Supplementary Material *of* "Pose-driven Feature Integration for Robust Human Action Recognition in Videos"

Gyeongsik Moon^{*1}

Heeseung Kwon*2

Kyoung Mu Lee¹

Minsu Cho²

¹SNU ECE & ASRI

{mks0601, kyoungmu}@snu.ac.kr

In this supplementary material, we present additional experimental results and studies that are omitted in the main manuscript due to the lack of space.

1. Effect of the pose stream inputs

To analyze the effects of keypoint heatmaps and PAFs as inputs of the pose stream, we compare the top-1 and top-5 accuracy from pose-only models that take 1) the keypoint heatmaps, 2) the PAFs, and 3) both in Table 1. The table shows that taking both inputs achieves the best accuracy on Kinetics50 and Mimetics. The keypoint heatmaps provide the locations of each human body keypoint, which are useful in single person cases, but do not include sufficient information for differentiating each person in multiperson cases. On the other hand, the PAFs contain relationships between the keypoints from each person, which can provide information to differentiate each person in multiperson cases. We found that most of the videos in Mimetics contain a single person, which makes the heatmap-only model perform well on the action recognition. However, many videos in Kinetics contain multiple persons, and thus additional PAFs further improve the accuracy.

2. Deeper comparison with the score averaging

Most of the previous methods [1–5] use to simply average predicted action scores from the appearance-based and pose-based action recognition models in their testing stage. We compared their accuracy with ours in Table 4 of the main manuscript, and we provide a deeper comparison between ours and theirs in Figure 1. We report top-1 accuracy on Kinetics50 and Mimetics of score averaging with various averaging weights. As the figure shows, the score averaging method that performs best on Kinetics50 achieves slightly better accuracy than ours. However, it suffers from a noticeable performance drop on Mimetics. The proposed ²POSTECH CSE & AIGS

{aruno, mscho}@postech.ac.kr

Table 1: Top-1 and top-5 accuracy comparison between pose-only models that take various combinations of input on Kinetics50 and Mimetics.

sattings	Kine	tics50	Mimetics	
settings	top-1	top-5	top-1	top-5
heatmap-only	43.5	72.1	26.0	50.0
PAF-only	45.0	73.2	25.0	49.8
heatmap + PAF (ours)	45.6	72.9	26.0	52.2

IntegralAction achieves highly robust performance on both Kinetics50 and Mimetics datasets.

3. Appearance-only, pose-only, vs. IntegralAction

In this experiment, we analyze top-1 accuracy of each action class using the appearance-only, pose-only, and the proposed IntegralAction on Kinetics50, Mimetics, and NTU-RGBD in Table 2, 3, and 4, respectively. In addition, we compare them with the oracle selection that chooses the best prediction between the appearance-only and the pose-only. We also visualize confusion matrices from the appearanceonly, pose-only, and our IntegralAction in Fig. 2. As the tables and figures show, our IntegralAction produces robust action recognition over action classes of the three datasets, while the appearance-only and pose-only fail on Mimetics and Kinetics50, respectively. The proposed IntegralAction achieves the best average accuracy on Mimetics and NTU-RGBD. In addition, it significantly outperforms the poseonly and achieves comparable average accuracy with the appearance-only on Kinetics50.

Figures 3, 4, 5, 6, and 7 show qualitative results from the appearance-only, pose-only, and the proposed IntegralAction. Interestingly, our IntegralAction often succeeds in recognizing correct actions even when both the appearance-only and pose-only fail and so does the oracle

^{*} equal contribution

Figure 1: Top-1 accuracy on Kinetics50 and Mimetics comparison between the proposed IntegralAction and score averaging with various average ratios. The numbers to the left and right of plus sign denote averaging weight at the score from the appearance-based and pose-based models, respectively.

selection, as shown in Fig. 7. We found that this happens when the appearance-only model is fooled by focusing on the contextual information such as background scene and objects, and the pose-only model suffers from the context ambiguity because the input pose sequence can be mapped to multiple action classes. For example, the second example of Fig. 7 shows that the appearance-only model is fooled by drinking people, and the pose-only model suffers from the context ambiguity. As the input pose sequence does not contain finger keypoints, the pose-only model predicts the input pose is about playing volleyball based on the given body keypoints. The input pose sequence may need to contain richer geometric information of the human body for better performance, for example, finger keypoints and finally, a 3D mesh of the human. Also, improving the integration part to more effectively combine the context from the appearance stream and the human motion from the pose stream should also be studied.

4. Network architecture of IntegralAction

In this section, we provide the detailed network architectures used in our paper. Table 5 shows the network architecture we used in Section 4.2 of the main manuscript, while Table 6 shows the network architecture we used in Section 4.3 and 4.4 of the main manuscript.

Table 2: The top-1 accuracy for each action comparison between appearance-only, pose-only, our IntegralAction, and the oracle selection on Kinetics50.

classes	appearance-only	pose-only	IntegralAction (ours)	oracle selection
surfing water	87.5	25.0	91.7	87.5
shooting goal (soccer)	51.0	10.2	49.0	51.0
hitting baseball	84.0	54.0	88.0	88.0
playing bass guitar	86.0	44.0	78.0	88.0
reading book	66.0	38.0	60.0	70.0
juggling soccer ball	58.0	66.0	70.0	80.0
dribbling basketball	74.0	58.0	72.0	82.0
playing accordion	91.8	75.5	89.8	91.8
catching or throwing baseball	39.6	10.4	41.7	50.0
archery	77.6	30.6	75.5	79.6
tying tie	86.0	44.0	86.0	88.0
skiing (not slalom or crosscountry)	95.9	63.3	95.9	95.9
brushing hair	62.0	34.0	60.0	68.0
hurdling	92.0	66.0	90.0	94.0
playing violin	76.0	60.0	74.0	86.0
playing volleyball	79.2	45.8	77.1	81.2
deadlifting	87.8	87.8	91.8	93.9
skipping rope	67.3	77.6	85.7	85.7
playing piano	78.0	38.0	76.0	80.0
writing	72.0	22.0	72.0	74.0
climbing a rope	78.0	82.0	78.0	88.0
dunking basketball	56.2	41.7	60.4	68.8
playing basketball	58.0	32.0	58.0	66.0
brushing teeth	66.0	44.0	68.0	72.0
drinking	30.6	14.3	32.7	36.7
driving car	91.7	39.6	87.5	91.7
walking the dog	93.9	65.3	91.8	95.9
playing saxophone	80.0	54.0	78.0	86.0
playing trumpet	83.7	57.1	83.7	85.7
bowling	93.9	38.8	87.8	93.9
punching person (boxing)	79.2	60.4	75.0	83.3
cleaning windows	76.0	16.0	76.0	80.0
clean and jerk	91.8	87.8	91.8	93.9
eating cake	58.0	22.0	48.0	64.0
flying kite	90.0	54.0	90.0	96.0
opening bottle	52.0	18.0	70.0	58.0
canoeing or kayaking	94.0	38.0	90.0	94.0
reading newspaper	54.0	8.0	38.0	54.0
skiing slalom	86.0	76.0	86.0	92.0
playing guitar	80.0	56.0	76.0	84.0
eating ice cream	54.0	20.0	46.0	66.0
climbing ladder	68.0	40.0	72.0	74.0
juggling balls	81.6	79.6	85.7	91.8
shooting basketball	30.6	16.3	22.4	40.8
catching or throwing frisbee	56.0	8.0	48.0	58.0
sweeping floor	72.0	42.0	72.0	76.0
playing tennis	93.9	69.4	93.9	98.0
sword fighting	38.8	32.7	40.8	53.1
smoking	55.1	36.7	53.1	65.3
golf driving	84.0	80.0	86.0	86.0
average	72.8	45.6	72.2	78.2

Table 3: The top-1 accuracy for each action comparison between appearance-only, pose-only, our IntegralAction, and the oracle selection on Mimetics.

classes	appearance-only	pose-only	IntegralAction (ours)	oracle selection
surfing water	0.0	0.0	12.5	0.0
shooting goal (soccer)	18.2	9.1	18.2	27.3
hitting baseball	0.0	10.0	10.0	10.0
playing bass guitar	9.1	18.2	27.3	27.3
reading book	11.1	11.1	0.0	22.2
juggling soccer ball	16.7	41.7	33.3	41.7
dribbling basketball	0.0	61.5	23.1	61.5
playing accordion	10.0	40.0	50.0	50.0
catching or throwing baseball	14.3	14.3	0.0	28.6
archery	6.7	33.3	20.0	33.3
tying tie	16.7	16.7	16.7	16.7
skiing (not slalom or crosscountry)	12.5	12.5	12.5	12.5
brushing hair	11.8	41.2	47.1	41.2
hurdling	11.1	55.6	22.2	55.6
playing violin	11.8	17.6	23.5	17.6
playing volleyball	23.1	23.1	38.5	38.5
deadlifting	11.1	100.0	100.0	100.0
skipping rope	25.0	83.3	75.0	83.3
playing piano	11.8	11.8	11.8	17.6
writing	0.0	0.0	0.0	0.0
climbing a rope	0.0	42.9	50.0	42.9
dunking basketball	0.0	33.3	33.3	33.3
playing basketball	23.1	23.1	30.8	30.8
brushing teeth	35.7	35.7	42.9	50.0
drinking	10.0	20.0	30.0	25.0
driving car	0.0	0.0	0.0	0.0
walking the dog	7.7	7.7	7.7	7.7
playing saxophone	0.0	7.7	15.4	7.7
playing trumpet	0.0	50.0	50.0	50.0
bowling	8.3	0.0	8.3	8.3
punching person (boxing)	9.1	36.4	45.5	36.4
cleaning windows	6.7	0.0	0.0	6.7
clean and jerk	15.4	92.3	92.3	92.3
eating cake	0.0	11.8	0.0	11.8
flying kite	10.0	0.0	20.0	10.0
opening bottle	0.0	0.0	0.0	0.0
canoeing or kavaking	0.0	21.4	14.3	21.4
reading newspaper	0.0	11.1	0.0	11.1
skiing slalom	0.0	10.0	10.0	10.0
playing guitar	7.1	14.3	14.3	14.3
eating ice cream	0.0	0.0	0.0	0.0
climbing ladder	7.7	15.4	7.7	23.1
juggling balls	42.9	57.1	57.1	71.4
shooting basketball	8.3	8.3	16.7	16.7
catching or throwing frisbee	50.0	0.0	40.0	50.0
sweeping floor	0.0	0.0	0.0	0.0
playing tennis	5.6	16.7	11.1	22.2
sword fighting	46.7	66.7	66.7	73.3
smoking	26.7	20.0	33.3	33.3
golf driving	14.3	64.3	50.0	64.3
average	11.2	26.0	26.5	30.7

Table 4: The top-1	accuracy for	r each action	n comparison	between	appearance-only	, pose-only,	our IntegralAction	, and the
oracle selection on	NTU-RGBD).						

classes	appearance-only	pose-only	IntegralAction (ours)	oracle selection
drink water	90.9	82.8	92.0	96.4
eat meal	80.0	66.9	82.5	82.9
brush teeth	92.3	80.1	91.5	95.6
brush hair	95.2	87.5	96.7	97.4
drop	97.1	78.5	97.1	98.5
pick up	96.7	93.8	98.2	98.2
throw	90.2	83.3	90.2	94.2
sit down	95.6	96.0	98.5	98.9
stand up	98.5	96.7	99.3	99.6
clapping	79.5	64.8	78.8	89.4
reading	73.9	48.2	70.6	82.0
writing	64.3	40.4	64.7	77.2
tear up naper	93.0	80.8	93.7	95.9
put on jacket	100.0	97.8	99.6	100.0
take off jacket	98.2	94.6	96.4	98.9
put on a shoe	90.8	58.6	83.2	92.7
take off a shoe	82.8	55.8	75.5	89.8
nut on glasses	85.7	85.3	92.6	96.0
take off glasses	89.8	86.1	92.3	93.4
put on a hat/cap	99.6	92.3	98.2	100.0
take off a hat/cap	98.2	94.1	98.5	99.3
cheer up	94.5	90.9	93.8	96.7
hand waving	87.2	87.2	90.9	93.4
kicking something	98.2	93.1	98.2	99.3
reach into pocket	81.8	72.6	81.4	85.8
hopping	94.9	96.4	96.4	96.7
iump up	100.0	99.6	100.0	100.0
phone call	89.1	78.9	78.2	94.9
play with phone/tablet	70.2	58.2	76.2	81.5
type on a keyboard	88.4	66.5	89.8	93.8
point to something	88.8	75.7	90.6	92.4
taking a selfie	88.0	85.5	93.1	94.6
check time (from watch)	88.4	84.8	92.8	97.1
rub two hands	72.5	75.4	79 7	91.7
nod head/bow	93.8	90.2	95.7	97.1
shake head	94.9	83.2	98.2	97.8
wine face	83.7	76.4	91.7	95.7
salute	95.7	90.6	95 7	97.8
nut nalms together	82.2	88.8	92.4	95.7
cross hands in front	96.0	94.9	97.5	97.8
speeze/cough	68.5	69.6	77.2	80.4
staggering	98.6	96.7	98.9	99.6
falling down	98.2	96.0	98.9	98.5
headache	68.5	68.1	75.0	84.1
chest pain	88.0	88.0	92.0	96.4
back pain	95 3	85.5	97.1	98.9
neck pain	83.7	77.2	89.1	92.8
nausea/vomiting	87.6	83.6	90.5	93.1
fan self	86.5	86.9	88.4	96.0
punch/slap	88.3	89.1	92.0	95.3
kicking	98.6	91.7	97.8	99.3
nushing	97.5	94.9	98 5	99.6
nat on back	97.8	85.5	98.2	99.3
pair of back	97.5	80.1	97.8	98.6
bugging	00.3	07.1	90.6	100.0
nugging giving object	99.3	27. 4 87 3	94.2	07.1
touch pocket	96.7	92.0	96.0	00 3
shaking hands	08.7	94.6	100.0	99.6
walking towards	100.0	94.0	100.0	100.0
waiking towards	100.0	90.9	08.0	100.0
	00.4	27.1 92.7	017	05.1
average	90.4	03./	71./	93.1

Figure 2: Visualized confusion matrices of appearance-only, pose-only, and our IntegralAction on Kinetisc50, Mimetics, and NTU-RGBD.

Figure 3: Qualitative results of appearance-only, pose-only, and the proposed IntegralAction.

Figure 4: Qualitative results of appearance-only, pose-only, and the proposed IntegralAction.

Figure 5: Qualitative results of appearance-only, pose-only, and the proposed IntegralAction.

Figure 6: Qualitative results of appearance-only, pose-only, and the proposed IntegralAction.

Figure 7: Qualitative results of appearance-only, pose-only, and the proposed IntegralAction.

Table 5: The network architecture details of IntegralAction in Section 4.2 of the main manuscript. The dimensions of kernels are denoted by $(T \times S^2, C)$ for the temporal, spatial, and channel sizes. The strides and output size are denoted by $(T \times S^2)$ for the temporal and spatial sizes.

layers	appearance stream	pose stream	output size	
input	RGB frames	keypoint heatmaps+PAFs	appearance: 8×224^2 pose: 32×56^2	
conv ₁	1×7^2 , 64, stride 1×2^2	1×3 ² , 64	appearance: 8×112^2 pose: 32×56^2	
res ₂	$ \frac{1 \times 3^{2} \text{ max pool, stride } 1 \times 2^{2}}{\begin{bmatrix} \text{TSM} \\ 1 \times 1^{2}, 256 \\ 1 \times 3^{2}, 256 \\ 1 \times 1^{2}, 256 \end{bmatrix}} \times 3 $	$\begin{bmatrix} \text{TSM} \\ 1 \times 3^2, 64 \\ 1 \times 3^2, 64 \end{bmatrix} \times 2$	appearance: 8×56^2 pose: 32×56^2	
res ₃	$\begin{bmatrix} \text{TSM} \\ 1 \times 1^2, 512 \\ 1 \times 3^2, 512 \\ 1 \times 1^2, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} \text{TSM} \\ 1 \times 3^2, 128 \\ 1 \times 3^2, 128 \end{bmatrix} \times 2$	appearance: 8×28^2 pose: 32×28^2	
res ₄	$\begin{bmatrix} \text{TSM} \\ 1 \times 1^2, 1024 \\ 1 \times 3^2, 1024 \\ 1 \times 1^2, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} \text{TSM} \\ 1 \times 3^2, 256 \\ 1 \times 3^2, 256 \end{bmatrix} \times 2$	appearance: 8×14^2 pose: 32×14^2	
res ₅	$\begin{bmatrix} TSM \\ 1 \times 1^2, 2048 \\ 1 \times 3^2, 2048 \\ 1 \times 1^2, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} \text{TSM} \\ 1 \times 3^2, 512 \\ 1 \times 3^2, 512 \end{bmatrix} \times 2$	appearance: 8×7^2 pose: 32×7^2	
pool	global average pool	global average pool	appearance: 8×1^2 pose: 32×1^2	
feature align (TCB _A ,TCB _P)	1×1^2 , 512 layer normalization	$\frac{4 \times 1^2 \text{ avg pool, stride } 4 \times 1^2}{1 \times 1^2, 512}$ layer normalization	both: 8×1^2	
pose-driven gating (CGB)	$(1 - \mathbf{G})$ element-wise product	$\overline{(\mathbf{G}:1\times1^2,512)}$ G element-wise product		
classifier	fully-conne	fully-connected layer		
		·	1	

Table 6: The network architecture details of IntegralAction in Section 4.3 and 4.4 of the main manuscript. Th	e dimensions
of kernels are denoted by $(T \times S^2, C)$ for the temporal, spatial, and channel sizes. The strides and output size at	re denoted by
$(T \times S^2)$ for the temporal and spatial sizes.	

layers	appearance stream pose stream		output size
input	RGB frames	keypoint heatmaps+PAFs	appearance: 8×224^2 pose: 8×56^2
conv ₁	1×7^2 , 64, stride 1×2^2	1×3 ² , 64	appearance: 8×112^2 pose: 8×56^2
	1×3^2 max pool, stride 1×2^2		
res ₂	$\begin{bmatrix} TSM \\ 1 \times 3^2, 64 \\ 1 \times 3^2, 64 \end{bmatrix} \times 2$	$\begin{bmatrix} TSM \\ 1 \times 3^2, 64 \\ 1 \times 3^2, 64 \end{bmatrix} \times 2$	both: 8×56^2
res ₃	$\begin{bmatrix} \text{TSM} \\ 1 \times 3^2, 128 \\ 1 \times 3^2, 128 \end{bmatrix} \times 2$	$\begin{bmatrix} \text{TSM} \\ 1 \times 3^2, 128 \\ 1 \times 3^2, 128 \end{bmatrix} \times 2$	both: 8×28^2
res ₄	$\begin{bmatrix} \text{TSM} \\ 1 \times 3^2, 256 \\ 1 \times 3^2, 256 \end{bmatrix} \times 2$	$\begin{bmatrix} \text{TSM} \\ 1 \times 3^2, 256 \\ 1 \times 3^2, 256 \end{bmatrix} \times 2$	both: 8×14^2
res ₅	$\begin{bmatrix} \text{TSM} \\ 1 \times 3^2, 512 \\ 1 \times 3^2, 512 \end{bmatrix} \times 2$	$\begin{bmatrix} \text{TSM} \\ 1 \times 3^2, 512 \\ 1 \times 3^2, 512 \end{bmatrix} \times 2$	both: 8×7^2
pool	global average pool	global average pool	
feature align	1×1^2 , 512	1×1^2 , 512	
(TCB_A, TCB_P)	layer normalization	layer normalization	both 8×1^2
pose-driven	$(1 - \mathbf{G})$ element-wise product	$(\mathbf{G}:1\times1\times1,512)$	0000. 07.1
gating (CGB)	G element-wise product G element-wise product		
aggregation	element-wise		
classifier	fully-connect	# of classes	

References

- Vasileios Choutas, Philippe Weinzaepfel, Jérôme Revaud, and Cordelia Schmid. Potion: Pose motion representation for action recognition. In *CVPR*, 2018.
- [2] Wenbin Du, Yali Wang, and Yu Qiao. Rpan: An end-toend recurrent pose-attention network for action recognition in videos. In *ICCV*, 2017.
- [3] Wei Wang, Jinjin Zhang, Chenyang Si, and Liang Wang. Pose-based two-stream relational networks for action recognition in videos. *arXiv preprint arXiv:1805.08484*, 2018.
- [4] An Yan, Yali Wang, Zhifeng Li, and Yu Qiao. Pa3d: Poseaction 3d machine for video recognition. In CVPR, 2019.
- [5] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional networks for skeleton-based action recognition. In AAAI, 2018.