
MDMMT: Multidomain Multimodal Transformer for Video Retrieval
Supplementary materials

Maksim Dzabraev1,2, Maksim Kalashnikov1, Stepan Komkov1,2, Aleksandr Petiushko1,2

1Lomonosov Moscow State University
2Huawei Moscow Research Center

dzabraev.maksim@intsys.msu.ru, kalashnikov.maxim@intsys.msu.ru,

stepan.komkov@intsys.msu.ru, petyushko.alexander1@huawei.com

A. Pretrain Experts Usage

The important data preparing stage is how to sample
frames from a video to achieve the best performance. For
s3d experiments the input video is converted to 30 frames
per second, for all other experiments we convert the input
video to 32 frames per second. As a result we compute a
single embedding for each second, having 1 second window
with 1 second shift (no overlapping).

The input frame size is important. We use the different
sizes for the different models. For each model we use the
recommended input size. For s3d we resize a video to 256
on the short side and then take a 224x224 center crop. For
SlowFast 32x2 R101 we resize a video to 256 on the short
side and then take a 256x256 center crop. For ipCSN 152
and irCSN 152 we resize a video to 224 on the short side and
take a 224x224 center crop. For r(2+1)d 152 and r(2+1)d 34
we resize a video to 112 on the short side and then take a
112x112 center crop.

Pretrained models for ipCSN, irCSN and r(2+1)d are
available here1, for SlowFast 32x2 R101 here2, and for s3d
here3.

For the CLIP model [15] we resize a video to 224 on the
short side and take a center crop, then we extract 1 frame
per second. We use a publicly available image encoder. We
do not use the text encoder from CLIP.

Model s3dg MIL-NCE is a video encoder from the
work [9]. This network is trained from scratch on
HowTo100M dataset. For this network we resize the in-
put video stream to the size of 228x228 pixels, then take a
center crop.

B. Datasets Combination

In Fig. 1,2,3 we present 6 models. Abbreviations
McALV, McALVYMTS and McALVYMTS represent the
same three models on these figures. The first model,
called Mc, is trained on the MSRVTT full clean split
only, the second one, called A, is trained on ActivityNet
only. And the third model, called L, is trained on LSMDC
only. These three models are taken as baselines. Adding

more datasets should be not worse than these baseline.
The forth model is called McALV. This model is trained
on the combination of MSRVTT, ActivityNet, LSMDC
and TwitterVines. As we can see Mc→McALV gives
+3.07% on MSRVTT (full clean split), A→McALV gives
+1.06% on ActivityNet, and L→McALV gives +1.77% on
LSMDC. The next model is called McALVYMT and it is
trained on combination of MSRVTT, ActivityNet, LSMDC,
TwitterVines, YouCook2, MSVD, TGIF. The transitions
Mc→McALVYMT, A→McALVYMT, L→McALVYMT
give +4.85%, +1.45% and +2.63% correspondingly. The
last transitions Mc→McALVYMTS, A→McALVYMTS,
L→McALVYMTS slightly improve the performance on
ActivityNet and LSMDC and significantly improve the per-
formance on MSRVTT. Finally, the combination of all
datasets gives +5.5% for MSRVTT, +1.47% for ActivityNet
and +2.74% for LSMDC.

MSRVTT full clean R@5 ↑

Mc

29.0

McALV

32.1

McALVYMT

33.8

McALVYMTS

34.5

Figure 1: Increasing R@5 metric on the MSRVTT full clean
split while enriching the train part.

1. https://github.com/facebookresearch/VMZ
2. https://github.com/facebookresearch/SlowFast/blob/master/MODEL ZOO.md
3. https://github.com/princeton-vl/d3dhelper/blob/master/d3d helper.ipynb

1

ActivityNet R@5 ↑

A

30.9

McALV

32.0

McALVYMT McALVYMTS

32.4

Figure 2: Increasing R@5 metric on the ActivityNet test set
while enriching the train part.

LSMDC R@5↑

L

24.7

McALV

26.5

McALVYMT McALVYMTS

27.4

Figure 3: Increasing R@5 metric on the LSMDC test set
while enriching the train part.

C. Test and Train Intersection
In this section we present our analysis of overlapping of

popular text-to-video datasets. Since we compose the train
dataset from several different datasets it is important to be
sure that there is no the same video segment in the train
part and in the test part. Our aim is to find the overlap be-
tween the train part of used datasets — MSRVTT, Activ-
ityNet, LSMDC, YouCook2, MSVD, TGIF, TwitterVines,
HowTo100M, Kinetics700 and the test parts of MSRVTT,
ActivityNet and LSMDC, and then to remove found dupli-
cates from the train parts.

Note that for training we use Something to Something
V2 dataset, but we do not try to find overlap between it and
test datasets because this dataset is artificially created, thus
the probability to find duplicates is very low.

We decided to find the overlap only for MSRVTT, Ac-
tivityNet and LSMDC because these are the most popular
datasets and we do not have enough human resources to
find the overlap for the test part of all other datasets.

Our cleaning method consists of two stages. The first
stage is to match video segments by the YouTube ID (if
the ID is available) and remove from train parts all video
segments that have the corresponding pair in test parts. In
Main Article Tab. 1 the information about the availability
of YouTube IDs in datasets is presented. We collect the
YouTube ID for all videos from MSRVTT full test and Ac-
tivityNet validation 1,2 and remove corresponding video
segments from the train part.

The second stage is based on matching frames by em-
beddings. For each video we compute several embeddings
then we compute the similarity between each video from
the train part and the test part. After we manually assess
several thousands of video segments with highest scores for
each pair of datasets. Then we extend found duplicates by
either the YouTube ID or the internal dataset ID. This means
that if a video V1 is marked as a duplicate and a video V2 is
not marked as a duplicate, but they have the same YouTube
ID or same internal dataset ID, we will remove V1 and V2

from the train part. In case of LSMDC we do not have the
YouTube ID, but have the name of the movie from which
the video segment is taken, so if a video segment V1 is
marked as a duplicate, we remove all segments taken from
the movie of V1. The detailed description of the second
stage is described in Sec. C.1.

Surprisingly we found that the MSRVTT test has a sig-
nificant overlap with the MSRVTT train part. This problem
is relevant for the full, 1k-A and 1k-B splits. The Activi-
tyNet dataset suffers from the same problem.

For large datasets like HowTo100M and Kinetics700
we can not find the whole intersection, but we estimate
the approximate number of videos in the intersection. We
found that HowTo100M may have about 300 (10% of the
MSRVTT full test part) video segments that can be in the
MSRVTT full test part.

The similar situation is about Kinetics700 and Activi-
tyNet datasets. Kinetics700 may have approximately 500-
600 video segments (10% of the ActivityNet test) that may
have duplicates in ActivityNet validation 1,2. Another
problem with the Kinetics dataset is that many motion mod-
els are pretrained on it.

This circumstance means that researchers should care-
fully use HowTo100M and Kinetics700 along with
MSRVTT and ActivityNet correspondingly, because for to-
day we do not know whether a neural network overfits for

2

some portion of this intersection or not.
All duplicates can be considered as two groups of pairs.

Pairs from the first group have the same videos, but differ-
ent brightness, aspect ratio, size, presence/absence of a logo
and so on. The second group has pairs with quite similar
videos, for example it can be the same person on the same
background, doing the same things, but wearing different
clothes. We think that it is better to remove such videos
from the train part to prevent overfitting. Several found ex-
amples are presented in Fig. 4.

C.1. Near duplicate video search

C.1.1 Approach

In this section we explain our approach that is used to find
the same or quite similar video segments in test and train
parts.

Suppose we have two sets of videos Q = {q1,, qk}
and G = {g1, ..., gn} called the query set and the gallery
set. We want to find all pairs (qi, gj) where qi and gj have
a common video segment.

From each qi and gj we extract 1 frame per second. Each
video is then represented by a sequence of pictures: qi =
[q1

i ,, q
si
i] and gj = [g1

j , ..., g
pj

j]. Then a 2D pretrained
neural network is used to extract features from each image:
q̄ba = neuralnet(qba) and ḡba = neuralnet(gba).

Then we compute the matrix of cosines between the fea-

tures from Q and G: sabij =
<q̄ai ,ḡ

b
j>

||q̄ba||2||ḡb
a||2

.
Now each pair (qi, gj) is represented by the matrix:

g1
j ... g

pj

j

q1
i s11

ij ... s
1pj

ij

...

qsii ssi1ij ... s
sipj

ij

(1)

Suppose that videos qi and gj are intersected at time mo-
ments tq and tg , it is naturally to assume that the next sev-
eral seconds tq + 1, ..., tq + K − 1 and tg + 1, ..., tg +
K − 1 (K ≤ min(si, pj)) represent the same video seg-
ment. Motivated by this fact we compute the mean co-
sine for each interval of K seconds (we use K=4): Stqtj

ij =

s
tqtg
ij +...+s

tq+K−1,tg+K−1

ij

K . The sum in the numerator is the
sum of diagonal elements started with stqtjij .

We define the intersection score between (qi, gj) as

Sij = max
a=1,...,si−K
b=1,...,pj−K

Sab
ij (2)

and the corresponding video segments as

(a,a +K), (b,b +K) (3)

where

a,b = argmax
a=1,...,si−K
b=1,...,pj−K

Sab
ij (4)

Finally we sorted all Sij in the descending order and
manually assess candidate pairs.

C.1.2 Number of Pairs to Assess

Suppose we search duplicates in datasets Q and G and we
have seen N pairs with the highest scores and find M pairs
with duplicates. The important question is: what is the total
number of duplicates and how many percents of them have
we found.

For each pair of Q and G we construct the following test
procedure. The first step is to augment Q, and let us call
the result of augmentation as Q̂. To augment a dataset we
apply two transformations: 1. we randomly crop a side of
each video, where each side can be 70%–100% of original
side length (aspect ratio can be changed); 2. we randomly
shift the start of the video by a random value between 0 and
1 seconds.

Having Q, Q̂ and G we compute sets of positive and neg-
ative scores: Pos and Neg. The Pos is the set of scores be-
tween i-th video from Q and the corresponding augmented
video from Q̂. Neg is the set of scores between each video
from Q and G. Having Pos and Neg sets we can plot a curve,
where x axis represents the fraction of found pairs with du-
plicates and Y axis represents the number of negative pairs
that we need to assess to find fraction x of positive pairs,
call this curve F (x). We present the algorithm that com-
putes F using Pos and Neg sets in Lst. 1. Suppose we
have seen N + M pairs and have found M pairs with du-
plicates. The total number of pairs with duplicates can be
estimated as M/F−1(N). By the definition F (x) connects
the fraction of found positive pairs with the number of seen
negative pairs. The value F−1(N) represents approxima-
tion of the fraction of found positive pairs. So if we know,
that M is approximately 100 ∗ F−1(N)% of positive pairs,
then we can approximately compute 100% of positive pairs
as M/F−1(N).

3

Figure 4: The left image is taken from the MSRVTT test split and the right one from MSRVTT Train. The numbers in the
upper left corner represent the MSRVTT video ID. The faces are blurred in order to avoid legal claims.

first element is highest
P = np.sort(P)[::-1] # Pos
N = np.sort(N)[::-1] # Neg
xs = []
ys = []
for x, p in enumerate(P):

how many negative scores
greater than p ?
j = np.searchsorted(N, p)
xs.append(x)
ys.append(j)

Listing 1: Numpy pseudocode for building the search curve
F (x)

C.1.3 Best 2D Feature Extractor

The key component of a duplicate search system is a feature
extractor. A good feature extractor significantly reduces the
number of pairs for manual assessment. To compare differ-
ent 2D feature extractors we use the following test proce-
dure. The test consists of two datasets. The first dataset
is the train part from the MSRVTT full split. The sec-
ond dataset is random 596k videos from the HowTo100M
dataset. From each video of the taken part of HowTo100M
we take a random 30 seconds segment. We apply random

4

augmentation to MSRVTT, as described in Sec. C.1.2. De-
fine MSRVTT as Q, the augmented MSRVTT dataset as Q̂
and the taken part of HowTo100M as G. For each feature ex-
tractor we compute curve F (x), as described in Sec. C.1.2.

The best expert has the lowest curve. For example, if
we want to find 95% of duplicates, we should see many
of candidates, some of them are duplicates, but majority of
them are not. So, the value F (0.95) is the approximation
of how many not duplicates we need to see to find 95% of
duplicates. Ideally F (0.95) = 0, where all seen candidates
are duplicates. So, a lower value F (0.95) requires to see
less number of false candidates, that is why the lower curve
is better.

We consider several feature extractors: resnet18 and
resnet101 [5] pretrained on ImageNet [1], resnet50
pretrained on Places365 [20] and resnext101-32x8d,
resnext101-32x32d, resnext101-32x48d pretrained on one
billion images from Instagram [8] and finetuned on Ima-
geNet. We report search curves F (x) for these pretrained
networks in Fig. 5.

There exist networks [15] [6] trained especially for
match the duplicate frames or video segments, but they are
not publicly available.

0 0.2 0.4 0.6 0.8 1

104

105

106

resnet18-imagenet
resnet50-places365
resnet101-imagenet
resnext101-32x8d-wsl
resnext101-32x16d-wsl
resnext101-32x48d-wsl

#
of

ne
ga

tiv
e

pa
ir

s

ratio of positive pairs

Figure 5: Search curves F for different pretrained models.
Curve F is used to estimate the minimal number of negative
pairs (y = F (x)) that human assessors need to inspect be-
fore they find the fraction x of positive pairs. The lower the
curve F the better (need to inspect manually less pairs). The
curves are built with the query set Q = MSRVTT full train,
the gallery set G = random 596k videos from HowTo100M.

As we see resnext101-32x48d-wsl shows the best result.
We use this network for searching for duplicates.

It is worth to mention that here we just compare different

networks on a fixed benchmark, and pick the best one. But
the search curve F (x) significantly depends on data. This
curve should be estimated for each used pair of datasets Q
and G.

C.1.4 Black Frames

Often two consecutive video segments are glued with sev-
eral black frames. The cosine similarity of embeddings of
two black or near black frames are close to 1. In this case
the most probable candidates for duplicates are black video
segments. To prevent this we apply the following rule. Sup-
pose we have a frame U and the unit length embedding v
computed from U . We find the prevalent color in U and
compute the area S0 filled by this color. Then we com-
pute the value S0/(hw), where h and w are the height and
width of U . If this fraction is greater than 0.7 we define
µv = 1−S0/(hw), otherwise µv = 1. To calculate similar-
ity between embeddings v1 and v2 we use weighted cosine
similarity: µ1µ2cosv1, v2, instead of classical cosine simi-
larity. This rule removes majority of all near black frames
from the most relevant candidates for duplicates.

C.1.5 Screensavers Detection

Many videos from ActivityNet, HowTo100m, YouCook2
contain screensavers at the beginning or at the end. It causes
a problem like mentioned above with near black frames, be-
cause most of relevant proposals are the same screensavers,
but the video content of the remainder video part are differ-
ent.

Using the system described in Sec. C.1.6 we search for
duplicates in the ActivityNet dataset, where a lot of the
most relevant segments are screensavers. We collect several
hundreds of screensavers and then compute embeddings for
each of them. Let us call the resulting set of embeddings
as E. Then we apply the following rule: if some embedding
v has the similarity greater that 0.9 to one of embeddings
from E, we set v = 0. So if the video segment has a part of
a screensaver, it will never be in the most relevant proposals.

C.1.6 GUI

The important part of the video duplicate search system is
the user interface. Without ergonomic and fast interface it
is impossible to assess tens thousands of video pairs. Our
system is presented in Fig. 6.

The system shows video pairs with the highest scores on
top. A user needs to scroll down a web page (new videos
are loaded dynamically with ajax), and if a video duplicate
is detected, a user should press the Duplicate button, if there
are no duplicates in the current viewport, no action is re-
quired. When a user scrolls a web page, all non-duplicate

5

Figure 6: Web system used to find duplicates. Images on
the first and third row are not duplicates and the second row
contains duplicate.

pairs automatically are saved to a log file. Additionally sev-
eral users at the same time can assess video pairs.

dataset M A L
test train test train test train

M 114 223 6 10 0 0
A 10 6 127 163 0 0
L 6 2744 0 0 0 0

YouCook2 13 27 7 10 0 0
MSVD 1 1 1 1 1 1
TGIF 6 8 0 0 0 0

Twitter Vines 3 3 0 0 0 0
Kinetics700 4 5 456 464 0 0

HowTo100M 177 154 209 209 0 0

Table 1: The leftmost column represents training parts of
datasets, and the upper row represents test parts of datasets.
Column ”test” means how many video segments are in the
test part that have the corresponding pair in the training part
either with the same YouTube ID or manually marked as a
duplicate. Column ”train” represents the number of video
segments in the training part that have corresponding pair
in the test dataset either with the same YouTube ID or man-
ually marked as a duplicate. All segments counted in the
”train” column are removed from the training part. For ex-
ample consider the column ”A” and the row ”M”. train=10
means that the MSRVTT training part contains 10 video
segments that have a pair in the ActivityNet test part. These
10 videos are removed from training part when dataset are
combined. test=6 means that ActivityNet test part has 6
video segments that have a pair in the MSRVTT training
part.

C.2. Cleaning Results

Recall that our cleaning method consists of two stages.
In the first stage we throw out from the train part all video

segments that have a pair with the same YouTube ID in
test parts of MSRVTT or ActivityNet. The second stage
is matching video segments by embeddings and manually
assess several thousands pairs with the highest score.

In Tab. 1 we report how many duplicates are found for
each pairs of datasets. This table represents the final result
after applying these two stages.

Separate results for the first and the second stages are
reported in Sec. C.2.1.

Note that columns ”test” and ”train” in Tab. 1 may have
different values. Consider the situation when the test part
have a video segment A, and the train part have two video
segments A1 and A2. And both are marked as duplicates
with A. In this case the video segment A brings +1 to the
”test” column and A1, A2 bring +2 to the ”train” column.

The most problematic datasets in terms of the num-
ber of duplicates are MSRVTT and ActivityNet. These
datasets overlap with itself (e.g. MSRVTT test overlap
with MSRVTT train). We found more than 100 dupli-
cate pairs for both of them. Other problematic datasets
are HowTo100M and Kinetics700, these datasets are large,
so we can not assess the required number of video pairs
to find 95% or 99% of duplicates. But we can assess a
smaller number of pairs and using search curves F (see
Sec. C.1.2) can extrapolate this value to 100%. We found
that HowTo100M may have the intersection with MSRVTT
test full by about 300 videos (10% of the MSRVTT test
full). The similar situation is about the ActivityNet test
set and Kinetics700, the intersection could be near 500-600
videos (10% of the ActivityNet test set).

In Tab. 2 we report results on MSRVTT for MMT re-
training with no cleaning, after cleaning by the YouTube ID
and cleaning combination by the YouTube ID and the man-
ual assessment. The manual cleaning for 1k-A and 1k-B is
incomplete because we only do cleaning for the full split.
The following situation takes place for 1k-A, 1k-B splits:
when 1k videos from the full test are taken for test and the
remaining 2k videos are moved to the train part, the addi-
tional overlapping is introduced, because these 1k and 2k
videos are overlapping. We do not remove this overlap in
this research.

split no by ID by ID +
clean manual

full 31.1±0.1 31.1±0.1 30.2±0.4

1k-A 54.8±0.5 50.7±0.9 49.4±0.5

1k-B 51.1±0.9 46.1±0.1 46.4±0.6

Table 2: Comparison for original MMT trained (7 modal-
ities) on MSRVTT without cleaning, with cleaning by the
YouTube ID only, and with cleaning by the YouTube ID
plus the manual assessment.

6

As you can see after cleaning the performance is signifi-
cantly decreased on 1k-A and 1k-B splits for original MMT.

C.2.1 Intersection by YouTube ID and Embeddings

In Tab. 3 we report the intersection by the YouTube ID be-
tween test parts of MSRVTT (full, 1k-A, 1k-B) and Activ-
ityNet with train parts of MSRVTT (full, 1k-A, 1k-B), Ac-
tivityNet, Kinetics700, YouCook2, HowTo100m, MSVD.

data M M1k-a M1k-b A
set test train test train test train test train

M 0 0 0 0 104 179 2 4
M1k-a 2362 1990 372 415 827 1007 2 4
M1k-b 1689 1367 563 634 380 407 2 4

A 0 0 0 0 0 0 0 0
K 5 4 1 1 0 0 408 408
Y 8 4 2 2 2 2 3 3

HT100M 147 117 39 38 57 53 175 175
MSVD 3 1 2 1 0 0 1 1

Table 3: First stage. The leftmost column represents train
parts of datasets, and the upper row represents test parts of
datasets. Column ”test” represents number of video seg-
ments in test part that have corresponding video in train
part with the same YouTube ID. Column ”train” represents
number of video in train part that have corresponding pair in
test part with the same ID. For example: if we combine M
and YouCook2, we should remove 4 video from YouCook2
train.

It is worth to mention that MSRVTT 1k-A test and 1k-B
test have a large overlap ratio by the YouTube ID with the
1k-A train and the 1k-B train parts correspondingly. Both
splits have the overlap ratio of about 38% between the train
part and the test part. We also emphasize that the original
MSRVTT full split does not overlap by the YouTube ID be-
tween the test and train parts.

In Tab. 4 we report the statistics for the second dedupli-
cation stage (searching by embeddings). We do not com-
pute an intersection for MSRVTT 1k-A and 1k-B splits.

In this table we present the number of manually found
duplicates and the estimated maximum number of dupli-
cates for a given pair of datasets. We managed to find the
intersection for almost all pairs of datasets.

The maximum number of duplicates is computed based
on the search curve F (x). As we told in Sec. C.1.2 the
search curve significantly depends on data. We compute the
search curve for all pairs of datasets in Tab. 4. The search
curve for each particular pair of datasets is build exactly
in the same way as described in Sec. C.1.2. For example,
to compute the search curve for MSRVTT test and Activi-
tyNet train we define MSRVTT test as Q, ActivityNet train

data M A L
set seen found total seen found total seen found total

M 10k 114 114 1k 6 6 1k 0 0
A 10k 10 10 15k 127 142 1k 0 0
L 3k 6 6 2k 0 0 — — —
Y 2k 13 13 1k 7 7 1k 0 0

MSVD 1k 1 1 1k 1 1 1k 1 1
T 2k 6 6 2k 0 0 3k 0 0
V 2k 3 3 0k 0 0 1k 0 0
K 2k 1 2 30k 227 539 2k 0 0

HT100M 5k 15 320 — — — — — —

Table 4: Second stage. The leftmost column represents
train parts of datasets, and the upper row represents test
parts of datasets. Column ”seen” represents the number of
video segments that we manually assess for a given pair of
datasets. Column ”found” represents the number of videos
in the test part for which there exists the corresponding du-
plicate video segment in the train part. Column ”total” rep-
resents the approximately estimated total number of videos
from the test part that have a duplicate pair in the train part.
Symbol ”—” means that the intersection is not computed
because it requires too much human resources.

as G, then augment Q to produce Q̂, and use the algorithm
described in Sec. C.1.2.

Using the column ”seen” from Tab. 4 we can compute
how many pairs need to be assessed to find the full over-
lap between datasets. For example, inspect 5k pairs for
HowTo100M dataset and MSRVTT (the row ”HT100M”
and the column ”M”), we found 15 duplicates, so the ap-
proximate maximum number of duplicates is 320: 5k * (320
/ 15) = 106k. So, to find the full overlap using the current
version of algorithm it is needed to manually assess 106k
video pairs and it is too much, that is why we do not find
full intersection for this specific pair of datasets.

D. Hyperparameters

To train our best networks (MMT(MALVYMTS)
L9H8 CLIP+audio, MDMMT(MALVYMTS) L9H8
irCSN152+audio and MMT(MALVYMTS) L9H8
CLIP+irCSN152+audio) we use 50 epochs and define
a single epoch as 150K examples per GPU (in total 1.2M
examples per epoch on 8 GPUs). We use Adam optimizer
without weight decay, the initial value for a learning rate
is 5e-5, after each epoch we multiply the learning rate by
0.95. Batch size of 32 examples per GPU is used. We
do not exchange embeddings between GPUs. We use
bi-directional max-margin ranking loss with margin 0.05.
In Bert and the video transformer encoder we use dropout
0.2 in attention and in FFN block. We use 8 Nvidia V100

7

32GB GPUs. The training time is about 14 hours.

E. Pretrained Model
The well known method to boost the performance in

video retrieval tasks is to use a pretrained model. First the
neural network is trained on some large dataset, then at sec-
ond stage it is finetuned for target target dataset. In video
retrieval task HowTo100M dataset is often used for pretrain-
ing. In this work we use HowTo100M for pretraining in the
same way.

In our training procedure we use 8 Nvidia V100 32Gb
GPUs, we train for 200 epochs where one epoch is defined
as 80k examples on each GPU (in total network sees 640k
examples on 8 GPUs per epoch). We use batch size 64
for each GPU and do not exchange embeddings between
GPU. Initial learning rate is 5e-5. After each epoch we
multiply learning rate by 0.98. We use the full HowTo00M
dataset. The model is trained either with two modalities:
motion/RGB and audio or with three modalities: motion,
RGB and audio, depending on how many modalities are
used in final model. The total training time is about 24
hours. We use bi-directional max-margin ranking loss with
margin 0.05.

In Tab. 5, 6 and 7 we compare two our mod-
els: MDMMT(McALVYMTS) L9H8 irCSN152+audio and
MDMMT(McALVYMTS) L9H8 CLIP+audio when they
are trained from the pretrained model or not. In these three
tables we present the same four models (no special finetun-
ing for the target dataset) tested on different datasets.

As we can see in Tab. 5 the pretrained model increases
R1 metric by 1% and R5 by 2%. The pretrained model also
increase performance on ActivityNet dataset, see Tab. 6.
For R1 metric the improvement is about 2% and for R5 met-
ric is about 4%. For LSMDC dataset, see Tab 7, we have
approximately the same results with and without pretrain-
ing.

F. Results

8

model pr
et

r MSRVTT full clean text→ video
R@1↑ R@5↑ R@10↑ MnR↓ MdR↓

Ours MDMMT(McALVYMTS) L9H8 irCSN152+audio yes 15.8±0.1 38.9±0.1 51.0±0.1 76.4±0.5 10.0±0.0

Ours MDMMT(McALVYMTS) L9H8 irCSN152+audio no 14.5±0.1 36.8±0.3 48.8±0.3 82.2±0.6 11.0±0.0

Ours MDMMT(McALVYMTS) L9H8 CLIP+audio yes 21.5±0.1 47.4±0.2 59.6±0.1 57.7±0.4 6.0±0.0

Ours MDMMT(McALVYMTS) L9H8 CLIP+audio no 20.0±0.1 45.1±0.1 57.3±0.1 63.1±0.1 7.0±0.0

Table 5: Performance on the MSRVTT full clean split with and without pretrained model (HowTo100m).

model pr
et

r ActivityNet text→ video
R@1↑ R@5↑ R@10↑ MnR↓ MdR↓

Ours MDMMT(McALVYMTS) L9H8 irCSN152+audio yes 15.1±0.1 38.3±0.1 51.5±0.3 92.4±2.3 10.0±0.0

Ours MDMMT(McALVYMTS) L9H8 irCSN152+audio no 12.0±0.1 33.7±0.4 46.3±0.3 119.9±2.1 13.0±0.0

Ours MDMMT(McALVYMTS) L9H8 CLIP+audio yes 17.7±0.1 41.6±0.3 54.3±0.2 76.0±1.0 8.3±0.5

Ours MDMMT(McALVYMTS) L9H8 CLIP+audio no 15.2±0.3 37.9±0.3 50.1±0.2 93.4±2.0 10.3±0.5

Table 6: Performance on ActivityNet with and without pretrained model (HowTo100m). The performance reported for the
text-to-video retrieval task on our own subset of the original ActivityNet test part. See Sec. 2.1 for details.

model pr
et

r LSMDC text→ video
R@1↑ R@5↑ R@10↑ MnR↓ MdR↓

Ours MDMMT(McALVYMTS) L9H8 irCSN152+audio yes 13.1±0.5 31.3±0.3 40.1±0.0 74.5±0.7 19.3±0.5

Ours MDMMT(McALVYMTS) L9H8 irCSN152+audio no 12.6±0.7 30.2±1.5 39.6±0.9 76.1±0.8 19.7±1.3

Ours MDMMT(McALVYMTS) L9H8 CLIP+audio yes 17.2±0.6 34.9±0.4 45.3±1.0 65.6±0.8 14.0±0.8

Ours MDMMT(McALVYMTS) L9H8 CLIP+audio no 16.2±1.1 35.4±1.3 45.1±0.7 64.9±1.9 14.7±0.5

Table 7: Performance on LSMDC with and without pretrained model (HowTo100m).

model LSMDC text→ video
R@1↑ R@5↑ R@10↑ MnR↓ MdR↓

CT-SAN [19] 5.1 16.3 25.2 — 46
JSFusion [18] 9.1 21.2 34.1 — 36
MEE [10] 9.3 25.1 33.4 — 27
MEE-COCO [10] 10.1 25.6 34.6 — 27
CE [7] 11.2±0.4 26.9±1.1 34.8±2.0 96.8±5.0 25.3±3.1

CLIP agg [14] 11.3 22.7 29.2 — 56.5
CLIP [15] 12.4 23.7 31.0 142.5 45
MMT (L) 7mod [4] 12.9±0.1 29.9±0.7 40.1±0.8 75.0±1.2 19.3±0.2

Ours MDMMT(McALVYMTS) L9H8 irCSN152+audio 13.1±0.5 31.3±0.3 40.1±0.0 74.5±0.7 19.3±0.5

Ours MDMMT(McALVYMTS) L9H8 CLIP+audio 17.2±0.6 34.9±0.4 45.3±1.0 65.6±0.8 14.0±0.8

Ours MDMMT(McALVYMTS) L9H8 CLIP+irCSN152+audio 18.8±0.7 38.5±0.4 47.9±0.7 58.0±1.1 12.3±0.5

Table 8: Test results on LSMDC public test (1k video)

9

model ActivityNet text→ video
R@1↑ R@5↑ R@10↑ MnR↓ MdR↓

MMT (Ap/r) motion+audio [4] 7.3 22.5 31 283.9 30
CLIP [15] 9.4 22.8 31.3 302.3 35

Ours MDMMT(McALVYMTS) L9H8 irCSN152+audio 15.1±0.1 38.3±0.1 51.5±0.3 92.4±2.3 10.0±0.0

Ours MDMMT(McALVYMTS) L9H8 CLIP+audio 17.7±0.1 41.6±0.3 54.3±0.2 76.0±1.0 8.3±0.5

Ours MDMMT(McALVYMTS) L9H8 CLIP+irCSN152+audio 20.1±0.5 45.1±0.5 58.0±0.6 70.8±0.1 7.0±0.0

Table 9: Test results on our split (see Sec. 2.1) on ActivityNet.

10

model sp
lit MSRVTT text→ video

R@1↑ R@5↑ R@10↑ MnR↓ MdR↓
Random baseline

fu
ll

0.0 0.2 0.3 1500 1500
VSE [12] 5.0 16.4 24.6 — 47
VSE++ [12] 5.7 17.1 24.8 — 65
Multi Cues [12] 7.0 20.9 29.7 — 38
W2VV [2] 6.1 18.7 27.5 — 45
Dual Enc. [3] 7.7 22.0 31.8 — 32
CE [7] 10.0±0.1 29.0±0.3 41.2±0.2 86.8±0.3 16.0±0.0

MMT (M) 7mod [4] 10.7±0.2 31.1±0.1 43.4±0.2 88.2±0.7 15.0±0.0

CLIP [15] 15.1 31.8 40.4 184.2 21
CLIP agg [14] 21.5 41.1 50.4 — 4

Ours MDMMT(MALVYMTS) L9H8 irCSN152+audio 15.7±0.1 38.8±0.1 51.1±0.2 76.0±0.7 10.0±0.0

Ours MDMMT(MALVYMTS) L9H8 CLIP+audio 21.7±0.2 47.6±0.3 59.8±0.1 55.9±0.2 6.0±0.0

Ours MDMMT(MALVYMTS) L9H8 CLIP+irCSN152+audio 23.1±0.1 49.8±0.1 61.8±0.1 52.8±0.2 6.0±0.0

MMT (Mc) 7mod [4]
fu

ll
cl

ea
n

10.4±0.1 30.2±0.4 42.3±0.2 89.4±0.6 15.7±0.5

Ours MDMMT(McALVYMTS) L9H8 irCSN152+audio 15.8±0.1 38.9±0.1 51.0±0.1 76.4±0.5 10.0±0.0

Ours MDMMT(McALVYMTS) L9H8 CLIP+audio 21.5±0.1 47.4±0.2 59.6±0.1 57.7±0.4 6.0±0.0

Ours MDMMT(McALVYMTS) L9H8 CLIP+irCSN152+audio 22.8±0.2 49.5±0.1 61.5±0.1 53.8±0.3 6.0±0.0

Random baseline

1k
-A

0.1 0.5 1.0 500.0 500.0
JSFusion [18] 10.2 31.2 43.2 — 13
E2E [9] 9.9 24.0 32.4 — 29.5
HT [11] 14.9 40.2 52.8 — 9
CE [7] 20.9±1.2 48.8±0.6 62.4±0.8 28.2±0.8 6.0±0.0

CLIP [15] 22.5 44.3 53.7 61.7 8
MMT (M1k-A) 7mod [4] 26.6±1.0 57.1±1.0 69.6±0.2 24.0±0.8 4.0±0.0

AVLnet[16] 27.1 55.6 66.6 — 4
SSB [13] 30.1 58.5 69.3 — 3.0
CLIP agg [14] 31.2 53.7 64.2 — 4

Ours MDMMT(M1k-AALVYMTS) L9H8 irCSN152+audio 31.3±0.1 60.4±1.2 71.8±1.0 24.0±0.4 3.0±0.0

Ours MDMMT(M1k-AALVYMTS) L9H8 CLIP+audio 38.9±1.0 68.3±0.7 78.8±0.2 17.3±0.5 2.0±0.0

Ours MDMMT(M1k-AALVYMTS) L9H8 CLIP+irCSN152+audio 38.9±0.6 69.0±0.1 79.7±0.6 16.5±0.4 2.0±0.0

Random baseline

1k
-B

0.1 0.5 1.0 500.0 500.0
MEE [10] 13.6 37.9 51.0 — 10.0
JPose [17] 14.3 38.1 53.0 — 9
MEE-COCO [10] 14.2 39.2 53.8 — 9.0
CE [7] 18.2±0.7 46.0±0.4 60.7±0.2 35.3±1.1 7.0±0.0

MMT (M1k-B) 7mod [4] 24.5±0.5 54.4±0.8 68.0±0.5 26.6±0.2 4.7±0.5

CLIP [15] 24.5 46.2 56.8 60.9 7
Ours MDMMT(M1k-BALVYMTS) L9H8 irCSN152+audio 28.8±0.9 58.8±0.3 71.2±0.3 28.5±0.5 3.7±0.5

Ours MDMMT(M1k-BALVYMTS) L9H8 CLIP+audio 35.1±0.1 66.5±0.9 77.6±0.3 21.5±0.4 2.7±0.5

Ours MDMMT(M1k-BALVYMTS) L9H8 CLIP+irCSN152+audio 37.4±1.5 68.8±0.4 79.4±0.4 21.3±0.4 2.0±0.0

Table 10: Results on MSRVTT dataset.

11

References
[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009. 4

[2] Jianfeng Dong, Xirong Li, and Cees G. M. Snoek. Pre-
dicting visual features from text for image and video
caption retrieval. IEEE Transactions on Multimedia,
20(12):33773388, Dec 2018. 10

[3] Jianfeng Dong, Xirong Li, Chaoxi Xu, Shouling Ji, Yuan He,
Gang Yang, and Xun Wang. Dual encoding for zero-example
video retrieval, 2019. 10

[4] Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia
Schmid. Multi-modal transformer for video retrieval, 2020.
9, 10

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 4

[6] Giorgos Kordopatis-Zilos, Symeon Papadopoulos, Ioannis
Patras, and Yiannis Kompatsiaris. Near-duplicate video re-
trieval with deep metric learning. In Proceedings of the IEEE
International Conference on Computer Vision Workshops,
pages 347–356, 2017. 5

[7] Yang Liu, Samuel Albanie, Arsha Nagrani, and Andrew Zis-
serman. Use what you have: Video retrieval using represen-
tations from collaborative experts, 2020. 9, 10

[8] Dhruv Kumar Mahajan, Ross B. Girshick, Vignesh Ra-
manathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin
Bharambe, and Laurens van der Maaten. Exploring the limits
of weakly supervised pretraining. In ECCV, 2018. 5

[9] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan
Laptev, Josef Sivic, and Andrew Zisserman. End-to-end
learning of visual representations from uncurated instruc-
tional videos, 2020. 1, 10

[10] Antoine Miech, Ivan Laptev, and Josef Sivic. Learning a
text-video embedding from incomplete and heterogeneous
data, 2020. 9, 10

[11] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
HowTo100M: Learning a Text-Video Embedding by
Watching Hundred Million Narrated Video Clips. In ICCV,
2019. 10

[12] Niluthpol Chowdhury Mithun, Juncheng Li, Florian Metze,
and Amit K Roy-Chowdhury. Learning joint embedding
with multimodal cues for cross-modal video-text retrieval. In
Proceedings of the 2018 ACM on International Conference
on Multimedia Retrieval, pages 19–27, 2018. 10

[13] Mandela Patrick, Po-Yao Huang, Yuki Asano, Florian
Metze, Alexander Hauptmann, Joo Henriques, and Andrea
Vedaldi. Support-set bottlenecks for video-text representa-
tion learning, 2021. 10

[14] Jess Andrs Portillo-Quintero, Jos Carlos Ortiz-Bayliss, and
Hugo Terashima-Marn. A straightforward framework for
video retrieval using clip, 2021. 9, 10

[15] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. Image, 2:T2. 1, 5, 9, 10

[16] Andrew Rouditchenko, Angie Boggust, David Harwath,
Dhiraj Joshi, Samuel Thomas, Kartik Audhkhasi, Rogerio
Feris, Brian Kingsbury, Michael Picheny, Antonio Torralba,
and James Glass. Avlnet: Learning audio-visual language
representations from instructional videos, 2020. 10

[17] Michael Wray, Diane Larlus, Gabriela Csurka, and Dima
Damen. Fine-grained action retrieval through multiple parts-
of-speech embeddings, 2019. 10

[18] Youngjae Yu, Jongseok Kim, and Gunhee Kim. A joint se-
quence fusion model for video question answering and re-
trieval, 2018. 9, 10

[19] Youngjae Yu, Hyungjin Ko, Jongwook Choi, and Gunhee
Kim. End-to-end concept word detection for video caption-
ing, retrieval, and question answering, 2017. 9

[20] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2017. 5

12

