataset consists of 10k video segments. Each segment is

described by 20 captions. The authors collect 257 popular

search queries and gather 118 most relevant videos from

YouTube for each of them. The dataset consists of 42 hours

of videos. The captions are made by 1327 amazon workers.

There are three different training/test splits that are com-

monly used. The official split is called full split, where the

training part consists of 7k videos and the test part consists

of 3k videos. There are two important properties of this

split: there are no two video segments from the same video

that belong either to training part, either to test part; there

are no two video segments retrieved from the same query

that belong either to training part, either to test part.

Other two splits are called 1k-A [36] (sometimes called

jsfusion) and 1k-B [18] (sometimes called miech). Both of

them consist of different 1k videos for testing. They are

created by random sampling of 1k videos from the original

test part (full split). 1k-A training part consists of the full

split training part and the rest of the videos from the test

part, so it has 1k videos for the test part and 9k videos for

the training part. 1k-B consists of 1k videos for the test

part and 6.5k videos for the training. Both splits use only

one caption per segment (instead of 20 captions for the full

split).

Unfortunately 1k-A and 1k-B mix up the the original

training and test parts. This led to violation of properties

described for the full split.

Another problem is that all these splits have the overlap

(overlap by content, not by YouTube ID) between the test

and training parts, see C.2 for details. To be strict we re-

move the overlap between the test part and the training part

of MSRVTT full split. We called this split MSRVTT full

clean, and refer to it as Mc. It is worth to mention that we

do not modify the test part, we remove some videos from

the training part only.

The Large Scale Movie Description Challenge

(LSMDC) [25] is the extension of two independent datasets:

MPII Movie Description Dataset (MPII-MD) [24], and

Montreal Video Annotation Dataset (M-VAD) [29].

Video segments for this dataset are cropped from movies,

where movie textualized transcriptions are used as captions.

A movie transcription is an audio description of a video seg-

ment that helps blind people to watch movies by description

of what is happening, who appears in this time, what is on

background right now and so on.

In this work for testing we use LSMDC public test,

which consists of 1k video segments.

ActivityNet captions dataset [14] consists of 20k videos

and 100k captions, where captions cover the full video

length for the most of videos, and neighbour captions may

intersect. The annotations are made with Amazon Mechan-

ical Turk.

The situation when some video segments may overlap

makes a problem for text-to-video retrieval testing. Sup-

pose we have two video caption pairs (S1, C1) and (S2, C2)
where the video segment S1 has a non empty overlap with

the video segment S2. Now suppose that for query C1 the

system returns the video segment S2. Is it mistake or not?

What to do in this case?

Many previous works use ActivityNet test dataset in a

paragraph retrieval mode. In this mode, all captions for all

video segments are concatenated, then the concatenated text

is used as a textual query and the whole video should be re-

trieved for this query. This mode has two drawbacks. The

first one is that paragraph retrieval is not a classical video re-

trieval mode. It is an another task. One can ask: if a model

is good in paragraph retrieval will it be good for video re-

trieval? The second drawback is that queries are long and

video segments are long (compared to a classical video re-

trieval mode). This issue requires to enlarge the input for

the model.

Another way to use the test part of ActivityNet is to sam-

ple a single random segment once per video. As a result

we obtain non-intersected video segments and captions with

usual length. We use ActivityNet test part in this way. We

take all videos from val1 and val2 parts, and sample a sin-

gle random segment from each video. All results on Activ-

ityNet are reported on this split.

Additionally, in this work the following datasets are

used: NIST TRECVID Twitter vines [1], TGIF [15],

MSVD [2], YouCook2 [38], Something-something V2 [9],

Kinetics 700 [27], HowTo100M [19].

2.2. Prior Art

A dominant approach to train video retrieval models is

contrastive learning. The idea of this approach is that we

have a set of pairs (videoi, texti) and elements of each



pair should be placed next to each other in some metric

space: distance(videoi, texti) ≈ 0 and at the same time

the element videoi should be far from all other textj), j 6=
i: distance(videoi, textj) ≫ 0. The bi-directional max-

margin ranking loss represents this idea [11].

When training data have a lot of noise, the MIL NCE loss

can be applied in the training procedure [17]. Suppose that

we know that a videoi should be close to one of (or several)

texts {texti1, ..., textik}. This approach tries to reduce the

distance between the videoi and all {texti1, ..., textik} at the

same time.

All video captions datasets have the following problem.

Suppose the distance between (videoi, texti) is to be min-

imized while the distance between (videoi, textj), j 6= i

is to be maximized, but texti and textj are quite similar

from the semantical point of view. Maybe the optimal sce-

nario in this situation is to minimize the distance between

(videoi, textj), j 6= i. In [21] the authors show the approach

which deals with this problem.

As far as an input video is the temporal sequence of to-

kens (frames or video segments) it is important to efficiently

aggregate the information from all tokens. Many ideas for

such aggregation in the previous works are borrowed from

the natural language processing. Convolution filters for ag-

gregation are used in [21], a transformer encoder as a video

aggregator is used in [7], many different aggregation func-

tions are tested in [22].

We think that the most promising aggregation method is

a Multi Modal Transformer (MMT) method [7]. MMT is

a two-stream solution designed for a text-to-video retrieval

task. The extraction of features from the input video stream

is done in the following way. An input video is prepro-

cessed by several pretrained frozen neural networks (these

networks are called experts). Original solution uses seven

modalities: motion, RGB, scene, face, OCR, speech, audio.

One pretrained network for each modality is used. The mo-

tion modality is processed with video recognition networks

like S3D [34], SlowFast [6], irCSN [8], where several input

frames are used as a single input. The RGB modality uses

a single frame as an input. The audio modality uses the raw

input sound from a video. After embeddings are extracted

from input data by these experts, it will be augmented by

adding positional encoding tokens (representing time) and

expert tokens. Then the augmented embeddings are passed

through the MMT backbone. the MMT backbone is a stan-

dard transformer encoder architecture. Each input modality

produces one embedding, so in total there are seven output

embedding from MMT.

For encoding the textual query the authors use pretrained

BERT model where the output [CLS] token is used. The

output is postprocessed with shallow networks (one net-

work per modality) to extract the modality related informa-

tion. In total seven feature vectors are produced. In ad-

dition to embeddings produced from the text query, seven

weights are computed. This weights characterize how much

the query describes one of seven modalities. For example,

if a query does not represent the sound, the small weight for

the audio modality should be produced.

The final similarity score is done by a sum of seven

weighted dot products of embeddings.

The MMT is trained with the bi-directional max-margin

ranking loss [11]:

1

B

B
∑

i=1

∑

j 6=i

[

max(0, sij−sii+m)+max(0, sji−sii+m)
]

(1)

where B represents the batch size, sij is the similarity be-

tween the i-th query and the j-th video inside this batch,

and m is some predefined margin correspondingly.

3. Methodology

Our work is mostly based on MMT. We use the same loss

and a similar architecture, but with different hyperparame-

ters. In this work we study the following questions: Which

publicly available pretrained motion expert is the best for

text-to-video retrieval, Sec. 3.1. How to combine several

video caption datasets in order to train a strong model with-

out specialisation for a particular dataset, Sec. 3.2. The

problem about intersection of test and training parts of sev-

eral datasets is discussed in Supplementary Sec. C.

3.1. Motion Experts

The MMT video backbone does not process the raw in-

put video stream. Instead, the input video stream is pro-

cessed by one or more pretrained experts, where each ex-

pert produces time series of features. The most important

modality is motion: a motion expert processes several video

frames as a single input unit and extracts the information

about actions and objects within a segment.

We may say that the motion modality is the basis of the

MMT. If a motion expert does not extract some information

then there is a high probability that MMT does not know

about some events in the video stream. That is why im-

provement the motion expert is very important.

We consider several best solutions from Kinetics [13]

benchmark as well as several promising video recognition

models and check which one works in the best way as a

motion expert. We present all details in Sec. 4.2.

3.2. Dataset Creation

It is possible to train a video retrieval model by two

means. The first way is the way of specialization for a sin-

gle domain. For example: create model that will work well

only for MSRVTT benchmark (or domain) but at the same

time this model will show poor results on other datasets



(domains). In this way MMT [7] is trained. The authors

trained three different models for MSRVTT, ActivityNet

and LSMDC datasets. Each of these three networks works

good on domain X if and only if it is trained on X , but at

the same time works poorly on another domain Y 6= X . We

provide a proof of this statement in Tab. 6.

The second way is to create a model that works good for

all domains at the same time. We use this way.

Obviously, the model trained in the first way can not

work well with real users, because we can not guarantee

that users will use captions similar to captions of a small

training dataset.

The second drawback here is that each video retrieval

training dataset is not that big, and it causes the problem

the model does not see many words and real life situations

during training. For example, MSRVTT has only 9k videos

and 200k captions in total for training. Obviously, this is

not enough to train a neural network that will know most of

real life situations, different items and persons. To tackle

with this problem we can take several datasets with videos

and captions and concatenate them.

Different datasets have different numbers of videos and

the different number of captions per video; Some datasets

may have long captions and some may have short captions;

Different rules for creating captions are used by human

writers, and so on. Due to these factors, some datasets may

contain more information and require longer training time

and some datasets may contain less information and require

shorter training time. On the other hand, if we use long

training time for a small dataset, it could lead to overfitting

on this dataset (the data may be memorized). The ”informa-

tion sizes” of some used datasets are depicted in Fig. 2.
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Figure 2: Radius of the ball represent the “information size”

of dataset. The biggest balls have more diversity in data.

Fig. 2 is made with a simple algorithm. First, we take

the original training procedure of MMT. Then, for a given

dataset, we change the number of examples that will be

shown to a network during training. We define the radius

of the ball as the number of training examples for which the

performance gets saturated (i.e. increasing of the training

time does not give the better model).

The key question is: what is the proper way for sampling

examples from several datasets taking into account the dif-

ferent information size?

We use these simple rules: 1. If a dataset X is larger

than Y , we should sample from X more often than from

Y ; 2. Training on X and Y combined requires longer train

than training solely on X or Y ; 3. Training on X and Y

combined may require a deeper model than for X or Y .

Our experiments show that the proper usage of rules 1–

3 often improves the results for a specific test dataset (e.g.

MSRVTT) after extending the training dataset.

We managed to combine the following datasets:

MSRVTT, ActivityNet, LSMDC, TwitterVines, YouCook2,

MSVD, TGIF and Something-to-Something V2 (Some-

thingV2). In total, we increase the number of video seg-

ments by 40 times and the number of unique captions by

4 times compared with MSRVTT dataset. In Tab. 1 we

summarize the sizes of used datasets. We separate Some-

thingV2 dataset from all other datasets because: 1. all video

segments are created artificially, 2. the structure of text cap-

tions is quite limited. At the same time videos for all other

datasets are collected from the Internet and captions created

by humans have quite a rich structure.

Dataset

Num Num Num Has

video pairs unique YouTube

captions Id

MSRVTT 10k 200k 167k Yes

ActivityNet 14k 70k 69k Yes

LSMDC 101k 101k 101k No

TwitterVines 6.5k 23k 23k No

YouCook2 1.5k 12k 12k Yes

MSVD 1.5k 80k 64k Yes

TGIF 102k 125k 125k No

Sum above 236k 611k 561k —

SomethingV2 193k 193k 124k No

Sum above 429k 804k 685k —

Table 1: The ”Num video” column represents the number

of video clips in the dataset, the ”Num pairs” column rep-

resents the total number of video caption pairs, the ”Num

unique captions” column represents the number of unique

captions in the dataset.

3.3. Intersection

It is important to extend the training dataset carefully.

We should not allow the intersection among video segments

in training and test parts.

To find the intersection between the test part and the

training part, we use the two stage filtration. The first stage



is to use the YouTube ID. If it is available. We should not

allow to use two video segments sampled from the same

video in the test and training parts simultaneously.

In the second stage, we compute the similarity score be-

tween each video from the test part and each video from the

training part and then we manually assess the pairs with the

highest scores. In total we assess more than 100K pairs of

the most relevant segments.

We find that about 37% of video segments from the

MSRVTT 1k-A test part have a pair with the same YouTube

ID in the MSRVTT 1k-A training part (these segments may

not overlap). For the MSRVTT 1k-B split, about 38% of

video segments from the test part have a pair in the training

part with the same YouTube ID. We do not find intersec-

tion by embeddings between test and training parts of 1k-A

and test and training parts of 1k-B splits. the MSRVTT full

split does not have intersection between training and test

parts by YouTube ID. Using filtration by embeddings we

find that about 3% of video segments in the test part have a

pair in the training part. For ActivityNet (using intersection

by embeddings) we find that about 3% of video segments

from the validation part have pair in the training part.

Our approach allows to approximately estimate the to-

tal number of videos in the intersection without finding the

exact intersection. Using it, we estimate (but do not find)

the overlap between HowTo100M and MSRVTT, and con-

clude that about 10% of the MSRVTT full test may be in

the HowTo100M dataset. We make similar estimation for

ActivityNet and Kinetics700. Estimation shows that about

10% or more of the ActivityNet validation may be in the

Kinetics 700 dataset.

The details about filtration algorithm and its results are

presented in Supplementary Sec. C.

4. Experiments

4.1. Architecture

We use exactly the same neural network architecture as

original MMT [7]. Our method is based on their codebase.

The difference is in the following: 1. we use the more ag-

gressive dropout that equals to 0.2 for the text based BERT

and the video based transformer encoder (against the orig-

inal value of 0.1); 2. we observe that the deeper and wider

transformer encoder for a video network gives better re-

sults — we use 6 layers and 8 heads for the motion only

modality and 9 layers and 8 heads for the motion + audio

setting (against 4 layer and 4 head in the original imple-

mentation).

4.2. Stronger Motion Experts

As the input data for MMT is embeddings from experts,

the question arises: if a better expert is used, will we have

a stronger model? To answer this question, we train MMT

Abbreviate Composition

M,M1k-A,M1k-B MSRVTT full, 1k-A, 1k-B splits

Mc MSRVTT full clean split

A ActivityNet

Aval1, Aval2 ActivityNet val1, val2 validation sets

Ap/r ActivityNet paragraph retrieval

L LSMDC

K Kinetics700

V Twitter Vines

Y YouCook2

HT100M HowTo100M

MALV
MSRVTT + ActivityNet +

LSMDC + TwitterVines

MALVYMT

MSRVTT + ActivityNet +

LSMDC + TwitterVines +

YouCook2 + MSVD + TGIF

MALVYMTS

MSRVTT + ActivityNet +

LSMDC + TwitterVines +

YouCook2 + MSVD + TGIF +

Something to Something V2

Table 2: The left column represents the abbreviate name

for the set of datasets from the right column. See details

for MSRVTT full clean split and ActivityNet paragraph re-

trieval in Sec. 2.1.

on MSRVTT dataset with the only motion modality. For

motion experts we try several architectures pretrained on

different datasets. These models are presented in Tab. 3.

We take the architectures that show the best results on the

Kinetics 400 benchmark and that have publicly available

pretrained weights: [34, 6, 31, 32, 8].

The results in Tab. 3 are made with the same hyperpa-

rameters as in [7]. For the training dataset we use only

MSRVTT full clean split. The first line in Tab. 3 represents

the motion feature extractor from the original MMT paper.

As we can see, usually stronger models provide better

results, but not always. Refer to r(2+1)d 152 rows, this

network demonstrates one of the best performance on Ki-

netics 400 benchmark, but works poorly as motion expert.

Maybe this network is over-specialized for Kinetics 400.

More shallow analogue of r(2+1)d 152 is r(2+1)d 34 which

shows much better results.

An interesting observation is that the best results are

achieved with the networks trained in the unsupervised

manner. CLIP and models trained on IG65M outperform all

other models trained on Kinetics in the supervised manner.

Another weakly supervised dataset is Sports1M [12]. Mod-

els trained on this dataset provide weak embeddings simi-

lar to the weak s3d model trained on Kinetics dataset. The

CLIP [23] (ViT-B/32) image feature extractor outperforms

all other models with a large margin. The model s3dg MIL-



Video expert Dataset
MSRVTT full clean Text → Video

R@1↑ R@5↑ R@10↑ MnR↓ MdR↓

s3d Kinetics 600 7.7±0.1 24.0±0.2 34.9±0.2 129.6±1.0 23.7±0.5

SlowFast 32x2 R101 Kinetics 600 9.3±0.1 27.5±0.1 39.1±0.1 110.8±1.1 18.7±0.5

ipCSN152 IG65M 9.5±0.1 27.9±0.2 39.6±0.2 106.1±1.1 18.0±0.0

ipCSN152 IG65M → K400 8.3±0.1 25.2±0.1 36.5±0.2 124.3±0.2 21.0±0.0

ipCSN152 Sports1M 7.4±0.2 22.4±0.1 32.7±0.2 140.6±1.0 27.0±0.0

ipCSN152 Sports1M → K400 7.8±0.1 24.2±0.1 35.2±0.1 129.9±0.2 23.0±0.0

irCSN152 IG65M 9.5±0.1 27.9±0.2 39.5±0.2 105.5±0.4 18.0±0.0

irCSN152 IG65M → K400 8.4±0.1 25.3±0.1 36.5±0.2 120.4±0.4 21.0±0.0

irCSN152 Sports1M 6.9±0.1 21.6±0.1 31.6±0.1 141.9±0.4 28.7±0.5

irCSN152 Sports1M → K400 7.7±0.1 24.1±0.1 35.1±0.1 127.6±0.6 23.0±0.0

r(2+1)d 152 IG65M 5.7±0.1 18.5±0.1 27.8±0.1 178.5±1.5 37.7±0.9

r(2+1)d 152 IG65M → K400 5.5±0.1 18.1±0.1 27.3±0.1 184.1±1.2 39.3±0.5

r(2+1)d 152 Sports1M → K400 5.3±0.1 17.3±0.1 26.0±0.1 193.4±3.6 42.3±0.5

r(2+1)d 34 IG65M 9.1±0.2 27.2±0.2 38.7±0.2 108.1±0.0 19.0±0.0

r(2+1)d 34 IG65M → K400 8.2±0.2 25.3±0.3 36.7±0.1 120.8±0.7 21.0±0.0

CLIP CLIP 14.4±0.1 37.4±0.3 50.2±0.3 70.3±0.3 10.3±0.5

s3dg MIL-NCE HowTo100M 8.6±0.4 26.3±0.5 37.9±0.7 104.4±2.2 19.3±0.5

Table 3: Comparison of the best available pretrain models as the motion experts for MMT. IG65M → K400 means that model

is trained on IG65M and then fine tuned on Kinetics400.

NCE is a video encoder from the work [17]. This network

is trained from scratch on HowTo100M dataset.

As we show in Supplementary Sec. C Kinetics dataset

has an overlap with MSRVTT dataset, and we do not know

whether it affects to overfitting or not. Also it is worth to

mention that IG65M and CLIP datasets are not publicly

available, so we do not know if there is an overlap with

MSRVTT and other video retrieval datasets.

For more details about our usage of pretrained video ex-

perts refer to Supplementary Sec. A.

4.3. Datasets Combination

In this section we show our experiments about the com-

bination of different datasets. Nowadays, video caption

datasets are not big enough to capture all real life situa-

tions. Some datasets may be biased also. A combination

of different datasets may help to tackle this problem.

Our experiments show that the proper combination of

datasets allows to train a single model that can capture the

knowledge from all used datasets. An important thing here

is that in most cases the model trained on the combination of

datasets is better than the model trained on a single dataset.

In our experiments we combine all datasets presented in

Tab. 5. A important thing is how to sample minibatches dur-

ing training. In our experiments we first sample a dataset,

then we uniformly sample a video segment. If this sam-

pled video segment has more than one caption then we sam-

ple a single caption uniformly. Column weight in Tab. 5

describes the probability of sampling the corresponding

dataset. To obtain the probability of sampling the dataset

with the weight w, we should divide w by the sum of all

weights.

The weights for all datasets are manually adjusted. It

is important to find a good weight combination. If some

weight is larger than needed then this dataset is overseen

and the performance result is lower in comparison to the

optimal case. The opposite case is when a small weight

is selected. This causes the situation when a network does

not see the required number of examples from this dataset

during training.

We use MMT with the motion modality only for experi-

ments in this section. Embeddings for the motion modal-

ity are computed with irCSN152 pretrained on IG65M.

All configurations are trained with 50 epochs and different

number examples per epoch. The initial learning rate is 5e-

5. After each epoch we multiply learning rate by 0.95. The

MALVYMTS (see Tab. 2 for abbreviations) configuration

is trained with 150K examples per epoch. Configurations

with the less number of datasets are trained with the less

number of examples per epoch. The number of examples

per epoch can be represented as a product of 150K by a

sum of normalized weights (weights from Tab. 5 divided by

a sum of all weights) for each dataset (the initial sum equals

to 1): 150K = 150K × (pMSRVTT + pActivityNet + pLSMDC +
pTwitter Vines + pYouCook2 + pMSVD + pTGIF + pSomething V2). If

some dataset is removed from the training then we remove

the corresponding coefficient from this sum, so the resulting

length will be 150K multiplied by a value less than 1.

As far as we use the configurations Mc, A, L as the base-

lines, we need to be sure that the results for these config-



model
ActivityNet text → video

R@1↑ R@5↑ R@10↑ MnR↓ MdR↓

MMT (Ap/r) motion+audio [7] 7.3 22.5 31 283.9 30

CLIP [23] 9.4 22.8 31.3 302.3 35

Ours MDMMT(McALVYMTS) 20.1±0.5 45.1±0.5 58.0±0.6 70.8±0.1 7.0±0.0

Table 4: Test results on our split (see Sec. 2.1) on ActivityNet.

urations are the optimal values. In addition to the rule de-

scribed above, we try several values for a number of exam-

ples per epoch parameter and report the results for the best

found value.

Dataset Weight

MSRVTT 140

ActivityNet 100

LSMDC 70

Twitter Vines 60

YouCook2 9

MSVD 9

TGIF 102

Something V2 169

Table 5: The ”Weight” column describes how often exam-

ples are sampled from the dataset.

Dataset
Test Text → Video R@5 ↑

MSRVTT ActivityNet LSMDC

Mc 29.0±0.2 13.4±0.3 12.9±0.6

A 14.7±0.1 30.9±0.6 10.4±0.3

L 8.8±0.1 7.2±0.2 24.7±0.6

McALV 32.1±0.1 32.0±0.2 26.5±0.7

McALVYMT 33.8±0.1 32.3±0.2 27.3±0.4

McALVYMTS 34.5±0.1 32.4±0.5 27.4±0.6

Table 6: The first three rows Mc,A,L report the quality of

models trained on a single domain, and tested on other do-

mains. Italic means that the model did not see data from this

domain during training. Only motion modality (irCSN152)

is used.

Tab. 6 summarizes our experiments on the datasets com-

bination (graphical representation of Tab. 6 is given in Sup-

plementary Sec. B). The main point here is that the proper

combination of datasets leads to the best solution.

4.4. Final Results

In this section we compare our solution with the prior art.

Our two best solution uses three modalities: the audio, the

motion and RGB. To fuse modalities we use MMT archi-

tecture with 9 layers and 8 heads. As a feature extractor for

the audio stream the vggish network [10] is used. For the

video encoding we use CLIP ViT-B/32 (RGB modality) and

irCSN152 (motion modality) pretrained on IG65M dataset.

The details about preprocessing videos for both networks

are presented in Supplementary Sec. A.

Additionally in Supplementary Sec. F we report sepa-

rate results for motion + audio encoders and RGB + audio

encoders because we do not know whether the IG65M or

CLIP training dataset has a significant overlap with any of

the test datasets or not.

All our models presented in Tab. 4, 7 and 8 are trained

based on the pretrain HowTo100M model. We present the

details about pretraining in Supplementary Sec. E.

The results for MSRVTT are presented in Tab. 7. As

we can see, our solution MDMMT(MALVYMTS) L9H8

CLIP+irCSN152+audio significantly outperforms all pre-

vious solutions on all splits. Our solution is better than

the previous SotA (on R@5) on 8.7% and 10.5% on full

and 1k-A correspondingly. It is also worth to mention that

our MDMMT (using only the motion, the RGB and the au-

dio modalities) outperforms the original MMT (using the

motion, the RGB and the audio and 4 other modalities) by

18.7% and 11.9% (R@5) on full and 1k-A correspondingly.

We also report the results for the original CLIP [23]. The

CLIP model has an image encoder and a text encoder, both

pretrained in an unsupervised way. To test the CLIP model

we take a single frame from the middle of the video (this

is the original testing protocol for CLIP). The row CLIP

agg [22] represents the usage of CLIP model with several

frames using some specific aggregation procedure from this

work.

In Tab. 8 we report the results on LSMDC. On this

benchmark we outperform the previous SotA solution by

8.6%.

As we mention in Sec. 2.1, we do not use the standard

ActivityNet paragraph retrieval test protocol. Instead, we

use the text-to-video retrieval protocol. To compare our so-

lution with the previous work we tested two previous mod-

els: MMT trained on ActivityNet in paragraph retrieval

mode and CLIP. The results are reported in Tab. 4. Our

solution outperforms MMT by 22.6% and CLIP by 22.3%.

The row MMT (Ap/r) motion+audio means that this network

is trained only on ActivityNet dataset with the paragraph re-

trieval mode using motion and audio modalities.

The important property of our model is that we train a

single model and test it on different test sets. The authors

of previous SotA approach (MMT) trained three different

models for MSRVTT, ActivityNet and LSMDC, while in



model sp
li

t MSRVTT text → video

R@1↑ R@5↑ R@10↑ MnR↓ MdR↓

Random baseline

fu
ll

0.0 0.2 0.3 1500 1500

VSE [20] 5.0 16.4 24.6 — 47

VSE++ [20] 5.7 17.1 24.8 — 65

Multi Cues [20] 7.0 20.9 29.7 — 38

W2VV [4] 6.1 18.7 27.5 — 45

Dual Enc. [5] 7.7 22.0 31.8 — 32

CE [16] 10.0±0.1 29.0±0.3 41.2±0.2 86.8±0.3 16.0±0.0

MMT (M) 7mod [7] 10.7±0.2 31.1±0.1 43.4±0.2 88.2±0.7 15.0±0.0

CLIP [23] 15.1 31.8 40.4 184.2 21

CLIP agg [22] 21.5 41.1 50.4 — 4

Ours MDMMT(MALVYMTS) 23.1±0.1 49.8±0.1 61.8±0.1 52.8±0.2 6.0±0.0

Random baseline

1
k

-A

0.1 0.5 1.0 500.0 500.0

JSFusion [36] 10.2 31.2 43.2 — 13

E2E [17] 9.9 24.0 32.4 — 29.5

HT [19] 14.9 40.2 52.8 — 9

CE [16] 20.9±1.2 48.8±0.6 62.4±0.8 28.2±0.8 6.0±0.0

CLIP [23] 22.5 44.3 53.7 61.7 8

MMT (M1k-A) 7mod [7] 26.6±1.0 57.1±1.0 69.6±0.2 24.0±0.8 4.0±0.0

AVLnet[26] 27.1 55.6 66.6 — 4

SSB [21] 30.1 58.5 69.3 — 3.0

CLIP agg [22] 31.2 53.7 64.2 — 4

Ours MDMMT(M1k-AALVYMTS) 38.9±0.6 69.0±0.1 79.7±0.6 16.5±0.4 2.0±0.0

Table 7: Results on MSRVTT dataset.

model
LSMDC text → video

R@1↑ R@5↑ R@10↑ MnR↓ MdR↓

CT-SAN [37] 5.1 16.3 25.2 — 46

JSFusion [36] 9.1 21.2 34.1 — 36

MEE [18] 9.3 25.1 33.4 — 27

MEE-COCO [18] 10.1 25.6 34.6 — 27

CE [16] 11.2±0.4 26.9±1.1 34.8±2.0 96.8±5.0 25.3±3.1

CLIP agg [22] 11.3 22.7 29.2 — 56.5

CLIP [23] 12.4 23.7 31.0 142.5 45

MMT (L) 7mod [7] 12.9±0.1 29.9±0.7 40.1±0.8 75.0±1.2 19.3±0.2

Ours MDMMT(McALVYMTS) 18.8±0.7 38.5±0.4 47.9±0.7 58.0±1.1 12.3±0.5

Table 8: Test results on LSMDC public test (1k video)

Tab. 6 we show that the model trained in such a manner has

poor generalization and can show good performance on the

test part of the dataset X if and only if it is trained on the

training part of the dataset X .

5. Conclusions and Discussion

In this work we present a new text-to-video retrieval

state-of-the-art model on MSRVTT and LSMDC bench-

marks. We do not use ActivityNet dataset in the para-

graph retrieval mode as many previous works do, so we

can not compare to them. However, we show that in the

video retrieval mode on ActivityNet we outperform the

previous state-of-the-art model (MMT) by a large margin.

Our model captures knowledge from many video caption

datasets. Thus it is able to show the best results on several

datasets at the same time without finetuning.

We also present a practical approach to find the overlap

between two different video datasets. Using this approach

we find the overlap between several datasets. Especially, we

find a large overlap between the MSRVTT test and training

parts, and between the ActivityNet test and training parts.

Removal of this overlap from the MSRVTT training part

significantly decreases the performance of the previous best

models on the MSRVTT benchmark.
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