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Figure 1: Given a pair of instances (e.g. people doing squats) and corresponding multiple views, features are computed using view-

specific deep encoders f ’s. Different instances may have contrasting similarities in different views. For instance, V0 (left) and V1 (right)

have similar optical-flow o = fflow and pose keypoints (keypoint) p = fkeypoint features but their image i = frgb features are far apart.

CoCon leverages these inconsistencies by encouraging the distances in all views to become similar. High similarity of o0, o1 and p0, p1
nudges i0, i1 towards each other in the RGB space.

Abstract

Labeling videos at scale is impractical. Consequently,

self-supervised visual representation learning is key for ef-

ficient video analysis. Recent success in learning image

representations suggest contrastive learning is a promising

framework to tackle this challenge. However, when applied

to real-world videos, contrastive learning may unknowingly

lead to separation of instances that contain semantically

similar events. In our work, we introduce a cooperative

variant of contrastive learning to utilize complementary in-

formation across views and address this issue. We use data-

driven sampling to leverage implicit relationships between

multiple input video views, whether observed (e.g. RGB)

or inferred (e.g. flow, segmentation masks, poses). We are

one of the firsts to explore exploiting inter-instance relation-

ships to drive learning. We experimentally evaluate our rep-

resentations on the downstream task of action recognition.

Our method achieves competitive performance on standard

benchmarks (UCF101, HMDB51, Kinetics400). Further-

more, qualitative experiments illustrate that our models can

capture higher-order class relationships. The code is avail-

able at http://github.com/nishantrai18/CoCon.

1. Introduction

There has recently been a surge in interest for approaches

utilizing self-supervised methods for visual representation

learning. Recent advances in visual representation learn-

ing have demonstrated impressive performance compared

to their supervised counterparts [3, 14]. Fresh development

in the video domain have attempted to make similar im-

provements [10, 16, 25, 35].

Videos are a rich source for self-supervision, due to the

inherent temporal consistency in neighboring frames. A

natural approach to exploit this temporal structure is pre-



dicting future context as done in [10, 16, 25, 27]. Such ap-

proaches perform future prediction in mainly two ways: (1)

predicting a reconstruction of future frames [25, 27, 39], (2)

predicting features representing the future frames [10, 16].

If the goal is learning high-level semantic features for other

downstream tasks, then complete reconstruction of frames

is unnecessary. Inspired by developments in language mod-

elling [29], recent work [41] propose losses that only focus

on the latent embedding using frame-level context. One of

the more recent approaches [10] propose utilizing spatio-

temporal context to learn meaningful representations. Even

though such developments have led to improved perfor-

mance, the quality of the learned features is still lagging

behind that of their supervised counterparts.

Due to the lack of labels in self-supervised settings, it

is impossible to make direct associations between different

training instances. Instead, prior work has learned associ-

ations based on structure, either in the form of temporal

[10, 20, 23, 26, 44] or spatial proximity [10, 18, 20, 30]

of patches extracted from training images or videos. How-

ever, the contrastive losses utilized enforce similarity con-

straints between instances from same videos while pushing

instances from other videos far away even if they repre-

sent the same semantic content. This inherent drawback

forces learning of features with limited semantic knowl-

edge and encourage performing low-level discrimination

between different videos. Recent approaches suffer from

this restriction leading to poor representations.

The idea of utilizing multiple views of information has

been a well-established one with roots in human percep-

tion [4, 15]. It’s argued that useful higher order seman-

tics are present throughout different views and are consis-

tent across them. At the same time, different views pro-

vide complementary information which can be utilized to

aid learning in other views. Multi-view learning has been

a popular direction [35, 40] utilizing these traits to improve

representation quality. Recent approaches learn features uti-

lizing multiple views with the motivation that information

shared across views has valuable semantic meaning. A ma-

jority of these approaches directly utilize core ideas such

as contrastive learning [31] and mutual information maxi-

mization [2, 24, 46]. Although the fusion of views leads to

improved representations, such approaches also utilize con-

trastive losses, consequently suffering from the same draw-

back of low-level discrimination between similar instances.

We propose Cooperative Contrastive Learning (CoCon),

which overcomes this shortcoming and leads to improved

visual representations. Our main motivation is that each

view sees a specific pattern, which can be useful to guide

other views and improve representations. Our approach uti-

lizes inter-view information to avoid the drawback of dis-

criminating similar instances discussed earlier. To this end,

each view sees a different aspect of the videos, allowing it to

suggest potentially similar instances to other views. This al-

lows us to infer implicit relationships between instances in

a self-supervised multi-view setting, something which we

are the first to explore. These associations are then used in

order to learn better representations for downstream appli-

cations such as video classification and action recognition.

Fig. 1 shows an overview of CoCon. It is worth noting

that although CoCon utilizes building blocks currently used

in self-supervised representation learning, it is applicable

to other tasks utilizing contrastive learning and be used in

conjunction with other recently proposed methods.

We use ‘freely’ available views of the input such as RGB

frames and Optical Flow. We also explore the benefit of us-

ing high-level inferred semantics as additional noisy views,

such as human pose keypoints and segmentation masks gen-

erated using off-the-shelf models [45]. These views are not

independent, as they can be derived from the original in-

put images. However, they are complementary and lead

to significant gains, demonstrating CoCon’s effectiveness

even with noisy related views. The extensible nature of

our framework and the ‘freely’ available views used make

it possible to use CoCon with any publicly available video

dataset and other contrastive learning approaches.

2. Related Work

Self-supervised Learning from images Recent ap-

proaches have tackled image representation learning by ex-

ploiting color information [22, 47] and spatial relationships

[30, 34], where relative positions between image patches are

exploited as supervisory signals. Several approaches apply

self-supervision to super-resolution [6, 19] or even to multi-

task [5] and cross-domain [33] learning frameworks.

Self-supervised Learning from videos Multiple ap-

proaches [10, 16, 25, 27, 39] perform self-supervision

through ‘predicting’ future frames. However, the term ‘pre-

dicting’ is overloaded, as they do not directly predict and

reconstruct frames but instead operate on latent representa-

tions. This ignores stochasticity of frame appearance, e.g.,

illumination changes, camera motion, appearance changes

due to reflections and so on, allowing the model to focus on

higher-order semantic features. Recent work [10, 40] utilize

Noise Contrastive Estimation to perform prediction of the

latent representations rather than the exact future frames,

vastly improving performance. Yet, another class of proxy

tasks are based on temporal ordering of frames [28, 44].

Temporal coherence [17, 43] and 3D puzzle [20] were used

as proxy loss to exploit spatio/temporal structures.

Multi-view learning Multiple views of videos are rich

sources of information for self-supervised learning [35, 40,

42]. Two stream networks for action recognition [37] have

led to many competitive approaches, which demonstrate us-

ing even derivable views such as optical flow helps improve

performance considerably. There have been approaches



[26, 35, 40, 42] utilizing diverse views, sometimes deriv-

able from one other, to learn better representations. How-

ever, these approaches utilize inter-view links by maximiz-

ing mutual information between them. Although this leads

to improved performance, we believe the rich inter-view

linkages can be utilized more effectively by utilizing them

to uncover implicit relationships between instances.

Multi-View Self-supervised learning Multiple recent

approaches [1, 11, 12, 32] have tackled the challenge of

multi-modal self-supervised learning achieving impressive

performance. However, these approaches suffer from the

same drawback of discriminating between similar instances,

leaving potential to benefit from inter-sample relationships.

Most approaches above perform self-supervision using

positive and negative pairs mined through structural con-

straints, e.g., temporal and spatial proximity. Although this

results in representations that capture some degree of se-

mantic information, it incorrectly leads to treating similar

actions differently due to the inherent nature of their pair-

mining. For instance, clip pairs in different videos are con-

sidered negatives, even if they represent the same action.

We argue that utilizing different views and inter-instance re-

lationships to propose positive pairs to aid training can lead

to improvement of all views simultaneously.

3. Method

We describe cooperative contrastive learning (CoCon)

and intuition behind our designs in this section. Addi-

tional details regarding architecture and implementation are

present in the appendix. In the following sections, we build

our framework borrowing the learning framework present

in [10] which learns video representations through spatio-

temporal contrastive losses. It should be noted that even

though we use this particular self-supervised backbone in

our experiments, our approach is not restricted by the choice

of the underlying self-supervised task. CoCon can be used

in conjunction with any other frameworks currently present

and allow them to be extended to a multi-view setting.

A video V is a sequence of T frames (not necessar-

ily RGB images) with resolution H × W and C chan-

nels, {i1, i2, . . . , iT }, where it ∈ R
H×W×C . Assume

T = N ∗ K, where N is the number of blocks and K
denotes the number of frames per block. We partition a

video clip V into N disjoint blocks V = {x1,x2, . . . ,xN},

where xj ∈ R
K×H×W×C and a non-linear encoder f(.)

transforms each input block xj into its latent representation

zj = f(xj). An aggregation function, g(.) takes a sequence

{z1, z2, . . . , zj} as input and generates a context representa-

tion cj = g(z1, z2, . . . , zj). In our setup, zj ∈ R
H�

×W �
×D

and cj ∈ R
D. D represents the embedding size and H �, W �

represent down-sampled resolutions as different regions in

zj represent features for different spatial locations. We de-

fine z�j = Pool(zj) where z�j ∈ R
D and c = F (V ) where

F (.) = g(f(.)).
Similar to [10], we create a prediction task involving pre-

dicting z of future blocks. Details are provided in the ap-

pendix. For multiple views, we define cv = Fv(Vv), where

Vv , cv and Fv represent the input, context feature and com-

posite encoder for view v respectively.

Contrastive Loss Noise Contrastive Estimation (NCE) [9,

29, 31] constructs a binary classification task where a clas-

sifier is fed with real and noisy samples with the training

objective being distinguishing them. Similar to [10, 31], we

use an NCE loss over our feature embeddings described in

Eq 1. zi,k represents the feature embedding for the ith time-

step and the kth spatial location. Recall zj ∈ R
H�

×W �
×D

which preserves the spatial layout. We normalize zi,k to

lie on the unit hypersphere. Eq 1 is a cross-entropy loss

distinguishing one positive pair from all the negative pairs

present in a video. We use temperature τ = 0.005 in our

experiments. In a batch setting with multiple video clips, it

is possible to have more inter-clip negative pairs.

To extend this to multiple views, we utilize different en-

coders φv for each view v. We train these encoders by

utilizing Lcpc for each of them independently, giving us,

Lcpc =
�

v L
v
cpc

Lcpc = −
�

i,k

�

log
exp(z̃i,k · zi,k / τ)

�

j,m exp(z̃i,k · zj,m / τ)

�

(1)

Cooperative Multi-View Learning Recent approaches

[12, 35, 40] tackle multi-view self-supervised learning by

maximizing mutual information across views. They involve

using positive and negative pairs generated using struc-

tural constraints, e.g., spatio-temporal proximity in videos

[10, 11, 35, 40]. Although such representations capture

semantic content, they unintentionally encourage discrim-

inating video clips containing semantically similar content

due to the inherent nature of pair generation, i.e. video

clips from different videos are negatives. We utilize inter-

instance relationships to alleviate some of these issues.

We soften this constraint by indirectly deriving pair pro-

posals using different views. Such a co-operative scheme

benefits all models as each individual view gradually im-

proves. Better models are able to generate better proposals,

improving performance of all views creating a positive feed-

back loop. Our belief is that significant semantic features

should be universal across views, therefore, potential incor-

rect proposals from one view should cancel out through pro-

posals from other views.

We achieve the above by computing view-specific dis-

tances and synchronizing them across all views. We en-

force a consistency loss between distances from each view.

Looking at it from another perspective, we are encouraging

relationships between instances to be the same across views

i.e. similar pairs in one view should be a similar pair in



Figure 2: Examples for each view. From top to bottom - RGB,

Flow, SegMasks and Poses. Note the prevalence of noise in

a few samples, specially SegMasks; There are multiple other

instances where Poses, SegMasks are noisy but have not been

shown here.

View Random Lcpc L
cpc
sim L

cpc
sync Lcocon

RGB 46.7 63.7 66.0 62.7 67.8

Flow 65.3 69.8 71.4 69.2 72.5

Table 1: Impact of losses on performance of models when jointly trained

with RGB and Flow. CoCon i.e. Ltotal (67.8) comfortably improves

performance over CPC i.e. Lcpc (63.7). Lx
y = Lx+λLy where λ = 10.0

for this experiment

Method Pretrain
RGB Flow2

UCF HMDB UCF HMDB

Random 46.7 20.6 65.3 31.2

CPC K400 68.6 35.5 69.8 40.8

CoCon UCF 67.8 37.7 72.5 44.1

CoCon K400 72.1 46.5 71.8 44.2

Table 2: Impact of pre-training comparison. CoCon demonstrates a con-

sistent improvement in both RGB and Flow.

Method
RGB Flow PoseHM SegMask

UCF HMDB UCF HMDB UCF HMDB UCF HMDB

Random 46.7 20.6 65.3 31.2 51.7 33.0 42.7 26.3

CPC 63.7 33.1 71.2 44.6 56.4 42.0 53.7 32.8

CoCon 71.0 39.0 74.5 45.4 58.7 42.6 55.8 34.0

Table 3: Impact of co-training on views. CoCon is jointly trained with

four modalities (RGB, Flow, PoseHM, & SegMask).

other views as well. Treating this as inter-view graph reg-

ularization, we create a graph similarity matrix Wv of size

K ×K, using some distance metric. We represent our dis-

tance metric by D(.). In our experiments, we use the cosine

distance which translates to W v
ab = zz · zb.

Assume ha
v denotes the representation for the vth view

of instance a. In our experiments, we use h = z� giving

us block level features. Our resultant loss becomes the in-

consistency between similarity matrices across views. The

resultant graph regularization loss becomes
�

v0,v1
�W v0−

W v1� which is simplified in Eq 2.

Building on top of our earlier intuition, in order to have

sensible proposals, we need to have discriminative scores,

i.e. we should have both positive (D → 0) and negative

(D → 1) pairs. To promote well distributed distances, we

utilize the hinge loss described in Eq 3.

Lsim is the hinge loss, where the first term pushes repre-

sentations of the same instance in different views closer;

while the second term pushes different instances apart.

Since the number of structural negative pairs are much

larger than the positives, we introduce µ in order to balance

the loss weights. We choose µ such that the first and second

components contribute equally to the loss.

Lsync =
�

v0,v1

�

a,b

�

D(ha
v0
, hb

v0
)−D(ha

v1
, hb

v1
)
�2

(2)

Lsim =
�

v0,v1

�

a

D(ha
v0
, ha

v1
)

+ µ
�

a �=b

max
�

0, 1−D(ha
v0
, hb

v1
)
�

(3)

Note that Lsim entangles different views together. An al-

ternative would be defining such a loss individually for each

view. However, diversity is inherently encouraged through

Lcpc, and interactions between views have the side-effect

of increasing their mutual information (MI), which leads to

improved performance [35, 40].

We combine the above losses to get our cooperative loss,

Lcoop = Lsync + α · Lsim. We use α = 1.0 for our exper-

iments and observe roughly similar performance for differ-

ent values of α. The overall loss of our model is given by

Lcocon = Lcpc + λ · Lcoop. Lcpc encourages our model to

learn good features for each view, while Lcoop nudges it to

learn higher-level features using all views while respecting

the similarity structure across them.

4. Experiments

The goal of our framework is to learn video represen-

tations which can be leveraged for video analysis tasks.

Therefore, we perform experiments validating the quality of

our representations. We measure downstream action classi-

fication to objectively measure model effectiveness and ana-



Action Class CoCon CPC

PlayCello PlaySitar, PlayTabla, PlayDhol N/A

Skiing Surfing, Skijet Surfing

HammerThrow BaseballPitch, ThrowDiscus, Shotput N/A

BrushTeeth ApplyLipstick, EyeMakeup, ShaveBeard ApplyLipstick

Table 4: Nearest consistent semantic classes. Individually trained views (CPC) do not have

consistent neighbors across views, leading to empty results (N/A) for ’PlayingCello’ and

’HammerThrow’. While views trained using CoCon show consistency across views, leading

to sensible relationships e.g. ’HammerThrow’ related to other classes involving throwing.

# Views
RGB Flow

UCF HMDB UCF HMDB

2 67.8 37.7 72.5 44.1

4 71.0 39.0 74.5 45.4

Table 5: Impact of performance on vary-

ing views. A consistent improvement can be

seen with more views despite the prevalent

noise in PoseHM and SegMasks.

lyze impact of our designs through controlled ablation stud-

ies. We also conduct qualitative experiments to gain deeper

insights into our approach. In this section, we briefly go

over our experiment framework. Additional details and dis-

cussions for each component are provided in the appendix.

Datasets Our approach is a self-supervised learning

framework for any dataset with multiple views. How-

ever, we discuss its relevance to video action classification

in our experiments. We focus on human action datasets

i.e. UCF101, HMDB51 and Kinetics400. UCF101 con-

tains 13K videos spanning over 101 human action classes.

HMDB51 contains 7K video clips mostly from movies for

51 classes. Kinetics-400 (K400) is a large video dataset

with 306K video clips from 400 classes.

Views We utilize different views in our experiments. For

Kinetics-400, we learn encoders for RGB and Optical Flow.

We use Farneback flow (FF) [7] instead of the commonly

used TVL1-Flow as it is quicker to compute lowering our

computation budget. Although FF leads to lower perfor-

mance compared to TVL1, the essence of our claims remain

unaffected. For UCF101 and HMDB51, we learn encoders

for RGB, TVL1 Optical Flow, Pose Heatmaps (PoseHMs)

and Human Segmentation Masks (SegMasks). A few vi-

sual samples for each view are provided in 2. PoseHMs and

SegMasks are generated using an off-the-shelf detector [45]

without any form of pre/post-processing.

Implementation Details We choose a 3D-ResNet sim-

ilar to [10, 13] as the encoder f(.). We choose N = 8
and K = 5 in our experiments. We subsample the input

by uniformly choosing one out of every 3 frames. Our pre-

dictive task involves predicting the last three blocks using

the first five blocks. We use standard data augmentations

during training whose details are provided in the appendix.

We train our models using Adam [21] optimizer with an ini-

tial learning rate of 10−3, decreased upon loss plateauing.

We use 4 GPUs with a batch size of 16 samples per GPU.

Multiple spatio-temporal samples ensure sufficient negative

examples despite the small batch size used for training.

Action Classification We measure the effectiveness of

our learned representations using the downstream task of

action classification. We follow the standard evaluation pro-

tocol of using self-supervised model weights as initializa-

tion for supervised learning. The architecture is then fine-

tuned end-to-end using class label supervision. We finally

report the fine-tuned accuracies on UCF101 and HMDB51.

While fine-tuning, we use the learned composite function

F (.) in order to generate context representations for the

video blocks. The context feature is further passed through

a spatial pooling layer followed by a fully-connected layer

and a multi-way softmax for action classification.

4.1. Quantitative Results

We analyze various aspects of CoCon through ablation

studies, experiments on multiple datasets, controlled varia-

tion of views and comparison to comparable methods. We

objectively evaluate model performance using downstream

classification accuracy as a proxy for learned representa-

tion quality. Pre-training is performed on either UCF101

or Kinetics400. We propose two baselines for comparison.

(1) Random - random initialization of weights (2) CPC -

self-supervised training utilizing only Lcpc; which is effec-

tively individual training of views. CPC serves as a critical

baseline to measure the benefits of multi-view training as

opposed to individual training.

Ablation Study We have motivated the utility of our

various loss components. We now perform experiments to

quantify the impact of each. The pre-training dataset used

is the 1st split of UCF101, and downstream classification

accuracy is computed on the same. Table 1 summarizes

the results of our experiment. As expected, all cross-view

approaches comfortably perform better than CPC; demon-

strating the utility of multi-view training.

Using Lcpc
sync leads to no performance improvements, as

only using Lsync leads to the model collapsing by squash-

ing all D scores to have similar values, thus necessitating

Lsim to counter-balance this tendency. Lcpc
sim leads to im-

proved performance wrt Lcpc as it learns better features by

effectively maximizing mutual information between views.

CoCon i.e Lcocon achieves the same by also regularizing

manifolds across views, leading to even better performance

across all views. The important comparison to observe is

between Lcpc
sim and Lcocon. As Lcpc

sim is the most similar

baseline to other multi-view approaches, e.g., CMC [40].

However, we argue this baseline is even stronger as it in-



volves both single-view and multi-view components com-

pared to [40], which only uses a contrastive multi-view loss

to learn representations.

Effect of Datasets A critical benefit of self-supervised

approaches is the ability to run on large unlabelled datasets.

To simulate such a setting, we perform pre-training us-

ing UCF101 or Kinetics400 1 without labels utilizing the

1st splits of UCF101 and HMDB51 for evaluation. Table

2 confirms pre-training with a larger dataset leads to bet-

ter performance. It is also worth noting that CoCon pre-

trained with UCF101 outperforms CPC trained on Kinet-

ics400 even though CoCon on UCF101 uses only around

10% data compared to Kinetics. Further demonstrating the

potential of utilizing multiple views as opposed to training

with larger and diverse datasets.

When comparing the Random baseline and CoCon

pre-trained on Kinetics400, we observe higher perfor-

mance gains for RGB (+25.4%) compared to Optical-Flow

(+6.9%). We argue this is due to higher variance and com-

plexity of RGB compared to Flow, allowing a randomly

initialized network to perform relatively better with Flow.

While comparing our approach with CPC, we again observe

higher gains in RGB (+4.1%) compared to Flow (+2.7%).

This can be explained by the potential capability of RGB to

capture flow-like features when learned jointly.

Effect of cooperative training We compare benefits

of cooperative training with varying views. We look at

co-training of RGB, Flow, SegMasks and PoseHMs. Re-

call that these additional views are generated using off-the-

shelf models without any additional post-processing. Even

though they are somewhat redundant i.e. Flow, PoseHM,

SegMasks are actually derived from RGB Images; using

them simultaneously still leads to a large performance in-

crease. We also note that although SegMasks and PoseHMs

are sparse low-dimensional features, they still help improve

performance across all views.

Table 3 summarizes downstream action recognition per-

formance of each view under different approaches. We

see improved performance with increase in the number

of views used. Consistent gains for views such as Flow,

SegMasks, PoseHM, which are not as expressive as RGB

points towards extraction of higher-order features even from

low dimensional inputs. We observe PoseHM and Seg-

Mask have lower performance gains when evaluated on

HMDB51. This can be attributed to the large degree of

noise in PoseHMs and SegMasks for HMDB51. HMDB

is a challenging and diverse dataset, leading to poor pre-

dictions from our off-the-shelf detector. In conclusion, the

benefits of joint training are apparent as CoCon leads to a

performance improvement for all the views involved.

1 Optical Flow used for Kinetics400 is Farneback Flow; as opposed to

TVL1 Flow for UCF101 and HMDB51. This difference in pre-training

and fine-tuning modalities leads to less than expected performance gains.

Effect of additional views CoCon hinges on the as-

sumption that multi-view information helps in improving

overall representation quality. To verify our hypothesis,

we study co-training with different number of views. We

consider two scenarios, 1) Joint training of RGB and Flow

streams, and 2) Joint training of RGB, Flow, SegMasks and

PoseHMs. Table 5 shows a consistent increase across views

when increasing the number of views used during training.

We should note that both SegMasks and PoseHMs contain

significant noise as the off-the-shelf models incorrectly de-

tects and misses humans in numerous videos. However, we

see a consistent mutual increase in performance for all the

involved views despite the prevalence of noise.

Comparison with comparable approaches We sum-

marize comparisons of CoCon with comparable state-of-

the-art approaches in Table 6. CoCon-Ensemble refers to an

ensemble of models for all the involved views. We observe

a few major trends, (1) When pre-training on UCF101, us-

ing multiple views allows us to outperform the nearest com-

parable approach by around 10.4%. This demonstrates the

potential of cooperatively utilizing multiple views to learn

representations. (2) We see considerable gains while train-

ing on Kinetics400 as well, however, the increase is smaller

compared to UCF101. We argue the reasons are, a) we only

utilize two views for co-training. b) the flow we utilize for

Kinetics400 is Farneback Flow instead of TVL1 flow used

for UCF101 and HMDB51. (3) Our method comfortably

outperforms recent multi-view approaches consistently on

UCF101 and HMDB51. (4) An interesting observation is

that using multiple views of a small dataset (UCF101) per-

forms better (71.0%) than pre-training on a large dataset,

Kinetics400 (68.2%). This suggests that utilizing different

views can be better than merely training on larger datasets.

Comparison with recent approaches A few very re-

cent approaches [1, 11, 12, 32] have tackled multi-modal

self-supervised achieving impressive performance. CoCon

differs from them as it considers inter-instance relationships

to aid learning in addition to relationships between views.

Due to resource constraints, it was not possible to have a fair

comparison due to the significant difference in the amount

of GPUs, number of epochs trained and the backbones used.

However, we hope our carefully constructed experiments

given earlier provide deeper insights into CoCon’s benefits

even with lower resource requirements.

4.2. Qualitative Results

We motivate CoCon arguing about the benefits of pre-

serving similarities across view-specific spaces. We observe

respecting structure across views results in emergence of

higher-order semantics without additional supervision e.g.

sensible class relationships and good feature representa-

tions. Jointly training with views known to perform well for

video action understanding allows us to learn good video



Method Resolution Backbone # Views Pre-train UCF101 HMDB51

Random Initialization 128× 128 ResNet18 1 46.7 20.6

ImageNet [36] 224× 224 VGG-M-2048 1 ImageNet 73.0 40.5

Shuffle and Learn [28] 227× 227 CaffeNet 1 UCF-HMDB 50.2 18.1

OPN [23] 80× 80 VGG-M-2048 1 UCF-HMDB 59.8 23.8

DPC [10] 128× 128 ResNet18 1 UCF101 60.6 -

VGAN [42] N/A C3D 2 Flickr [42] 52.1 -

LT-Motion [26] N/A RNN [26] 2 NTU 53.0 -

Cross and Learn [35] 224× 224 CaffeNet 2 UCF101 58.7 27.2

Geometry [8] N/A CaffeNet 2 UCF101 55.1 23.3

CMC [40] 128× 128 CaffeNet 3 UCF101 59.7 26.1

CoCon - RGB 128× 128 ResNet18 4 UCF101 70.5 38.4

CoCon - Ensemble 128× 128 ResNet18 4 UCF101 82.4 52.0

3D-RotNet [18] 112× 112 ResNet18 1 Kinetics 62.9 33.7

DPC [10] 128× 128 ResNet18 1 Kinetics 68.2 34.5

CoCon - RGB 128× 128 ResNet18 2 Kinetics 71.6 46.0

CoCon - Ensemble 128× 128 ResNet18 2 Kinetics 78.1 52.0

ST-Puzzle [20] 224× 224 ResNet18 1 Kinetics 65.8 33.7

DPC [10] 224× 224 ResNet34 1 Kinetics 75.7 35.7

CoCon - RGB 224× 224 ResNet34 2 Kinetics 79.1 48.5

CoCon - Ensemble 224× 224 ResNet34 2 Kinetics 82.0 53.1

Table 6: Comparison of classification accuracies on UCF101 and HMDB51, averaged over all splits.
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Figure 3: t-SNE visualization of RGB features from CPC (left) and CoCon (right) trained

with 4 views. The color mapping for each category represents the relationships between ac-

tion classes, e.g., Red: Instruments; Yellow: Water Sports; Light-blue: Physical Acts; Blue:

Makeup-Hygiene. More meaningful clusters are formed using CoCon; signifying the ability of

CoCon to align different yet semantically-related classes without any additional supervision.

Figure 4: Differences between class-

wise accuracy for CoCon vs CPC. Only

extreme classes are displayed. Blue -

Gains; Red - Loss

representations, consequently, imparting unexpected side

effects such as action alignment across videos. We discuss

various experiments and results to support these claims.

t-SNE Visualization We explore t-SNE visualizations of

our learned representations on the 1st test split of UCF101

extracted using F (.). For clarity, only 21 action classes are

displayed. We loosely order the action classes according to

their relationships. Classes having similar colors are seman-

tically similar. We can roughly observe the following broad

categories present in the mentioned classes: Playing Instru-

ments, Water Sports, Physical Sports, Physical Activities,

Makeup-Hygiene. Results are displayed in Fig 3. Although

we operate in a self-supervised setting, CoCon is able to

uncover deeper semantic features allowing us to uncover

inter-class relationships. We can see a much more concise

and consistent clustering in CoCon compared to CPC.



Figure 5: Soft Alignment of videos from UCF101 test split using CoCon pre-trained on UCF101. The first pair of videos involves pull-

ups; observe the periodicity captured in the heatmap. The second involves high-jumps; notice that we are roughly able to align the running

and jumping phases though they happen at different times. Heatmaps (right) represent relative block similarities from different time-steps

of the videos. The color of the frame boxes describe the associated actions; matching colors broadly represent similar action stages.

Effect of action classes on performance Figure 4 shows

the classes which observe the least and highest performance

improvements when co-trained with multiple views. We

observe a loose pattern where action classes involving dis-

tinguishable physical movements see larger improvements.

We can argue this is because we use views which are suit-

able for physically intensive actions.

Inter-Class Relationships In order to study consistency

of structure across different views, we look at relationships

between classes by inferring their similarities through our

learned features. We compare cosine similarities across

videos from different classes and compute the most simi-

lar four classes for each action. We repeat the process for

all views and look at the consistency of the results. We only

display classes which are amongst the closest ones across

all views. Table 4 summarizes our results. We see the de-

tected nearest actions are semantically related to the orig-

inal actions. In the cases of PlayingCello, we encounter a

cluster of categories involving playing instruments. Simi-

larly for BasketBall, we can see emergence of sports-based

relationships even though there isn’t any visual commonal-

ity between the categories. It’s worth noting that as these

nearest classes are consistent across different views, our ap-

proach cannot cheat to generate them i.e. it cannot look at

’background crowd’ or ’green field’ and infer that a video

clip is related to sports. Since views such as Optical-Flow,

SegMasks and KeypointHeatmap do not have such informa-

tion and are very low-dimensional.

Action Alignment Even though we only use self-

supervision, our embeddings are able to capture relevant

semantics through our multi-view approach allowing loose

alignment between videos. To compute this soft alignment,

we divide each video into 18 blocks and compute block-

level features. We then utilize relative cosine similarities to

infer associations between the videos. Figure 5 highlights a

few examples. Notice the periodicity implicitly present in

some actions (e.g. pullups) captured through the heatmap

allowing us to perform non-linear alignment.

5. Conclusion

We propose a cooperative version of contrastive learn-

ing, called CoCon, for self-supervised video representation

learning. By leveraging relationships across views, we en-

courage our self-supervised learning objective to be aligned

with the underlying semantics. We demonstrate the effec-

tiveness of our approach on the downstream task of action

classification, and illustrate the semantic structure of our

representation. We show that additional input views gen-

erated by off-the-shelf computer vision algorithms can lead

to significant improvements, even though they are noisy and

derived from an existing modality i.e. RGB. As these views

are ’freely’ available, this shows the feasibility of utilizing

multi-view approaches on datasets which are not tradition-

ally considered multi-view. We hope this enables the ability

to leverage multi-view learning algorithms and observe per-

formance gains even on single-view datasets.
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[7] Gunnar Farnebäck. Two-frame motion estimation based on

polynomial expansion. In Scandinavian conference on Im-

age analysis, pages 363–370. Springer, 2003.
[8] Chuang Gan, Boqing Gong, Kun Liu, Hao Su, and

Leonidas J Guibas. Geometry guided convolutional neural

networks for self-supervised video representation learning.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5589–5597, 2018.
[9] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive

estimation: A new estimation principle for unnormalized

statistical models. In Proceedings of the Thirteenth Inter-

national Conference on Artificial Intelligence and Statistics,

pages 297–304, 2010.
[10] Tengda Han, Weidi Xie, and Andrew Zisserman. Video rep-

resentation learning by dense predictive coding. In Workshop

on Large Scale Holistic Video Understanding, ICCV, 2019.
[11] Tengda Han, Weidi Xie, and Andrew Zisserman. Memory-

augmented dense predictive coding for video representation

learning. In European Conference on Computer Vision,

2020.
[12] Tengda Han, Weidi Xie, and Andrew Zisserman. Self-

supervised co-training for video representation learning.

arXiv preprint arXiv:2010.09709, 2020.
[13] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can

spatiotemporal 3d cnns retrace the history of 2d cnns and im-

agenet? In Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, pages 6546–6555, 2018.
[14] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual repre-

sentation learning. arXiv preprint arXiv:1911.05722, 2019.
[15] Jakob Hohwy. The predictive mind. Oxford University Press,

2013.
[16] Anthony Hu, Fergal Cotter, Nikhil Mohan, Corina Gurau,

and Alex Kendall. Probabilistic future prediction for video

scene understanding. arXiv preprint arXiv:2003.06409,

2020.
[17] Dinesh Jayaraman and Kristen Grauman. Slow and steady

feature analysis: higher order temporal coherence in video.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3852–3861, 2016.
[18] Longlong Jing and Yingli Tian. Self-supervised spatiotem-

poral feature learning by video geometric transformations.

ArXiv, abs/1811.11387, 2018.
[19] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

European conference on computer vision, pages 694–711.

Springer, 2016.
[20] Dahun Kim, Donghyeon Cho, and In So Kweon. Self-

supervised video representation learning with space-time cu-

bic puzzles. In Proceedings of the AAAI Conference on Arti-

ficial Intelligence, volume 33, pages 8545–8552, 2019.
[21] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.
[22] Gustav Larsson, Michael Maire, and Gregory

Shakhnarovich. Colorization as a proxy task for visual

understanding. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages

6874–6883, 2017.
[23] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-

Hsuan Yang. Unsupervised representation learning by sort-

ing sequences. In Proceedings of the IEEE International

Conference on Computer Vision, pages 667–676, 2017.
[24] Yingming Li, Ming Yang, and Zhongfei Zhang. A survey

of multi-view representation learning. IEEE transactions on

knowledge and data engineering, 31(10):1863–1883, 2018.
[25] William Lotter, Gabriel Kreiman, and David Cox. Deep pre-

dictive coding networks for video prediction and unsuper-

vised learning. arXiv preprint arXiv:1605.08104, 2016.
[26] Zelun Luo, Boya Peng, De-An Huang, Alexandre Alahi, and

Li Fei-Fei. Unsupervised learning of long-term motion dy-

namics for videos. CoRR, abs/1701.01821, 2017.
[27] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep

multi-scale video prediction beyond mean square error.

arXiv preprint arXiv:1511.05440, 2015.
[28] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuf-

fle and learn: unsupervised learning using temporal order

verification. In European Conference on Computer Vision,

pages 527–544. Springer, 2016.
[29] Andriy Mnih and Koray Kavukcuoglu. Learning word em-

beddings efficiently with noise-contrastive estimation. In

Advances in neural information processing systems, pages

2265–2273, 2013.
[30] Mehdi Noroozi and Paolo Favaro. Unsupervised learning

of visual representations by solving jigsaw puzzles. In

European Conference on Computer Vision, pages 69–84.

Springer, 2016.
[31] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018.
[32] Mandela Patrick, Yuki M Asano, Polina Kuznetsova, Ruth

Fong, João F Henriques, Geoffrey Zweig, and Andrea

Vedaldi. Multi-modal self-supervision from generalized data

transformations. arXiv preprint arXiv:2003.04298, 2020.



[33] Zhongzheng Ren and Yong Jae Lee. Cross-domain self-

supervised multi-task feature learning using synthetic im-

agery. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 762–771, 2018.
[34] Mohammad Sabokrou, Mohammad Khalooei, and Ehsan

Adeli. Self-supervised representation learning via

neighborhood-relational encoding. In Proceedings of

the IEEE International Conference on Computer Vision,

pages 8010–8019, 2019.
[35] Nawid Sayed, Biagio Brattoli, and Björn Ommer.

Cross and learn: Cross-modal self-supervision. CoRR,

abs/1811.03879, 2018.
[36] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In Ad-

vances in neural information processing systems, pages 568–

576, 2014.
[37] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.
[38] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way

to prevent neural networks from overfitting. The journal of

machine learning research, 15(1):1929–1958, 2014.
[39] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudi-

nov. Unsupervised learning of video representations using

lstms. In International conference on machine learning,

pages 843–852, 2015.
[40] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-

trastive multiview coding. CoRR, abs/1906.05849, 2019.
[41] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. An-

ticipating the future by watching unlabeled video. CoRR,

abs/1504.08023, 2015.
[42] Carl Vondrick, Hamed Pirsiavash, and Antonio Tor-

ralba. Generating videos with scene dynamics. CoRR,

abs/1609.02612, 2016.
[43] Xiaolong Wang and Abhinav Gupta. Unsupervised learning

of visual representations using videos. In Proceedings of the

IEEE International Conference on Computer Vision, pages

2794–2802, 2015.
[44] Donglai Wei, Joseph J Lim, Andrew Zisserman, and

William T Freeman. Learning and using the arrow of time.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8052–8060, 2018.
[45] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen

Lo, and Ross Girshick. Detectron2. https://github.

com/facebookresearch/detectron2, 2019.
[46] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3733–

3742, 2018.
[47] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful

image colorization. In European conference on computer

vision, pages 649–666. Springer, 2016.


