CVPR
#****

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

CoCon: Cooperative-Contrastive Learning
Supplementary Material

Paper ID: 1106

A. Additional Details
A.l. Model Overview

We build our framework borrowing the learning frame-
work present in [10] which learns video representations
through spatio-temporal contrastive losses. It should be
noted that even though we use this particular self-supervised
backbone in our experiments, our approach is not restricted
by the choice of the underlying self-supervised task.

A video V is a sequence of T' frames (not necessar-
ily RGB images) with resolution H x W and C chan-
nels, {i1,is,...,ir}, where iy € RI*XWXC Assume
T = N x K, where N is the number of blocks and K
denotes the number of frames per block. We partition a
video clip V into N disjoint blocks V' = {x1, X2, ..., XN},
where x; € REXHXWXC and a non-linear encoder f(.)
transforms each input block x; into its latent representation
zj = f(x;).

An aggregation function, g¢(.) takes a sequence
{#1, 22, ..., z;} as input and generates a context representa-
tion ¢; = g(z1, 22, - .., 2;). In our setup, z; € RF *W'xD
and ¢; € RP. D represents the embedding size and H', W'
represent down-sampled resolutions as different regions in
z; represent features for different spatial locations. We de-
fine 2} = Pool(z;) where 2} € R” and ¢ = F(V') where
F(.) =g(f(.)). In our experiments, H' =4, W' =4,D =
256.

To learn effective representations, we create a prediction
task involving predicting z of future blocks similar to [10].
In the ideal scenario, the task should force our model to
capture all the necessary contextual semantics in c¢; and all
frame level semantics in z;. We define ¢(.) which takes as
input ¢; and predicts the latent state of the future frames.
The formulation is given in Eq. (4).

Zpy1 = ¢(Ct),
Zip1 = 0(9(z1, 22, - ., 2t))s €]
zt+2 = (b(g(zh 22y e ey Rty Et+1))a

where ¢(.) takes ¢; as input and predicts the latent state
of the future frames. We then utilize the predicted z; 1 to
compute ¢;41. We can repeat this for as many steps as we
want, in our experiments we restrict ourselves to predict till
3 steps in to the future.

Note that we use the predicted Z;;; while predicting
Z+2 to force the model to capture long range semantics.
We can repeat this for a varying number of steps, although

11

Figure 6: A diagram of the learning framework utilized.
We look at features in a sequential manner while simultane-
ously trying to predict representations for future states.

the difficulty increases tremendously as the number of steps
increases as seen in [1 0]. In our experiments, we predict the
next three blocks using the first five blocks.

A.2. Datasets

Kinetics400 contains 400 human action classes, with
at least 400 real-world video clips for each action. Each
clip lasts around 10s and is taken from a different YouTube
video. The actions are human focused and cover a broad
range of classes including human-object and human-human
interactions. The large diversity and variance in the dataset
make it an extremely challenging dataset.

HMDBS51 dataset contains around 6800 real-world
video clips from 51 action classes. These action classes
cover a wide range of actions - facial actions, facial ac-
tion with object manipulations, general body movement,
and general body movements with human interactions. This
dataset is challenging as it contains many poor quality video
with significant camera motions and also the number of
samples are not enough to effectively train a deep network.
We report classification accuracy for 51 classes across 3
splits provided by the authors.

UCF101 dataset contains 13320 videos from 101 action
classes that are divided into 5 categories - human-object in-
teraction, body-movement only, human-human interaction,
playing musical instruments and sports. Action classifica-
tion in this datasets is challenging owing to variations in
pose, camera motion, viewpoint and spatio-temporal extent
of an action.

CVPR
#****

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

CVPR
#****

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A.3. Views

We simultaneously learn encoders for RGB and Optical
Flow while training on Kinetics-400. Instead of using the
commonly used TVL1-Flow, we rely on Farneback flow
which usually results in lower performance for action clas-
sification, however is much faster to compute. For UCF101
and HMDB51, we simultaneously learn encoders for RGB,
TVLI Optical Flow, Pose Heatmaps and Semantic Maps.

We give a brief overview of the views utilized and their
generation.

* RGB Images, RGB - We directly use sequences of
RGB frames present in videos

* Optical Flow, Flow - We use the popular TVL1 flow
for UCF101 and HMDBS51 and Farneback Flow (FF)
for Kinetics400. FF is known to perform worse than
TVLI1-Flow on visual recognition tasks, however, it is
quicker to compute. This view mismatch views leads
to lesser gains when using Kinetics pre-trained flow
weights for UCF101 and HMDB51.

¢ Pose Keypoint Heatmaps, PoseHMs - We use an oft-
the-shelf keypoint detector [43] and extract confidence
heatmaps for each keypoint. Note that we perform no
pre/post-processing on the results and directly use this
as input to our model. The input modality is inherently
very noisy, however, we still observe improved perfor-
mance.

* Human Segmentation Masks, SegMasks - Similar to
the above, we use an off-the-shelf semantic segmenta-
tion network [43] and extract confidence scores for hu-
man segmentation. Similar to pose keypoint heatmaps,
this input modality is inherently very noisy.

Fig. 7 shows examples of different views. Note the
prevalence of noise in a few samples, specially SegMasks.
There are multiple other instances where PoseHMs are
noisy as we’re unable to even localize the actor accurately.

A.4. Implementation Details

We choose to use a 3D-ResNet similar to [11] as the en-
coder f(.). Following [10] we only expand the convolu-
tional kernels present in the last two residual blocks to be
3D ones. We used 3D-ResNet18 for our experiments, de-
noted as ResNetl8. We use a weak aggregation function
¢(.) in order to learn a strong encoder f(.). Specifically, we
use a one-layer Convolutional Gated Recurrent Unit (Con-
vGRU) with kernel size (1, 1) as g(.). The weights are
shared amongst all spatial positions in the feature map. This
design allows the aggregation function to propagate features
in the temporal axis. A dropout [36] with p = 0.1 is used
when computing the hidden state at each time step. A shal-
low two-layer perceptron is used as the predictive function

12

¢(.). Recall 2 = Pool(z;)wherez; € Rp. We utilize
j J j

stacked max pool layers as Pool(.).

To construct blocks to pass to the network, we uniformly
choose one out of every 3 frames. We then group these
into 8 blocks containing 5 frames each. Since the videos
we use are usually 30fps, each block roughly covers 0.5
seconds worth of content. The predictive task we design
involves predicting the last three blocks using the first five.
Therefore, we effectively predict the next 1.5 seconds based
on the first 2.5 seconds.

We perform random cropping, random horizontal flip-
ping, random greying, and color jittering to perform data
augmentation in the case of images. For optical flow, we
only perform random cropping on the image. As discussed
earlier, Keypoint Heatmaps and Segmentation Confidence
Masks are modelled as images, therefore we perform ran-
dom cropping and horizontal flipping in their case. Note
that random cropping and flipping is applied for the entire
block in a consistent way. Random greying and color jitter-
ing are applied in a frame-wise manner to prevent the net-
work from learning low-level features such as optical flow.
Therefore, each video block may contain both colored and
grey-scale image with different contrast.

All individual view-specific models are trained indepen-
dently using only L.,.. After which we proceed to train
all view-specific models simultaneously using L.ocon. All
models are trained end-to-end using Adam [19] optimizer
with an initial learning rate 10~2 and weight decay 107°.
Learning rate is decayed to 104 when validation loss
plateaus. A batch size of 16 samples per GPU is used, and
our experiments use 4 GPUs. We train models on UCF101
for 100 epochs using L., after which they are collectively
trained together for 60 epochs using L ocon. We repeat the
same for Kinetics400 with reduced epochs. We train mod-
els on Kinetics400 for 80 epochs using L. and further for
40 epochs using L ocon-

The learnt representations are evaluated by their perfor-
mance on the downstream task of action classification. We
follow the evaluation practice from recent works and use
the weights learnt through our self-supervised framework
as initialization for supervised learning. The whole setup
is then fine-tuned end-to-end using class label supervision.
We finally report the fine-tuned accuracies on UCF101 and
HMDB51. We use the learnt composite function F'(.) to
generate context representations for video blocks. The con-
text feature is further passed through a spatial pooling layer
followed by a fully-connected layer and a multi-way soft-
max for action classification. We use dropout with p = 0.7
for classification. The models are fine-tuned for 100 epochs
with learning rate decreasing at different steps. During in-
ference, video clips from the validation set are densely sam-
pled from an input video and cut into blocks with half-
length overlapping. The softmax probabilities are averaged

CVPR
#****

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

CVPR
#****

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 7: Examples for each view. From top to bottom - RGB, Flow, SegMasks and Poses.

to give the final classification result.

B. Additional Results

We motivate CoCon arguing about the benefits of pre-
serving similarities across view-specific feature spaces. We
observe respecting structure across views results in emer-
gence of higher-order semantics without additional supervi-
sion e.g. sensible class relationships and good feature rep-
resentations. We go over different results in the following
sections.

B.1. t-SNE Visualization

We explore t-SNE visualizations of our learnt represen-
tations on the 1°¢ test split of UCF101 extracted using F'(.).
Our model is trained on the corresponding train split to en-
sure we’re testing out of sample quality. For clarity, only
21 action classes are displayed. We loosely order the action
classes according to their relationships. Classes having sim-
ilar colors are semantically similar. Results are displayed in
Fig 8. Even though we operate in a self-supervised setting,
our approach is able to uncover deeper semantic features al-
lowing us to uncover inter-class relationships. We can see
a much more concise and consistent clustering in CoCon
compared to CPC. We also observe the distinct improve-
ment in the compactness of the clusters as we increase the
number of views.

13

B.2. Inter-Class Relationships

In order to study the manifold consistency across dif-
ferent views, we look at relationships between classes by
inferring their similarities through the learnt features. We
compare cosine similarities across video clips from differ-
ent classes. We then compute the most similar five classes
for each action. We repeat the process for all views and look
at the consistency of the results. Ideally, semantically sim-
ilar classes should be consistent across all views, assuming
the views reasonably capture the essence of the task we’re
interested in.

We observe that CoCon leads to much higher consis-
tency across different views. Specifically, we see 41 classes
which have at least four out of five top-classes consistent in
all views; as opposed to 10 classes in CPC. Similar pat-
terns are seen when we consider other thresholds. In order
to confirm that the nearest classes are actually sensible, we
mention the most-similar classes for a few action classes.

We can see that the nearest actions generated are se-
mantically related to the original actions. In the cases of
PlayingCello, we encounter a cluster of categories involving
playing instruments. Similarly for BasketBall, we can see
emergence of sports-based relationships even though there
is no visual commonality between categories. We also see
a few seemingly unrelated classes as well, e.g., Boxing-
PunchingBag and YoYo; SalsaSpin and WalkingWithDog.

CVPR
#****

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

CVPR
#****

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

; . . playingsitar
#Views: 1 P o #Views: 2 m,.. #Views: 4 playingflute
@ g b;' ’8" ® ° playingdhol
® P ”".. ‘ #! playingdaf
»e playingcello
? “‘ .i, ° ® L4 ":. ° ‘ & o skydiving
® ® @ o [N .*’. as® cliffdiving
° L) ® # goe 220 8 surfing
R . < '. - .fi—* 2 ° 4 m.’ e
¥ L] o © & a.o i longjump
Qf"o e 0 © 5‘ o‘ “ basketballdunk
) @&ﬂ ‘» " » & soccerpenalty
'S ® .@ ... 4 s P o o'd)’d ?. o‘ » 4 cricketbowling
.8 $o ‘\?’ ‘Q.' \ 3 boxingspeedbag
® &]).b p& &’io .y () ° boxingpunchingbag
DX o 2% poxndpun
L (Y ° odyweightsquats
. ,. .. W o% wallpushups
;‘ ‘# brushingteeth
* blowdryhair
"\ applylipstick
applyeyemakeup

Figure 8: Emergence of relationships between different actions using CoCon with varying number of views. Note that CoCon

becomes the same as CPC when #views = 1

. Nearest Classes
Action Class CoCon CPC

skiing surfing, skijet surfing
playingcello playingsitar, playingtabla, playingdhol N/A
jumpingjack jumprope, pullups, bodyweightsquats, cleanandjerk N/A

basketball baseballpitch, cricketshot, fieldhockey, cricketbowling N/A

hammerthrow baseballpitch, throwdiscus, shotput N/A
wallpushups writingonboard, bodyweightsquats N/A
brushingteeth | applylipstick, applyeyemakeup, shavingbeard, haircut | applylipstick

Table 7: Closest semantic classes provided by different models. CPC has very few consistent nearest classes across views.
While views trained using CoCon show consistent results across views, leading to sensible inter-class relationships

A deeper inspection into the samples is required to com-
ment whether this truly makes sense. It is worth noting that
as these nearest action classes are mostly consistent across
different views, our approach cannot cheat to generate them
i.e. it cannot look at ’background crowd’ or ’green field’
and infer that the video clip is related to sports. Since views
such as Optical-Flow, SegMasks and KeypointHeatmap do
not have such information and are much low-dimensional.

C. Action Alignment

An interesting side-effect of improved representations
for actions is the possibility of performing loose action
alignment. Even though we only use self-supervision, Co-
Con embeddings are able to capture relevant semantics
through our multi-view approach allowing loose alignment
between videos. To compute this soft alignment, we divide
each video into 18 blocks and compute block-level features
z'. We then utilize relative cosine similarities to infer as-
sociations between the videos. We smoothen the heatmap
in order to make it visually appealing. Figure 5 shows
alignment between different videos. Figure 9 highlights a
few examples when we perform alignment between same
videos. Notice the periodicity implicitly present in these

14

actions captured through the heatmap.

C.1. Cosine similarity

This section highlights the ability of representation gen-
erated through CoCon to capture meaningful semantics go-
ing beyond low-level features. We look at cosine similarity
distributions of video representation from UCF101. We ex-
tract one context representation for each video and pool it
into a vector. We then compute the cosine similarity for
each pair of video features across the unseen UCF101 test
set. The cosine distance is summarized by a histogram,
where the ’blue’ histogram represents the score distribution
for positives i.e. videos belonging to the same class; and the
“orange’ one shows the distribution for negatives i.e. videos
from different classes.

C.2. Nearest Neighbors

We utilize CoCon to perform video retrieval for differ-
ent query videos. Note that CoCon is able to look past
purely visual background features and focus on actions even
though it only used RGB inputs. For example, we see that
we are able to retrieve close neighbors for BenchPress, even
though it is very visually different with varying poses. For

CVPR
#****

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

CVPR
#****

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 9: Soft Alignment of actions between the same video instances. The heat-map represents the relative similarities between blocks

at various timesteps. Notice periodic patterns in the actions.

archery nunchucks playingguitar archery nunchucks playingguitar
A |
‘ .‘/\/\/\\ |
w\ | ‘.\ | vy
\ </ | 4//_/J 7'y ///- \
cliffdiving jumpingjack frontcrawl cliffdiving jumpingjack
| A | A A
H A | j | |
| a | A
| | ' A
"‘ | { ‘\ \‘ | \ A
Al \ | \
,/ | \ A \
polevault moppingfloor trampoli nping polevault moppingfloor
4 A A A \
[x A | x.
| ! | | A A
‘ | ‘ \ \
| | | \ A \\\
| A
| \ \ h \ N
D
(a) Generated by CoCon (b) Generated by CPC

Figure 10: Distributions of cosine-similarity scores between representations of videos from the same (blue) and other classes

(red).

the IceDancing sample, even though it incorrectly consid-
ers onbe video where the person is running, we can still see
similarities between the underlying actions in the videos.
Similar results can be seen in other examples as well. This
hints towards the fact that CoCon representation are able to
capture action semantics even while using RGB views.

15

CVPR
#****

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

CVPR CVPR

#***‘k #****
CVPR 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

1620 1674
1621 . 1675
1622 £ 1676
1623 g 1677
1624 : 1678
1625 1679
1626 2 1680
1627 5 1681
1628 < 1682
1629 B 1683
1630 1684
1631 1685
1632 1686
1633 1687
1634 1688
1635 1689
1636 1690
1637 = 1691
1638 £ 1692
1639 g 1693
1640 1694
1641 1695
1642 2 1696
1643 i 1697
1644 g 1698
1645 1699
1646 1700
1647 . 1701
1648 H 1702
1649 2 1703
1650 1704
1651 1705
1652 . 1706
1653 5 1707
1654 3 1708
1655 1709
1656 1710
1657 . 1711
1658 g 1712
1659 8 1713
1660 ° 1714
1661 1715
1662 1716
1663 5 1717
1664 = 1718
1665 1719
1666 1720
1667 1721
1668 g 1722
1669 : 1723
1670 5 1724
1671 1725
1672 Figure 11: Nearest neighbors computed using RGB representations. Query video is highlighted on the left with . 1726
1673 1727

