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Figure 1. Temporal information in videos provides a lot of cues for 3D mesh reconstruction. For instance, as the main character in this

scene turns we can accurately reconstruct both the front and back. Unfortunately, existing image-based datasets don’t permit to develop

such methods. To alleviate this we introduce the synthetic SAIL-VOS 3D dataset and develop first baselines for this task.

Abstract

Extracting detailed 3D information of objects from video

data is an important goal for holistic scene understand-

ing. While recent methods have shown impressive results

when reconstructing meshes of objects from a single im-

age, results often remain ambiguous as part of the object

is unobserved. Moreover, existing image-based datasets for

mesh reconstruction don’t permit to study models which in-

tegrate temporal information. To alleviate both concerns we

present SAIL-VOS 3D: a synthetic video dataset with frame-

by-frame mesh annotations which extends SAIL-VOS. We

also develop first baselines for reconstruction of 3D meshes

from video data via temporal models. We demonstrate effi-

cacy of the proposed baseline on SAIL-VOS 3D and Pix3D,

showing that temporal information improves reconstruction

quality. Resources and additional information are available

at http://sailvos.web.illinois.edu.

1. Introduction

Understanding the 3D shape of an observed object over

time is an important goal in computer vision. Very early

work towards this goal [42, 43, 44] focused on recovering

lines and primitives like triangles, squares and circles in im-

ages. Due to many seminal contributions, the field has sig-

nificantly advanced since those early days. Given a single

image, exciting recent work [21, 31, 37, 76] detects objects

and infers their detailed 3D shape. Notably, the shapes are

significantly more complex than the early primitives.

To uncover the 3D shape, recently, single view 3D shape

reconstruction [10, 16, 41, 48, 55, 56, 77, 81] has garnered

much attention. The developed data-driven and learning-

based approaches achieve realistic reconstructions by infer-

ring the 3D geometry and structure of objects. All those

methods have in common the use of a single input im-

age. However, moving objects and temporal information are

not considered. Intuitively, as illustrated in Fig. 1, we ex-

pect temporal information to aid 3D shape reconstruction.

How can methods benefit from complementary information

available in multiple views?

Classical multi-view 3D reconstruction [6, 18, 65] ex-

ploits the geometric properties exposed in multiple views.

For instance, structure from motion algorithms, e.g., [65],

infer the 3D shape using multi-view geometry [24]. How-

ever note that the assumption of a static scene in these clas-

sical methods is often violated in practice. Moreover, clas-



Table 1. Comparisons of SAIL-VOS 3D and other 3D datasets.

ShapeNet [7] ModelNet [82] PartNet [48] SUNCG [69] IKEA [39] Pix3D [71] ScanNet [14] PASCAL3D+ [84] ObjectNet3D [83] KITTI [20] OASIS [8] SAIL-VOS 3D

Type Synthetic Synthetic Synthetic Synthetic Real Real Real Real Real Real Real Synthetic

Image/Video - - - Image Image Image Video Image Image Video Image Video

Indoor/Outdoor - - - Indoor Indoor Indoor Indoor Both Both Outdoor Both Both

Dynamics Static Static Static Static Static Static Static Static Static Dynamic Static Dynamic

Background Uniform Uniform Uniform Cluttered Cluttered Cluttered Cluttered Cluttered Cluttered Cluttered Cluttered Cluttered

# of Images - - - 130,269 759 10,069 2,492,518 30,362 90,127 41,778 140,000 237,611

Objects per Images Single Single Single Multiple Single Single Multiple Multiple Multiple Multiple Multiple Multiple

# of Categories 55 662 24 84 7 9 296 12 100 3 - 178

3D Annotation Type 3D model 3D model 3D model Voxel, depth 3D model 3D model Depth, 3D model 3D model 3D model Point cloud Normals, depth 3D model, depth

Amodal/Modal GT Amodal Amodal Amodal Amodal Amodal Amodal Modal Amodal Amodal Modal Modal Amodal

# of 3D Annotations 51,300 127,915 26,671 5,697,217 759 10,069 101,854 55,867 201,888 40,000 140,000 3,460,213

sical 3D reconstruction focuses on finding the 3D shape of

observed object parts. Nonetheless it is important for meth-

ods to predict occluded parts of objects or to infer object

extent beyond the observed view [53].

To achieve a more realistic and more detailed reconstruc-

tion we aim to leverage temporal information. For this

we think ground-truth 3D mesh annotations for video-data

are particularly helpful. Unfortunately, this form of an-

notated data is not available in existing datasets. This is

not surprising as acquiring this form of data is very time-

consuming and hence expensive. In addition, annotations

of this form are often ambiguous due to occlusions. How-

ever, following recent work on amodal segmentation [27],

we think photo-realistic renderings of assets in computer

games could come to the rescue. To study this solution,

in this paper, we collect SAIL-VOS 3D, a synthetic video

dataset with frame-by-frame 3D mesh annotations for ob-

jects, ground-truth depth for scenes and 2D annotations in

the form of bounding boxes, instance-level semantic seg-

mentation and amodal segmentation. We think this data

serves as a good test bed for 3D perception algorithms.

In order to deal with dynamics of 3D shapes, we propose

to take the temporal information into account by developing

a baseline model. Specifically, instead of refining a spher-

ical shape we introduce a reference mesh which carries in-

formation from earlier frames.

Based on the collected SAIL-VOS 3D dataset and exist-

ing image datasets like Pix3D [71], we study the proposed

method as well as recent techniques for 3D reconstruction

of meshes from images. We illustrate the efficacy of the

developed model and the use of temporal information on

the collected SAIL-VOS 3D dataset. Using Pix3D [71] we

demonstrate generality.

2. Related Work

Single-View Object Shape Reconstruction: Recently, a

number of methods [10, 15, 15, 16, 22, 31, 37, 41, 47,

47, 48, 49, 54, 55, 56, 76, 77, 80, 81, 87] have been

proposed for shape reconstruction from a single image.

These approaches vary by their shape representation, e.g.,

meshes [77], occupancy grids [82], octrees [73], implicit

fields [11, 47, 54] and point clouds [22]. Many of these

methods assume that there is only a single shape to be re-

constructed. Consequently, these methods usually use a cu-

rated datasets like ShapeNet [7], which contains only a sin-

gle object at a time.

3D shape reconstruction methods that deal with multi-

ple objects [21, 31, 37, 76] usually either involve a detec-

tion network [21, 31, 37] like Faster-RCNN [59], which

has been very successful on 2D instance-level multi-object

detection, or assume instance-level bounding boxes are

given [76]. After obtaining the bounding boxes, the 3D

shape of each instance is inferred within each bounding box.

To generally deal with multiple objects, we also combine

detection with shape reconstruction. However, instead of

employing a single image, the proposed approach differs in

our use of video data for reconstruction.

Multiple-View Object Shape Reconstruction: 3D under-

standing using multiple images has been studied and used

for depth estimation [34, 74], scene reconstruction [51],

semantic segmentation for 3D scenes [38], 3D object de-

tection [9, 50, 68], and 3D object reconstruction [12, 85].

We focus on 3D object shape reconstruction literature here

as it aligns with our goal. Traditional multi-view shape

reconstruction approaches including structure from mo-

tion (SfM) [65] and simultaneous localization and mapping

(SLAM) [6, 18] estimate 3D shapes from multiple 2D im-

ages using multi-view geometry [24]. However, these clas-

sical algorithms have well known constraints and are chal-

lenged by textureless objects as well as moving entities.

Also, classical multi-view geometry does not infer the shape

of unseen parts of an object.

Due to the success of deep learning, learning-based ap-

proaches to multi-view object 3D reconstruction [5, 12, 17,

26, 30, 33, 52, 72, 75, 79, 85] have received a lot of attention

lately. Again, the majority of the aforementioned methods

deal with only a single object. Dealing with instance-level

multi-view reconstruction remains challenging as it requires

not only object detection, but also object tracking as well as

3D shape estimation. Closer to the goal of our approach,

SLAM-based methods have been proposed for object-level

multi-view reconstruction [13, 26, 64, 70]. However, these

methods are challenged by inaccurate estimation of camera

poses and moving objects. In contrast, our approach aims

at 3D understanding for dynamic objects.

3D Datasets: A number of 3D datasets have been intro-

duced in recent years [2, 3, 4, 7, 8, 14, 20, 28, 36, 39, 46,

48, 62, 66, 69, 71, 82, 83, 84], all of which are commonly

used for training, testing and evaluating 3D reconstruction
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Figure 2. The annotations of SAIL-VOS 3D include depth, instance-level modal and amodal segmentation, semantic labels and 3D meshes.

On the right we show the statistics of the dataset in terms of numbers of objects in different categories and with different occlusion rate.

Figure 3. We overlay the RGB frame with the 3D mesh annota-

tions. Note, the dataset contains annotations for partially observed

objects including occluded and out-of-view objects. It is also a

good benchmark for 2D/3D amodal perception.

algorithms. We summarize the properties of several com-

mon 3D datasets in Tab. 1. Datasets annotated on real world

images [8, 39, 71, 83, 84] or videos [14, 20] are often small

compared to synthetic datasets such as SUNCG [69]. More-

over, KITTI [20] and OASIS [8] contain only modal anno-

tations, i.e., only visible regions are annotated. In order to

create large scale datasets without labor-intensive annota-

tion processes, synthetic 3D datasets [7, 69, 82] are useful.

Among those, ShapeNet [7] is one of the commonly

used synthetic benchmarks for 3D reconstruction. However,

the rendered images usually contain uniform backgrounds,

making the distribution of rendered images very different

from real world images. SUNCG [69] is one of the largest

among the synthetic 3D datasets. However, the dataset con-

tains static indoor scenes only, and doesn’t cover outdoor

scenarios or dynamic scenes. In fact, except for KITTI [20],

which contains dynamic scenes, i.e., moving objects with

complex motion, to the best of our knowledge, there is no

large scale 3D video dataset with instance-level 3D annota-

tion that captures dynamic scenes with diverse scenarios.

Synthetic Datasets: Simulated worlds have been used for

computer vision tasks such as optical flow [45], visual

odometry [23, 60] and semantic segmentation [63] and hu-

man shape modeling [58, 86]. The game engine GTA-V

has been used to collect large-scale data, e.g., for seman-

tic segmentation [35, 60, 61], object detection [32], amodal

segmentation [27], optical flow [35, 60] and human pose

estimation [19].

3. SAIL-VOS 3D Dataset

For more accurate 3D video object shape prediction,

we propose the SAIL-VOS 3D dataset: We collect an

object-centric 3D video dataset from the photorealistic

game engine GTA-V. The game engine simulates a three-

dimensional world by modeling a real-life city. The result-

ing diverse object categories and the obtainable 3D struc-

tures make the game engine a suitable choice for collecting

a large-scale 3D perception dataset.

As shown in Fig. 2 we collect the following data: video

frames, camera matrices, depth data, instance level segmen-

tation, instance level amodal segmentation and the corre-

sponding 3D object shapes. Each instance is assigned a

consistent id across frames.

3.1. Dataset Statistics

The presented SAIL-VOS 3D dataset contains 484

videos with a total of 237,611 frames at a resolution of

1280×800. Note that each video may contain shot tran-

sitions. There are a total of 6,807 clips in the dataset and

on average 34.6 frames per clip. The dataset is annotated

with 3,460,213 object instances coming from 3,576 mod-

els, which we assign to 178 categories. To assign the cat-

egories, we use the SAIL-VOS labels [27]. There are 48

classes that overlap with the categories in the MSCOCO

dataset [40]. Fig. 2 (right) shows the distribution of in-

stances among the categories and their respective occlusion

rate. Detailed statistics for clip length can be found in the

Appendix.

We compare the proposed SAIL-VOS 3D dataset with

other 3D datasets in Tab. 1. SUNCG [69], ScanNet [14],

OASIS [8] and SAIL-VOS 3D are large scale datasets con-



Figure 4. Example frames overlayed with 3D mesh annotations from SAIL-VOS 3D. We use different colors for different instances.

taining more than 100K images. In OASIS only visible

parts of objects are annotated. In SUNCG and ScanNet

static indoor scenes are used for collecting the datasets. In

contrast, SAIL-VOS 3D contains moving objects, different

scenarios (both indoor and outdoor with different lighting

conditions and weather), and amodal 3D annotations. Com-

pared to the commonly used ShapeNet [7], SAIL-VOS 3D

contains images rendered with cluttered backgrounds and

more object categories (178 vs. 55).

We show several annotated frames sampled from SAIL-

VOS 3D in Fig. 3 and Fig. 4. Note, the dataset contains

meshes despite occlusions, i.e., the entire shape is annotated

even if part of it is out-of-view as shown in Fig. 3.

3.2. Dataset Collection Methodology

We collect the cutscenes in GTA-V following the work

of Hu et al. [27]. Similarly, we alter the weather condition,

the time of day and clothing of the characters to increase

the diversity of the synthetic environment. However, dif-

ferent from their method, we are interested in capturing 3D

information in the form of meshes, camera data, etc. This

requires to extend the approach by Hu et al. [27], and we

describe the details for obtaining the data in the following.

Meshes: The shapes of objects in GTA-V are all repre-

sented as meshes. In order to retrieve the meshes, we

use GameHook [35] to hook into the Direct3D 11 graph-

ics pipeline [1] which GTA-V employs. We first briefly

highlight the key components of the Direct3D 11 graphics

pipeline before we delve into details.

The Direct3D 11 graphics pipeline [1] consists of several

stages which are traversed when rendering an image, e.g.,

the vertex shader stage, where vertices are processed by

applying per-vertex operations such as coordinate transfor-

mations, the stream-output stage, where vertex data can

be streamed to memory buffers, the rasterizer stage, where

shapes or primitives are converted into a raster image (pix-

els), and the pixel shader stage, where shading techniques

are applied to compute the color. The intermediate output of

stages before the stream-output stage, e.g., the vertex shader

stage, can not be directly copied to staging resources, i.e.,

resources which can be used to transfer data from GPU to

CPU. This makes access to vertex data, and hence our ap-

proach, more complicated than earlier work: design of the

graphics pipeline only permits access to vertex data via the

stream-output stage.

In GTA-V, the vertex shader stage processes object ver-

tices by applying the camera matrices as well as the trans-

formation matrices to animate articulated models. Our goal

is to retrieve the output of the vertex shader stage which

contains the meshes. Since the output of the vertex shader is

not directly accessible, we need to retrieve it via the stream-

output stage. For this we enable the stream-output stage by

using a hook to alter the behavior of the Direct3D func-

tion CreateVertexShader. We ask it to not only create a

vertex shader (it’s original behavior) but to additionally ex-

ecute CreateGeometryShaderWithStreamOutput. This per-

mits to append our own geometry shader whenever the ver-

tex shader is created. Our geometry shader takes as input

the output of the vertex shader. It doesn’t change the vertex

data and directly writes the vertex data via the stream-output

stage to a stream-output buffer. As this buffer is not CPU

accessible, we subsequently copy the data to a staging re-

source so that it can be read by the CPU. We then store the

vertex data, i.e., the meshes, using the OBJ file format.

Camera & Viewport: To obtain camera matrices we col-

lect camera data from the constant buffers in the render-

ing pipeline. In each draw call, we store the world matrix,

which transforms model coordinates to world coordinates,

the view matrix, which transforms the world coordinates

to camera coordinates, the projection matrix, which trans-

forms the camera coordinates into image coordinates, as

well as the viewport, which defines the viewing region in

the rendering-device-specific coordinate.

Depth & Others: Along with the 3D shapes and cam-

era matrices, we collect depth by copying the depth buffer

from the rendering pipeline. We label shot transitions for

each video. For each object in the dataset, we also col-

lect additional information like the 2D segmentation, 2D
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Figure 5. Video2Mesh: Mesh generation for the foreground person in frame It using the boxed person in It−1 as a reference.

amodal segmentation and 2D/3D human poses following

Hu et al. [27].

4. Video2Mesh for 3D reconstruction

Given a video sequence (I1, . . . , IT ) of T frames, we

are interested in inferring the set of meshesMt for the ex-

isting objects in each frame It. A pictorial overview of our

approach, Video2Mesh, is shown in Fig. 5.

To infer the meshes, we first detect objects in each frame

It. We let the unordered set Ot = {oit} refer to the de-

tected objects, i.e., oit is the ith detected object. Note that

the set is unordered, i.e., oit and oit−1 may not refer to the

same object in frames It and It−1. To establish object cor-

respondence across time, we solve an assignment problem.

This permits to use temporal information during shape pre-

diction. Formally, for every frame It we rearrange the ob-

jects Ot−1 from the previous frame into the ordered tuple

Õt
t−1 = (õ1t−1, . . . , õ

nt

t−1), where nt = |Ot|. Specifically,

for object oit from frame It we let õit−1 denote the corre-

sponding object from frame It−1. If we cannot find a match

in the previous frame, a special token is assigned to õit−1.

With the objects tracked, we can use the prediction from

the previous frame as a reference to predict meshes in the

current frame. We detail detection and tracking in Sec. 4.1

and explain the temporal mesh prediction in Sec. 4.2.

4.1. Detection and Tracking

To obtain the set of objects Ot for frame It, we first use

Faster-RCNN [59] to detect object bounding boxes and their

class. Hence, each object oit = (bit, c
i
t) consists of a bound-

ing box and class estimate, i.e., bit and cit. As previously

mentioned, there are no correspondences for the detected

objects between frames. To obtain those we solve an as-

signment problem.

Formally, given the detected objects from two consecu-

tive frames, the assignment problem is formulated as fol-

lows:

max
At

∑

i,j At,ij

(

IoU(bit, b
j
t−1)− L(cit, c

j
t−1)

)

s.t. At,ij ∈ {0, 1},
∑

i At,ij ≤ 1,
∑

j At,ij = 1. (1)

Here, At ∈ {0, 1}
nt×nt−1 is an assignment matrix, IoU is

the intersection over-union distance between two bounding

boxes and L is the zero-one loss between two class labels.

Intuitively, detected objects from two different frames will

be matched if their bounding boxes are spatially close and

their class labels are the same.

Given the assignment matrix At, we align the objects of

two frames as follows:

õit−1 ← o
j
t−1, if At,ij = 1 ∧ IoU(bit, b

j
t−1) > 0.5,

õit−1 ← ō, otherwise.
(2)

Here, ō denotes a special token indicating that there were

no matches. We don’t match objects if their IoU is too low.

4.2. Temporal Mesh Prediction

Our goal is to predict the set of meshes M = {mi
t}

for all objects oit ∈ Ot. In our case, each mesh mi
t is a

triangular mesh, i.e., mi
t = (V i

t , F
i
t ) is characterized by a

set of K vertices V i
t ∈ R

K×3 and a set of triangle-faces

F i
t ⊆ [1, . . . ,K]3.

To predict a mesh mi
t, we deform the vertices of a refer-

ence mesh m̃i
t−1 based on the detected object’s ROI feature

Roi
t

extracted from the image frame. The reference mesh

m̃i
t−1 is a class-specific mean mesh M̄ci

t
if object ot is not

tracked, and it is the predicted mesh mi
t−1 from the previous

frame if object ot is tracked. Formally,

m̃i
t−1 =

{

Toi
t
(M̄ci

t
) if õit−1 = ō,

mi
t−1 otherwise.

(3)



Module 1: MeshRefine(l)(R, ~V)

Input: ROI Feature R and reference vertices Ṽ

φV = VertAlign(Conv1x1(l)(R)) ∈ R
K×E(l)

∆V = GCN(l)(Concat(φV , Ṽ )) ∈ R
K×3

Return: Ṽ +∆V

Recall, ō is a special token indicating that there are no

matches from the previous frame (see Eq. (2)). We use

the transformation matrix Toi
t

to align the mean mesh M̄ci
t

with the reference frame of oit. We parameterize Toi
t

using

a deep-net, which regresses the transformation matrix from

the ROI features of oit. Specifically, a mapping from Roi
t

to

a rotation matrix with three degrees of freedom (the three

Euler angles) is inferred. We do not consider translation

here, as the mesh is centered in a bounding box.

Next, following prior work [21, 77] we refine the ver-

tices of the reference mesh m̃i
t−1 by performing L stages of

refinement using the MeshRefine procedure summarized

in Module 1. Different from prior work, our reference mesh

is propagated from the previous frames, i.e.,

Ṽ
(l+1),i
t = MeshRefine(l)(Roi

t
, Ṽ

(l),i
t ), (4)

where Ṽ
(0),i
t are the vertices of the reference mesh m̃i

t−1.

Finally, we use the original reference’s faces F̃ i
t−1 for the

final mesh output, i.e.,

mi
t = (V

(L),i
t , F̃ i

t−1). (5)

In greater detail, the MeshRefine procedure in Module 1

extracts image-aligned feature vectors for each vertex from

an object’s ROI feature Roi
t

using the VertAlign oper-

ation [21, 77], where E(l) denotes the number of feature

dimensions. Subsequently, a Graph Convolution Network

(GCN) is used to learn a refinement offset ∆V to update the

reference vertices Ṽ . Finally, the module returns the up-

dated mesh vertices to be processed in the next stage. In

our case, we use L = 3 and each GCN(l) consists of three

GraphConv layers with ReLU non-linearity.

Importantly, and different from prior work, instead of

predicting meshes from a sphere [77], our approach de-

pends on an additional time dependent reference mesh

m̃i
t−1. This reference m̃i

t−1 summarizes information about

an object oit obtained from the previous frame It−1. This

enables a recurrent formulation suitable for mesh genera-

tion from videos by incorporating temporal information.

4.3. Training

We train our model using the dataset discussed in

Sec. 3 which consists of sequences of image frames, object

bounding box annotations, class labels, and corresponding

meshes. In the following, we discuss the training details

abstractly and leave specifics to Appendix Sec. A.

To train the model parameters for mesh prediction, we

use a gradient-based method to minimize the mesh loss

based on differentiable mesh sampling [67]. The loss in-

cludes the Chamfer and normal distance between two sets

of sampled points each from the prediction and ground-truth

mesh. Minimizing the mesh loss encourages the predicted

meshes to be similar to the ground-truth mesh. The train-

ing of bounding-boxes follows the standard Mask-RCNN

procedure [25].

Different from standard end-to-end training, our training

procedure consist of two stages:

Stage 1: We first pre-train the mesh refinement without tak-

ing temporal information into account. This is done by set-

ting the reference mesh m̃i
t−1 = Toi

t
(M̄ci

t
) ∀õit−1.

Stage 2: We fine-tune our model to incorporate the tem-

poral information of the reference mesh following Eq. (3).

Note that at training time, we do not unroll the recursion

which would be computationally expensive. Instead, we

use an augmented ground-truth mesh of oit as an approxi-

mation. This is done by randomly rotating the mesh and

adding Gaussian noise to the vertices. Without the augmen-

tation, the ground-truth mesh will not resemble m̃i
t−1 which

leads to a mismatch at test time.

5. Experimental Results

In the following we first discuss the experimental setup,

i.e., datasets, metrics and baselines. Afterwards we show

quantitative and qualitative results on the proposed SAIL-

VOS 3D dataset and the commonly used Pix3D dataset.

5.1. Experimental Setup

We use the proposed SAIL-VOS 3D dataset to study

instance-level video object reconstruction. Please see

Sec. 3.1 for statistics of this data. We also evaluate on

Pix3D [71] to assess the proposed method on real images.

Evaluation metrics: For evaluation we use metrics com-

monly employed for object detection. Specifically, we re-

port the average precision for bounding box detection, i.e.,

APbox, using an intersection over union (IoU) threshold of

0.5. We also provide the average precision for mask predic-

tion, i.e., APmask, using an IoU threshold of 0.5.

Additionally, to evaluate 3D shape prediction we follow

Gkioxari et al. [21] and compute the average area under

the per-category precision-recall curve using F1@0.3 with

a threshold of 0.5, which we refer to via APmesh. Note, we

consider a predicted mesh a true-positive if its predicted

label is correct, not a duplicate detection, and its F1@0.3

≥ 0.5. Here, F1@0.3 is the F-score computed using pre-

cision and recall. For this, precision is the percentage of

points sampled from the predicted mesh that lie within a

distance of 0.3 to the ground-truth mesh. Conversely, re-

call is the percentage of points sampled from the ground-

truth mesh that lie within a distance of 0.3 to the predic-



Table 2. Performance on SAIL-VOS 3D. Following MeshR-CNN [21] we report box AP, mask AP, and mesh AP.

%
All Small Objects Medium Objects Large Objects

APbox APmask APmesh APbox APmask APmesh APbox APmask APmesh APbox APmask APmesh

Pixel2Mesh†

25.29 23.08

8.96

6.47 3.81

2.30

21.72 19.64

10.73

44.35 43.78

19.09

Pix2Vox† 6.62 2.81 7.51 16.56

MeshR-CNN [21] 9.68 2.53 10.35 20.80

Video2Mesh (Ours) 10.21 2.93 9.78 22.56

%
Slightly Occluded Heavily Occluded Short Clips Long Clips

APbox APmask APmesh APbox APmask APmesh APbox APmask APmesh APbox APmask APmesh

Pixel2Mesh†

30.10 29.90

12.44

16.27 13.04

2.21

29.38 26.85

12.92

23.33 22.74

8.43

Pix2Vox† 9.31 2.80 9.05 6.80

MeshR-CNN [21] 12.66 3.34 13.39 9.03

Video2Mesh (Ours) 13.58 3.62 12.85 9.26

[21]

Ours

Figure 6. Visualization of 3D reconstructions on SAIL-VOS 3D.

Table 3. Ablation study of our method. “MS”: mean shape. “T”:

estimate T (Sec. 4.2). “Temp.”: temporal prediction (Sec. 4.2).

MS T Temp. APbox APmask APmesh

1) - - - 25.29 23.08 8.96

2) X - - 25.29 23.08 9.23

3) X X - 25.29 23.08 9.66

4) X X X 25.29 23.08 10.21

tion. For SAIL-VOS 3D, we rescale the meshes such that

the longest edge of the ground-truth mesh is 5. For Pix3D,

following [21], we rescale the meshes such that the longest

edge of the ground-truth mesh is 10.

For more insights, we further evaluate the aforemen-

tioned metrics on subsets of the object instances. This in-

cludes a split based on objects’ sizes (small – area less than

322, medium, and large – area greater than 962). We also

split the objects based on occlusion rate, i.e., an object is

heavily occluded if its occlusion rate is greater than 25%,

otherwise it’s slightly occluded. Finally, we split based on

the length of the video clip, i.e., a clip is classified as long

if the number of frames is more than 30, otherwise short.

Baselines: In addition to the developed method we study

three baselines on the proposed SAIL-VOS 3D data:

MeshR-CNN [21] – a single-view multi-object baseline.

Its output representation is a mesh but the intermediate re-

sult is a voxel representation.

Pixel2Mesh† – The original Pixel2Mesh [77] is a single-

view single-object baseline. To deal with multiple objects

we use Mask-RCNN and attach Pixel2Mesh as an ROI

head. We refer to this adjustment via Pixel2Mesh†. We use

the implementation by Gkioxari et al. [21] for this exten-

sion. We also considered as a baseline Pixel2Mesh++ [78],

a multi-view single-object method. The fact that it is a

single-object method makes a simple extension challeng-

ing as we would need to incorporate a tracking procedure.

Moreover, Pixel2Mesh++ assumes camera matrices to be

known which is not always feasible.

Pix2Vox† – The original Pix2Vox [85] is a multi-view

single-object baseline which uses a voxel representation.

Similar to Pixel2Mesh†, to enable multiple object recon-

struction, we extend the original Pix2Vox by attaching it to

a Mask-RCNN. Similar to Pixel2Mesh++ it is non-trivial to

extend Pix2Vox to the multi-object setting. It would require

to include object tracking.

5.2. SAILVOS 3D Dataset

SAIL-VOS 3D consists of 484 videos made up of

215,703 image frames. The data is split into 162 training

videos (72,567 images, 754,895 instances) and 41 clips for

validation (1,305 images, 12,199 instances). We leave the

rest in test-dev/test-challenge sets for future use. Following

Hu et al. [27] we use the 24 classes with an occlusion rate

less than 0.75 for experimentation. To compute the mean

shape, we average the occupancy grids in the object coordi-



Input Predicted Shape

Figure 7. Predicted shapes of the SAIL-VOS 3D trained

Video2Mesh model tested on DAVIS.

Figure 8. Visualization of 3D reconstructions from our

Video2Mesh method on Pix3D.

nate system over all the instances of a class using the train-

ing set. We binarize the averaged occupancy values, find

the largest connected component, perform marching cubes

to get the mesh, and simplify the mesh such that it contains

about 4000 faces using [29].

Quantitative results: Quantitative results for the SAIL-

VOS 3D dataset are provided in Tab. 2. Note that we first

train and fix the box and mask heads and then train differ-

ent baselines for predicting meshes. On SAIL-VOS 3D we

find that methods which predict shape via a mesh represen-

tation (Pixel2Mesh†, MeshR-CNN, and our Video2Mesh)

perform better than methods which predict using a voxel

representation (Pix2Vox†). We observe that our method

outperforms the best baseline MeshR-CNN [21] in terms of

APmesh. More notably, our method also outperforms base-

lines in slightly and heavily occluded subsets as well as long

clips. This is to be expected, as our approach utilizes tem-

poral information which helps to reason about occluded re-

gions. To confirm this, we conduct an ablation study.

Ablation study: We study the importance of the mean

shape (abbreviated via ‘MS’), whether to estimate trans-

formation between mean shape and current frame (abbre-

viated via ‘T’) and the temporal prediction (abbreviated via

Table 4. Results of transferring SAIL-VOS 3D to Pix3D (APmesh).

% of Pix3D data 10% 20% 50% 100%

Ours 9.0 16.8 36.6 43.7

Ours pretrained w/ SAIL-VOS 3D 16.4 22.5 38.0 42.8

‘Temp.’). The results are summarized in Tab. 3. Note that

we fix the box and mask head for this ablation study, which

ensures a proper evaluation of our mesh head modifications.

We observe use of the mean shape to lead to slight im-

provements (Row 2 vs. Row 1). Having transformation en-

abled improves results more significantly (Row 3 vs. Row

2), while the temporal prediction leads to further increase in

performance (Row 4 vs. Row 3).

Qualitative results on SAIL-VOS 3D: Qualitative results

are shown in Fig. 6. We compare to the runner-up approach

MeshR-CNN. Due to the use of a mean shape, we observe

the 3D reconstructions of our method to be smoother.

Qualitative results on Real Data: We tested a SAIL-VOS

3D trained model (trained on person only) on a real video

from the DAVIS dataset [57] and show a qualitative exam-

ple in Fig. 7. We find that predicted shapes are reasonable

even though the model is trained on synthetic data.

6. Transferring to Pix3D

To assess the use of synthetic data we study transfer-

ability. Specifically, we use the SAIL-VOS 3D pretrained

model and finetune on Pix3D [71] using different amounts

of Pix3D training data. Pix3D [71] is an image dataset.

Consequently, we cannot study temporal aspects of our

model. We use as conditional input the mean shape rather

than the prediction from the previous frame. For evaluation

we follow Gkioxari et al. [21] and report the AP metrics in

Tab. 4. More details regarding experimental setup and im-

plementation are given in Appendix A. Qualitative results

of our Video2Mesh method trained on all Pix3D data are

provided in Fig. 8.

In the low-data regime where only 10%, 20%, and 50% real

mesh data (Pix3D) are available, pretraining on synthetic

data is beneficial: the model pretrained on SAIL-VOS 3D

outperfoms the model without pretraining. Note that depth

data may also be a useful cue to facilitate transferability

which we didn’t study yet.

7. Conclusion
We introduce SAIL-VOS 3D and develop a baseline for

3D mesh reconstruction from video data. In a first study

we observe temporal data to aid reconstruction. We hope

SAIL-VOS 3D facilitates further research in this direction.
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