CoCon: Cooperative-Contrastive Learning
Supplementary Material

A. Additional Details
A.1. Model Overview

We build our framework borrowing the learning frame-
work present in [10] which learns video representations
through spatio-temporal contrastive losses. It should be
noted that even though we use this particular self-supervised
backbone in our experiments, our approach is not restricted
by the choice of the underlying self-supervised task.

A video V is a sequence of T' frames (not necessar-
ily RGB images) with resolution H x W and C chan-
nels, {i1,is,...,ir}, where iy € RF*WXC Assume
T = N x K, where N is the number of blocks and K
denotes the number of frames per block. We partition a
video clip V into N disjoint blocks V' = {x1,X2,...,Xn},
where x; € REXHXWXC and a non-linear encoder f/(.)
transforms each input block z; into its latent representation
zj = f(x;).

An aggregation function, g¢(.) takes a sequence
{#1, 22, ..., z;} as input and generates a context representa-
tion ¢; = g(21, 22, ..., 2;). In our setup, z; € RE'*W'*xD
and ¢; € RP. D represents the embedding size and H', W'
represent down-sampled resolutions as different regions in
z; represent features for different spatial locations. We de-
fine 2 = Pool(z;) where 2 € R” and ¢ = F(V') where
F(.)=g(f(.). In our experiments, H' =4, W' =4,D =
256.

To learn effective representations, we create a prediction
task involving predicting z of future blocks similar to [10].
In the ideal scenario, the task should force our model to
capture all the necessary contextual semantics in c¢; and all
frame level semantics in z;. We define ¢(.) which takes as
input ¢; and predicts the latent state of the future frames.
The formulation is given in Eq. (4).

Zey1 = (),
§t+l = ¢(g(Z1,22,---,Zt)), (4)
gt+2 = ¢(g(217 22y ey Rty 2t+1))7

where ¢(.) takes ¢; as input and predicts the latent state
of the future frames. We then utilize the predicted z; 1 to
compute ¢; 1. We can repeat this for as many steps as we
want, in our experiments we restrict ourselves to predict till
3 steps in to the future.

Note that we use the predicted Z;1; while predicting
Zy1o to force the model to capture long range semantics.
We can repeat this for a varying number of steps, although
the difficulty increases tremendously as the number of steps

g g g
f r A
Figure 6: A diagram of the learning framework utilized.

We look at features in a sequential manner while simultane-
ously trying to predict representations for future states.

increases as seen in [1 0]. In our experiments, we predict the
next three blocks using the first five blocks.

A.2. Datasets

Kinetics400 contains 400 human action classes, with
at least 400 real-world video clips for each action. Each
clip lasts around 10s and is taken from a different YouTube
video. The actions are human focused and cover a broad
range of classes including human-object and human-human
interactions. The large diversity and variance in the dataset
make it an extremely challenging dataset.

HMDBS51 dataset contains around 6800 real-world
video clips from 51 action classes. These action classes
cover a wide range of actions - facial actions, facial ac-
tion with object manipulations, general body movement,
and general body movements with human interactions. This
dataset is challenging as it contains many poor quality video
with significant camera motions and also the number of
samples are not enough to effectively train a deep network.
We report classification accuracy for 51 classes across 3
splits provided by the authors.

UCF101 dataset contains 13320 videos from 101 action
classes that are divided into 5 categories - human-object in-
teraction, body-movement only, human-human interaction,
playing musical instruments and sports. Action classifica-
tion in this datasets is challenging owing to variations in
pose, camera motion, viewpoint and spatio-temporal extent
of an action.

A.3. Views

We simultaneously learn encoders for RGB and Optical
Flow while training on Kinetics-400. Instead of using the
commonly used TVL1-Flow, we rely on Farneback flow

which usually results in lower performance for action clas-
sification, however is much faster to compute. For UCF101
and HMDB51, we simultaneously learn encoders for RGB,
TVL1 Optical Flow, Pose Heatmaps and Semantic Maps.

We give a brief overview of the views utilized and their
generation.

* RGB Images, RGB - We directly use sequences of
RGB frames present in videos

* Optical Flow, Flow - We use the popular TVL1 flow
for UCF101 and HMDBS51 and Farneback Flow (FF)
for Kinetics400. FF is known to perform worse than
TVLI1-Flow on visual recognition tasks, however, it is
quicker to compute. This view mismatch views leads
to lesser gains when using Kinetics pre-trained flow
weights for UCF101 and HMDBS1.

* Pose Keypoint Heatmaps, PoseHMs - We use an off-
the-shelf keypoint detector [45] and extract confidence
heatmaps for each keypoint. Note that we perform no
pre/post-processing on the results and directly use this
as input to our model. The input modality is inherently
very noisy, however, we still observe improved perfor-
mance.

* Human Segmentation Masks, SegMasks - Similar to
the above, we use an off-the-shelf semantic segmenta-
tion network [45] and extract confidence scores for hu-
man segmentation. Similar to pose keypoint heatmaps,
this input modality is inherently very noisy.

Fig. 7 shows examples of different views. Note the
prevalence of noise in a few samples, specially SegMasks.
There are multiple other instances where PoseHMs are
noisy as we’re unable to even localize the actor accurately.

A.4. Implementation Details

We choose to use a 3D-ResNet similar to [13] as the en-
coder f(.). Following [10] we only expand the convolu-
tional kernels present in the last two residual blocks to be
3D ones. We used 3D-ResNetl8 for our experiments, de-
noted as ResNetl8. We use a weak aggregation function
g(.) in order to learn a strong encoder f(.). Specifically, we
use a one-layer Convolutional Gated Recurrent Unit (Con-
vGRU) with kernel size (1, 1) as g(.). The weights are
shared amongst all spatial positions in the feature map. This
design allows the aggregation function to propagate features
in the temporal axis. A dropout [38] with p = 0.1 is used
when computing the hidden state at each time step. A shal-
low two-layer perceptron is used as the predictive function
¢(.). Recall z; = Pool(z;)wherez; € Rp. We utilize
stacked max pool layers as Pool(.).

To construct blocks to pass to the network, we uniformly
choose one out of every 3 frames. We then group these

into 8 blocks containing 5 frames each. Since the videos
we use are usually 30fps, each block roughly covers 0.5
seconds worth of content. The predictive task we design
involves predicting the last three blocks using the first five.
Therefore, we effectively predict the next 1.5 seconds based
on the first 2.5 seconds.

We perform random cropping, random horizontal flip-
ping, random greying, and color jittering to perform data
augmentation in the case of images. For optical flow, we
only perform random cropping on the image. As discussed
earlier, Keypoint Heatmaps and Segmentation Confidence
Masks are modelled as images, therefore we perform ran-
dom cropping and horizontal flipping in their case. Note
that random cropping and flipping is applied for the entire
block in a consistent way. Random greying and color jitter-
ing are applied in a frame-wise manner to prevent the net-
work from learning low-level features such as optical flow.
Therefore, each video block may contain both colored and
grey-scale image with different contrast.

All individual view-specific models are trained indepen-
dently using only L,.. After which we proceed to train
all view-specific models simultaneously using L.ocon. All
models are trained end-to-end using Adam [21] optimizer
with an initial learning rate 10~3 and weight decay 10~°.
Learning rate is decayed to 10~* when validation loss
plateaus. A batch size of 16 samples per GPU is used, and
our experiments use 4 GPUs. We train models on UCF101
for 100 epochs using L., after which they are collectively
trained together for 60 epochs using L.ocon. We repeat the
same for Kinetics400 with reduced epochs. We train mod-
els on Kinetics400 for 80 epochs using L., and further for
40 epochs using L .ocon-

The learned representations are evaluated by their perfor-
mance on the downstream task of action classification. We
follow the evaluation practice from recent works and use
the weights learned through our self-supervised framework
as initialization for supervised learning. The whole setup
is then fine-tuned end-to-end using class label supervision.
We finally report the fine-tuned accuracies on UCF101 and
HMDBS51. We use the learned composite function F(.) to
generate context representations for video blocks. The con-
text feature is further passed through a spatial pooling layer
followed by a fully-connected layer and a multi-way soft-
max for action classification. We use dropout with p = 0.7
for classification. The models are fine-tuned for 100 epochs
with learning rate decreasing at different steps. During in-
ference, video clips from the validation set are densely sam-
pled from an input video and cut into blocks with half-
length overlapping. The softmax probabilities are averaged
to give the final classification result.

Figure 7: Examples for each view. From top to bottom - RGB, Flow, SegMasks and Poses.

B. Additional Results

We motivate CoCon arguing about the benefits of pre-
serving similarities across view-specific feature spaces. We
observe respecting structure across views results in emer-
gence of higher-order semantics without additional supervi-
sion e.g. sensible class relationships and good feature rep-
resentations. We go over different results in the following
sections.

B.1. t-SNE Visualization

We explore t-SNE visualizations of our learned represen-
tations on the 1°¢ test split of UCF101 extracted using F'(.).
Our model is trained on the corresponding train split to en-
sure we’re testing out of sample quality. For clarity, only
21 action classes are displayed. We loosely order the action
classes according to their relationships. Classes having sim-
ilar colors are semantically similar. Results are displayed in
Fig 8. Even though we operate in a self-supervised setting,
our approach is able to uncover deeper semantic features al-
lowing us to uncover inter-class relationships. We can see
a much more concise and consistent clustering in CoCon
compared to CPC. We also observe the distinct improve-
ment in the compactness of the clusters as we increase the
number of views.

B.2. Inter-Class Relationships

In order to study the manifold consistency across differ-
ent views, we look at relationships between classes by in-
ferring their similarities through the learned features. We
compare cosine similarities across video clips from differ-
ent classes. We then compute the most similar five classes
for each action. We repeat the process for all views and look
at the consistency of the results. Ideally, semantically sim-
ilar classes should be consistent across all views, assuming
the views reasonably capture the essence of the task we’re
interested in.

We observe that CoCon leads to much higher consis-
tency across different views. Specifically, we see 41 classes
which have at least four out of five top-classes consistent in
all views; as opposed to 10 classes in CPC. Similar pat-
terns are seen when we consider other thresholds. In order
to confirm that the nearest classes are actually sensible, we
mention the most-similar classes for a few action classes.

We can see that the nearest actions generated are se-
mantically related to the original actions. In the cases of
PlayingCello, we encounter a cluster of categories involving
playing instruments. Similarly for BasketBall, we can see
emergence of sports-based relationships even though there
is no visual commonality between categories. We also see
a few seemingly unrelated classes as well, e.g., Boxing-
PunchingBag and YoYo; SalsaSpin and WalkingWithDog.

: . . playingsitar
#Views: 1 'O’c'b . #Views: 2 K‘b. #Views: 4 I playingflute
% ° layingdhol
o h’ . % pIay:ngdaf
'’ -~ . * { Piayingcol
L) o playingcello
? = .o.’. ® @ "?*. e & oo skydiving
. ® . 0 [y 0 g ose® cliffdiving
° 3 X
° L) ® @ #;&w < ° ... *‘ N surf.lng
s oo ‘a 4 . 0’ rafting
® s b4 & “ ° i longjump
», "’ . SRAY
.gf "Qﬂ [} .» . 53 »o ..‘ basketbaIIdIL:nk
- soccerpenalty
® (’.@ o ® L & o ‘).dj" ,‘ o‘. ’w] cricketbowling
* .8 ° $o %(.& ..Q.' \ \’ boxingspeedbag
° o . N & ﬁcif@diﬂﬁ) P .‘ boxingp'unchingbag
®e C] ° bodyweightsquats
% o e
[4 ® o% wallpushups
4 ‘# brushingteeth
* blowdryhair
ﬁ'\ applylipstick
applyeyemakeup

Figure 8: Emergence of relationships between different actions using CoCon with varying number of views. Note that CoCon

becomes the same as CPC when #views = 1

. Nearest Classes
Action Class CoCon CPC

skiing surfing, skijet surfing
playingcello playingsitar, playingtabla, playingdhol N/A
jumpingjack jumprope, pullups, bodyweightsquats, cleanandjerk N/A

basketball baseballpitch, cricketshot, fieldhockey, cricketbowling N/A

hammerthrow baseballpitch, throwdiscus, shotput N/A
wallpushups writingonboard, bodyweightsquats N/A
brushingteeth | applylipstick, applyeyemakeup, shavingbeard, haircut | applylipstick

Table 7: Closest semantic classes provided by different models. CPC has very few consistent nearest classes across views.
While views trained using CoCon show consistent results across views, leading to sensible inter-class relationships

A deeper inspection into the samples is required to com-
ment whether this truly makes sense. It is worth noting that
as these nearest action classes are mostly consistent across
different views, our approach cannot cheat to generate them
i.e. it cannot look at ’background crowd’ or ’green field’
and infer that the video clip is related to sports. Since views
such as Optical-Flow, SegMasks and KeypointHeatmap do
not have such information and are much low-dimensional.

C. Action Alignment

An interesting side-effect of improved representations
for actions is the possibility of performing loose action
alignment. Even though we only use self-supervision, Co-
Con embeddings are able to capture relevant semantics
through our multi-view approach allowing loose alignment
between videos. To compute this soft alignment, we divide
each video into 18 blocks and compute block-level features
z'. We then utilize relative cosine similarities to infer as-
sociations between the videos. We smoothen the heatmap
in order to make it visually appealing. Figure 5 shows
alignment between different videos. Figure 9 highlights a
few examples when we perform alignment between same

videos. Notice the periodicity implicitly present in these
actions captured through the heatmap.

C.1. Cosine similarity

This section highlights the ability of representation gen-
erated through CoCon to capture meaningful semantics go-
ing beyond low-level features. We look at cosine similarity
distributions of video representation from UCF101. We ex-
tract one context representation for each video and pool it
into a vector. We then compute the cosine similarity for
each pair of video features across the unseen UCF101 test
set. The cosine distance is summarized by a histogram,
where the ’blue’ histogram represents the score distribution
for positives i.e. videos belonging to the same class; and the
“orange’ one shows the distribution for negatives i.e. videos
from different classes.

C.2. Nearest Neighbors

We utilize CoCon to perform video retrieval for differ-
ent query videos. Note that CoCon is able to look past
purely visual background features and focus on actions even
though it only used RGB inputs. For example, we see that
we are able to retrieve close neighbors for BenchPress, even

Figure 9: Soft Alignment of actions between the same video instances. The heat-map represents the relative similarities between blocks
at various timesteps. Notice periodic patterns in the actions.

archery nunchucks playingguitar archery nunchucks playingguitar
0 A |
| \ | | /\\,A \
\ | B o pr A |
. A | \ A s A |
cliffdiving jumpingjack frontcrawl cliffdiving jumpingjack frontcrawl
1 A) a Iy a
| A | A A
| | | / | | A |
I | | u | | ||
| | | N Bia \
“" | (| | A A |
h | | | | A \
A | A
polevault moppingfloor trampolinejumping polevault moppingfloor
4 (\ A
| |
| | \
| | \
| |
\ \ | A W
| | | o \ §
| | A N
(a) Generated by CoCon (b) Generated by CPC

Figure 10: Distributions of cosine-similarity scores between representations of videos from the same (blue) and other classes
(red).

though it is very visually different with varying poses. For
the IceDancing sample, even though it incorrectly consid-
ers onbe video where the person is running, we can still see
similarities between the underlying actions in the videos.
Similar results can be seen in other examples as well. This
hints towards the fact that CoCon representation are able to
capture action semantics even while using RGB views.

breaststroke

volleyballspiking

soccerpenalty rowing

icedancing

breaststroke benchpress horseriding

stillrings

unevenbars

Figure 11: Nearest neighbors computed using RGB representations. Query video is highlighted on the left with

