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Abstract

Homography estimation is often an indispensable step

in many computer vision tasks. The existing approaches,

however, are not robust to illumination and/or larger view-

point changes. In this paper, we propose bidirectional im-

plicit Homography Estimation (biHomE) loss for unsuper-

vised homography estimation. biHomE minimizes the dis-

tance in the feature space between the warped image from

the source viewpoint and the corresponding image from the

target viewpoint. Since we use a fixed pre-trained feature

extractor and the only learnable component of our frame-

work is the homography network, we effectively decouple

the homography estimation from representation learning.

We use an additional photometric distortion step in the syn-

thetic COCO dataset generation to better represent the il-

lumination variation of the real-world scenarios. We show

that biHomE achieves state-of-the-art performance on syn-

thetic COCO dataset, which is also comparable or better

compared to supervised approaches. Furthermore, the em-

pirical results demonstrate the robustness of our approach

to illumination variation compared to existing methods.

1. Introduction

Given a pinhole camera model assumption, a homogra-

phy relates any two images of the same planar surface in

space or any two images produced by pure rotational move-

ment of the camera [13]. One image, called a source, can be

transformed by a 3× 3 homography matrix H as if viewed

from the viewpoint of the other image, called target. Even if

the primary assumptions are violated, the homography can

be applied as an initial alignment step in other tasks such as

mesh flow [21] and optical flow [15]. Therefore, homogra-

phy has been widely used in many computer vision applica-

tions such as SLAM [5, 26], image stitching [39, 12], and

change detection and description [3, 40].

Traditionally, homography estimation was performed us-

ing non-learnable approaches either in the pixel-space (di-

rect methods) or in hand-crafted feature space (feature-

based methods) [39]. Recently, with the advancement in
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Figure 1. Homography estimation comparison on synthetic COCO

(S-COCO) [4] on the left and a photometrically distorted version

of it (PDS-COCO) on the right. On PSD-COCO, our bidirectional

implicit Homography Estimation (biHomE) loss is the only unsu-

pervised method able to converge, while still being on par with

the performance of supervised approaches. The performance of

methods (Nguyen [27], DeTone [4], Zeng [43], and Zhang [44]) is

reported in Mean Absolute Corner Error (MACE).

Deep Neural Networks (DNNs), DeTone et al. [4] proposed

a simple CNN architecture trained in an end-to-end fash-

ion. The idea was to directly regress the parameters of a

homography and it achieved similar performance to tradi-

tional feature-based methods. A more effective approach is

presented by Zeng et al. [43], where the problem was for-

mulated as per-pixel offset regression. However, supervised

methods are often unlikely to be used in real-life scenarios,

where ground truth homography labeling is prohibitively

expensive.

To mitigate this issue, Nguyen et al. [27] introduced an

end-to-end unsupervised approach. First, a homography is

estimated using both input images and then homography

estimation is learned by comparing the per-pixel intensity

of warped source image and target image. Models trained

using this formulation perform surprisingly well even for

images with big viewpoint differences. However, they are

not robust to big illumination changes and cannot be used in

real-life scenarios [16, 29]. In contrast, Zhang et al. [44], by



learning the feature representation used for both homogra-

phy estimation and image comparison, achieved robustness

to different lighting conditions, but not for images with big

viewpoint changes. Therefore, robust unsupervised homog-

raphy estimation for both big illumination and viewpoint

changes at the same time is still an open problem.

Instead of learning a shared representation for homogra-

phy estimation and image comparison [44], we propose to

decouple those two tasks by using a dedicated Loss Network

to compare warped source image and target image. It has

been shown that a pre-trained and fixed convolutional neu-

ral network as a Loss Network can capture perceptual dif-

ferences [16, 41]. The homography is learned implicitly by

comparing the images in feature space produced by the Loss

Network. Since the homography should be invertible, we

compare warped source and target images and swap their

roles. Therefore, we call our loss function bidirectional im-

plicit Homography Estimation (biHomE) loss.

We exhibit the simplicity and effectiveness of biHomE

loss by applying it on top of three homography esti-

mation architectures on the Synthetic COCO (S-COCO)

dataset [4]. biHomE not only outperforms other unsuper-

vised methods but is also on par with its supervised coun-

terpart. Next, we use an additional photometric distortion

augmentation on synthetic COCO (denoted as PDS-COCO)

to mimic the illumination changes in real-life scenarios. We

show that biHomE is the only unsupervised method that

can converge on PDS-COCO, while still maintaining com-

parable or better performance compared to supervised ap-

proaches. To further demonstrate the effectiveness of our

loss, we provide an experimental study on the influence of

image alignment on the quality of generated change cap-

tions by the Dual Dynamic Attention Model (DUDA) [28]

method. We achieve a new state-of-the-art performance on

the change captioning task. Our contributions are as fol-

lows:

• We introduce a new perceptual loss (biHomE) to be

used in an unsupervised setting, which decouples ho-

mography estimation from representation learning for

image comparison.

• We propose to use an additional photometric distortion

step in the synthetic COCO dataset generation (PDS-

COCO) to evaluate the robustness of homography es-

timation to big illumination and viewpoint changes,

which is more aligned with real-life scenarios.

• We achieve state-of-the-art performance using bi-

HomE loss on both S-COCO and PDS-COCO datasets

for unsupervised homography estimation.

• We apply biHomE for unsupervised image alignment

to achieve a state-of-the-art change captioning quality

on the CLEVR Change dataset [28].

2. Related Work

2.1. Traditional Approaches

There are two families of traditional approaches for ho-

mography estimation: direct methods and feature-based

methods [39]. Direct methods work in pixel intensity space,

where most of the studies follow the Lucas-Kanade algo-

rithm [24]. There are many improved approaches, including

utilizing different error metrics [6] or Fourier domain rep-

resentation [25]. Feature-based approaches mostly consist

of three components: keypoint detection (such as SIFT [23]

and ORB [34]), correspondence matching (Euclidean dis-

tance, correlation), and homography estimation using Di-

rect Linear Transform (DLT) [13] with RANSAC [8] out-

lier rejection. Feature-based methods usually perform bet-

ter than direct methods, however, their success depends on

the quality of the hand-crafted stages and the content of the

image itself. Poorly distributed features (i.e. repetitive pat-

tern or texture), illumination variations, or large viewpoint

differences [42] are challenging for both direct and feature-

based methods.

2.2. Supervised Approaches

DeTone et al. [4] uses a deep learning model to estimate

homography, which comes on par with or better than tra-

ditional methods. Input images are concatenated channel-

wise and passed through 10-layer VGG-style [36] CNN

with a fully connected layer with eight outputs (x-y coor-

dinates for 4 points) on top. The problem is then formu-

lated as a 4-point homography regression given the ground

truth transformation. On the other hand, Zeng et al. [43]

estimates pixel-to-pixel bijection between two images us-

ing a U-Net [33] architecture. The final homography dur-

ing inference is produced using RANSAC and DLT in the

postprocessing stage. Their method achieves a performance

boost compared to DeTone’s et al. [4] approach.

2.3. Unsupervised Approaches

Nguyen et al. [27] formulated the 4-point homography

regression as an unsupervised approach. The idea is to min-

imize pixel-wise intensity error between the warped source

image and the target image. They achieve comparable per-

formance to the supervised DeTone et al. [4] method on

the S-COCO dataset. Their method, however, cannot com-

pensate for larger illumination changes between images as

the learning is performed using pixel intensity comparison.

Zhang et al. [44], applies the loss function to the feature

space instead of the pixel-space. The authors propose to

minimize the feature distance between the warped source

and the target images and maximize the feature difference

between the source and warped source images. Although

presented triple loss is efficient for images with small view-

point shifts, it is not robust to big viewpoint changes.



3. Method

There are two key insights of our method. The first one is

that splitting the architecture into two separate components

effectively decouples the homography estimation from rep-

resentation learning. The second insight of our method is

that we want to leverage the fact that convolutional neural

networks pre-trained for image classification have already

learned to encode meaningful information, which can be

used in downstream tasks like image comparison for ho-

mography estimation assessment. Therefore, as shown in

Figure 2, the system is composed of two components: The

Homography Estimation Network (HEN) f , which can be

realized by any architecture able to produce a transforma-

tion matrix H and a fixed Loss Network g(I;φ) that is used

to define loss function L. Homography estimation is learned

implicitly by minimizing the loss function defined in the

feature space produced by Loss Network g.

3.1. Homography Estimation Networks

The goal of HEN is to estimate a 3× 3 homography ma-

trix between two images IS and IT using the learnable pa-

rameters θ:

HST = f(IS , IT ; θ) (1)

Modern HENs can be divided into two categories: architec-

tures that directly produce homography (DeTone et al. [4]

and Zhang et al. [44]) and models that produce per pixel

offset (Zeng et al. [43]). The former can be directly ap-

plied into our framework, but that is not the case with the

latter. Thus, we first randomly sample without replacement

NS < H · W points out of the output perspective field of

size H × W and then use Direct Linear Transform (DLT)

[13] to estimate the homography matrix in an end-to-end

pipeline.

3.2. Perceptual Loss Functions

In the second part of the pipeline, homography HST es-

timated by HEN is used to transform source image IS into

I ′S = Warp(IS , HST ). Rather than encouraging the pix-

els of the warped source image I ′S to match the pixels of

the target image IT (similar to [27]), we rely on percep-

tual similarity of high-level features extracted from pre-

trained Loss Network g. Let gj(I) be the feature map of

size Cj ×Hj ×Wj after jth layer of the Loss Network g for

a given image I . We define the mask M of the same size as

gj(I) consisting of all ones and use M ′ = Warp(M,HST )
to make sure the loss is applied only to the part visible on

both images. The perceptual loss can be defined in multiple

ways.

Implicit Homography Estimation with MAE/MSE Loss.

The simplest approach is to define loss as per pixel nor-

malized distance in feature space produced by g between

Figure 2. Proposed bidirectional implicit Homography Estimation

(biHomE) loss, where f is any architecture producing homogra-

phy HST between the input images IS and IT and g is a pre-

trained and frozen Loss Network. In our experiments, we use

ResNet34 [14] as feature extractor g.

warped source image I ′S and target image IT :

Ld(IS , IT ) =

Hj ,Wj ,Cj∑
i

M ′
i · d(gji(I

′
S), gji(IT ))

Hj ,Wj ,Cj∑
i

M ′
i

(2)

where d is either L1 distance or L2 distance squared, re-

sulting in masked MAE or masked MSE perceptual loss

functions.

Implicit Homography Estimation Loss (iHomE). Rather

than directly minimizing only the distance between IT and

I ′S , we can encourage the network to simultaneously push

IT away from the original IS in triplet fashion. The loss is

highly inspired by Zhang et al. [44], but instead of learn-

ing the feature space to compare images, we use a fixed

pre-trained Loss Network and non-learnable mask MS . The

iHomE loss can be formulated as:

LiHomE(IS , IT ) =

Hj ,Wj∑
i

M ′
i ·max(apji − anji +m, 0)

Hj ,Wj∑
i

M ′
i

(3)

where m is triplet loss margin and apji and anji are anchor-

positive and anchor-negative channel-aggregated distances:

apji =
1

C

Cj∑

k

||gjik(IT )− gjik(I
′

S)||1

anji =
1

C

Cj∑

k

||gjik(IT )− gjik(IS)||1

(4)

Bidirectional implicit Homography Estimation Loss (bi-

HomE). We can additionally leverage the fact that homog-

raphy is invertible by estimating the transformation from the



target IT to the source IS images. Following Zhang et al.

[44], we also add a constraint that enforces HST and HTS

to be inverse. We can formulate biHomE as:

LbiHomE(IS , IT ) =LiHomE(IS , IT )+

LiHomE(IT , IS)+

µ||HSTHTS − 1||2
2

(5)

where µ is the balancing hyperparameter [44] and 1 is 3×3
identity matrix.

4. Datasets

Since collecting the data for homography learning along

with ground truth is hard, DeTone et al. [4] proposed to

generate the dataset applying random projective transfor-

mations to COCO [20]. The Synthetic COCO (S-COCO)

dataset was accepted by the research community, how-

ever, it does not model photometric distortion present in

real-world images, such as contrast, brightness, and satu-

ration changes. Here, we introduce a Photometrically Dis-

torted Synthetic COCO (PDS-COCO) where we artificially

model illumination changes by utilizing photometric distor-

tion techniques used in [22] as augmentation for SSD object

detector.

4.1. Synthetic COCO (S­COCO)

The dataset was introduced by DeTone et al. [4] in which

source and target candidates are generated by duplicating

the same COCO image [20]. The source patch IS is gener-

ated by randomly cropping a source candidate at position p

with a size of 128 × 128 pixels. Then the patch’s corners

are randomly perturbed vertically and horizontally by val-

ues within the range [−ρ, ρ] and the four correspondences

define a homography HST . The inverse of this homogra-

phy HTS = (HST )
−1 is applied to the target candidate and

from the resulted warped image a target patch IT is cropped

at the same location p. Both IS and IT are the input data

with the homography HST as ground truth as shown in Fig-

ure 3. Such a procedure not only allows us to use large scale

datasets but also creates ground truth homography labels for

each transformation.

4.2. Photometrically Distorted Synthetic COCO
(PDS­COCO)

To test the robustness of different homography esti-

mation architectures to illumination changes we introduce

Photometrically Distorted Synthetic COCO (PDS-COCO)

dataset. The photometric distortion is inspired by Liu et

al. [22] and the first step involves adjusting the brightness

of the image using randomly picked value δb ∈ U(−32, 32).
Next, contrast, saturation and hue noise is applied with the

following values: δc ∈ U(0.5, 1.5), δs ∈ U(0.5, 1.5) and

δh ∈ U(−18, 18). Finally, the color channels of the image
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Figure 3. PDS-COCO dataset generation. Two separate photomet-

ric distortions are performed for a given COCO image resulting

in the creation of source-candidate and target-candidate. Next,

a random crop is selected for the source-candidate. The random

crop is perturbed and given these correspondences, HST is com-

puted. HTS = (HST )
−1 is applied to the target-candidate. Fi-

nally, source image IS and target image IT are extracted. Substi-

tuting photometric distortion with copy operation gives the origi-

nal S-COCO dataset generation procedure.

are randomly swapped with a probability of 0.5. A compo-

sition of these distortions produces vastly different images,

which constitutes a challenge for current homography esti-

mation architectures. Such a photometric distortion proce-

dure is applied to the original image independently to create

source and target candidates. The rest of the procedure is

the same as for S-COCO dataset generation as shown in the

Figure 3.

5. Experiments

5.1. Experimental Setup

We implemented all the methods in PyTorch [30] and

Kornia [32]. We modified the HEN architectures (if neces-

sary) to use a ResNet34-like [14] feature extractor, to make

sure the performance difference between methods comes

from better design instead of a better CNN backbone. All

methods are trained using the Adam optimizer [18] with a

batch size of 64 and for 90k iterations. The initial learn-

ing rate (Detone and Nguyen: 5e−3, Zeng: 1e−3, Zhang:

1e−2) is decayed by a factor of 10 every 30k iterations. We

use ResNet34 as a fixed Loss Network g with features taken



Figure 4. The viewpoint and illumination robustness comparisons of three unsupervised methods for different levels of viewpoint ρ and

illumination δ changes. S-COCO is equivalent to the box with ρ = 32 and δ = 0 and PDS-COCO is equivalent to the box with ρ = 32
and δ = 32. NC stands for Not Converged (the methods which were not able to converge at least once per twenty independent runs). The

method of Nguyen et al. [27] is robust to big viewpoint changes (big values of ρ) but is not able to converge for big illumination distortion

(big values of δ). Zhang et al. [44] method is highly robust to illumination change δ but only for small viewpoint change ρ, whereas our

biHomE loss is robust to both big illumination and viewpoint changes.

after the first residual block. We also used NS = 1024 for

Zeng method and µ = 0.01, unless stated otherwise. The

homography estimation quality is reported using Mean Ab-

solute Corner Error (MACE) [4]. We report the mean and

standard deviation of three runs.

5.2. S­COCO and PDS­COCO Results

Our implementation achieves much lower MACE on S-

COCO than originally reported by DeTone et al. [4] and

Nguyen et al. [27]: 1.96 and 2.07 against 9.20 and 12.91,

respectively. This is because we employ a modern CNN ar-

chitecture – ResNet34 [14] instead of originally used VGG-

like structure [36]. Having the same backbone, Zeng’s et

al. [43] model is only about 13% better than DeTone’s et al.

[4] model – instead of 564% improvement reported in their

paper.

As shown in the Figure 1, our architecture gives the best

performance compared to all other unsupervised methods.

Specifically, using our biHomE loss with the same HEN as

Zhang et al. [44] demonstrates the beneficial effect of dis-

entangling the homography estimation learning from fea-

ture representation learning. Moreover, our biHomE loss

achieves comparable (Zeng et al. [43]) or better (DeTone

et al. [4]) homography estimation performance than super-

vised methods on S-COCO.

Homography estimation on PDS-COCO presents a big-

ger challenge, because of additional photometric distor-

tions on the images. Supervised approaches perform much

worse in terms of MACE and neither Nguyen’s [27] nor

Zhang’s [44] methods can converge. Our biHomE loss is

the only method trained in an unsupervised manner that can

converge on PDS-COCO. Similar to S-COCO, our biHomE

loss achieves comparable or better performance compared

to supervised methods.

5.3. Illumination and Viewpoint Robustness Study

The real-life images can exhibit big illumination and

viewpoint changes. It is hard to collect such datasets with

ground truth homography labels, however, we can use the

COCO dataset and simulate different conditions by two pa-

rameters: viewpoint change ρ and illumination change δ.

Viewpoint change ρ defines the maximum range of cor-

ner perturbation, and it was already introduced in Section

4.1. Since photometric distortion has a few elements, we

bring them all together by illumination change δ so that all

other deltas are controlled by one parameter:

δx ∈ U(−X ·
δ

32
, X ·

δ

32
) (6)

where δx is one of δb, δc, δs or δh (following the notation

from Section 4.1), and X is the corresponding perturbation

range. The bigger ρ the more viewpoint change and respec-

tively the bigger δ the more illumination change between

input images. For such a notation S-COCO is produced by

ρ = 32 and δ = 0 and PDS-COCO is produced by ρ = 32
and δ = 32.

As presented in Figure 4, the method of Nguyen et al.

[27] based on photometric loss is robust to big viewpoint

changes (big values of ρ), but is not able to produce any

reasonable model for big illumination distortion δ. On the

other hand, Zhang et al. [44] method is highly robust to

illumination change δ but only for small viewpoint change

ρ. Our biHomE loss, which for a fair comparison we add on

top of the same HEN as Zhang et al. [44] is robust both to

big illumination δ and viewpoint ρ changes.

5.4. From Perceptual Loss to biHomE

Perceptual Loss was already introduced in the tasks of

super-resolution [2, 19, 41], style transfer [16], image de-

noising [9], or training autoencoders [31]. The idea was to

rely on perceptual similarity of high-level features extracted

from pre-trained networks. The same property is desired in

homography estimation. The architecture of Loss Network

designed for super-resolution task, however, could be not

optimal in the task of image comparison for homography

estimation. To study the effects of different components of



#1 #2 #3 #4 #5 #6 #7 #8

Loss network VGG19 ResNet34 ResNet34 ResNet34 ResNet34 ResNet34 ResNet34 ResNet34

Layers VGG22 Block2 Block1 Block0 Block1 Block1 Block1 Block1

Activation Before Before Before Before After After After After

Loss function MSE MSE MSE MSE MSE L1 iHomE biHomE

MACE 8.59 ±0.05 7.15 ±0.16 4.18 ±0.16 4.74 ±0.05 4.11 ±0.11 3.82 ±0.11 3.67 ±0.10 2.39 ±0.20

Table 1. Comparison of performance on PDS-COCO of different settings of perceptual loss. Each column represents a model with DeTone’s

[4] architecture as HEN and a particular perceptual loss configuration. The red color indicates the main improvement compared with the

previous model starting from Wang et al. [41] setting.

the perceptual loss we gradually modified the State-of-the-

Art perceptual loss proposed by Wang et al. [41] and com-

pare their performance in the homography estimation task

as presented in Table 1. The red color indicates the main

improvement compared with the previous model. We use

DeTone et al. [4] in all configurations and only change ele-

ments of perceptual loss. The average MACE of three runs

is presented. A detailed discussion is provided as follows.

ResNet34. We first move from VGG19 [36] network to

ResNet34 [14]. Using ResNet as a Loss Network sig-

nificantly improves the homography estimation accuracy,

which can be caused by a better-learned feature represen-

tation. We also noticed that learning is more likely to con-

verge with ResNet, probably due to better gradient flow of

residual connections. The detailed comparison is out of the

scope of this article. For a comprehensive analysis of these

networks please refer to [1, 17].

Block1. Ledig et al. [19] argues to use higher-level features

from deeper network layers with the potential to focus more

on the content of the image. It is essential for the Super-

Resolution task, but as depicted in Table 1, in Homography

Estimation low-level features matter more.

Features after activation. In contrast to Wang et al. [41],

we show that it is beneficial to use features after the ReLU

activation function [10]. A possible explanation is that low-

level features are activated mostly on edges and corners,

which are crucial for image alignment purposes (please re-

fer to Figure 6a of Wang et al. [41] for a visual comparison).

HEN Zhang Zhang Zhang

Loss Function Triplet Loss biHomE biHomE

Channel- - c-wise c-agnostic

m = 1 3.07 ±0.34 4.57 ±0.21 3.33 ±0.34

m = 100 2.50 ±0.25 2.84 ±0.27 1.86 ±0.16

m = ∞ 2.08 ±0.11 1.87 ±0.07 1.87 ±0.07

Table 2. The performance on the S-COCO dataset of Zhang et al.

[44] and our biHomE loss with different margin m settings and

different channel information aggregation. The infinite margin

version is consistently better for both losses and it is used in all

experiments in the paper.

L1 distance. Replacing MSE loss function with L1 dis-

tance yields better homography estimates. Due to warp-

ing and illumination differences, feature maps could con-

tain some artifacts, and L1 loss is known to be more robust

to outliers [11].

iHomE. Triplet loss introduced by Zhang et al. [44] can fur-

ther improve the homography estimation performance. This

is probably because the model has additional information of

original I1 image features.

biHomE. Using triplet loss in both directions similarly to

Zhang et al. [44] can additionally improve the results. The

improvement is even more profound for other HENs.

5.5. Margin Ablation

Zhang et al. [44] used a margin value of m = 1 in their

triplet loss formulation. However, we found out that on S-

COCO bigger values of m yield better results (Table 2). The

best performance is produced when the triplet loss is never

saturated, which is equivalent to setting the margin to an

infinite value:

LiHomE
j (IS , IT ) =

HjWj∑
i

M ′
i · (apji − anji)

HjWj∑
i

M ′
i

(7)

In all the experiments for both Zhang et al. [44] and our

iHomE and biHomE losses we use above Formulation 7 in-

stead of Equation 3.

5.6. Channel Information Aggregation

In contrast to Zhang et al. [44], our feature map obtained

by Loss Network g has more than one channel, thus we have

to figure out how the channel information will be aggre-

gated. One can either calculate distances for every channel

and then apply triplet loss in a channel-agnostic way per

every spatial location or apply triplet per every channel lo-

cation (channel-wise). The former is presented in equations



3 and 4, and the latter can be formulated as:

LiHomE
j (IS , IT ) =

HjWjCj∑
i

M ′
i ·max(apji − anji +m, 0)

HjWjCj∑
i

M ′
i

(8)

where;

apji = ||gji(IT )− gji(I
′

S)||1

anji = ||gji(IT )− gji(IS)||1
(9)

As presented in Table 2 the channel-agnostic way

achieves better performance on the S-COCO dataset. We

hypothesize that forcing every channel of IT feature de-

scription to be closer to I ′S than to IS is probably a very hard

task and looking at all channels before comparison makes

the optimization easier. Channel-agnostic and channel-wise

versions of biHomE loss with infinite margin are mathemat-

ically equivalent, so we report only one number.

5.7. To Freeze or not to Freeze

We also want to find out how important is freezing the

Loss Network for effective homography estimation learn-

ing. As shown in Table 3, fixed Loss Network performs

better. One of the possible reasons is that freezing weights

of g allows using a bigger learning rate, which can result in

better convergence [37, 38]. But even for the same learn-

ing rate value freezing the Loss Network is still a preferable

policy.

lr S-COCO MACE

Zhang+biHomE 1e-2 1.87 ±0.07

Zhang+biHomE 1e-3 2.03 ±0.04

Zhang+biHomE (learnable) 1e-3 2.17 ±0.13

Table 3. S-COCO performance of Zhang et al. [44] as HEN and

our biHomE loss when using fixed and learnable Loss Network.

Fixing weights of g allows using bigger learning rate, which can

result in better convergence [37, 38].

5.8. biHomE Performance on Out­of­Distribution
Dataset

One of the shortcomings of using models pre-trained on

ImageNet [35] as Loss Network is possible sub-optimal re-

sults on out-of-distribution datasets. To test this vulnera-

bility we compare Zhang et al. [44] method with the origi-

nal and our biHomE loss on FLIR Dataset [7] preprocessed

similar to S-COCO. As shown in Table 4, although thermal

images are vastly different than color images the Loss Net-

work was trained on, our biHomE loss still achieves better

performance.

S-FLIR MACE

Zhang+biHomE 1.59 ±0.13

Zhang+TripletLoss 2.08 ±0.25

Table 4. The performance of our biHomE loss vs. original Zhang

et al. [44] method on S-FLIR dataset [7] containing thermal im-

ages for ADAS systems.

6. Image Alignment for Change Captioning

In this Section, we study the influence of image align-

ment using homography on change captioning task. The

goal is to generate captions for an image pair before and af-

ter the change. There are six change types (color/material

change, adding/dropping/moving an object, and no change)

and each is combined with illumination/viewpoint change.

Recently, Park et al. [28] proposed a new architecture called

Dual Dynamic Attention Model (DUDA) for generating

change captions. It entails three main components: fea-

ture extractor (ResNet101 [14]), Dual Attention and Dy-

namic Speaker modules. The Dual Attention module takes

features produced by the feature extractor and generates

a sparse feature vector with a description of the changes be-

tween input images. The Dynamic Speaker module then

produces the caption word-by-word dynamically moving

the attention between the first and second images depend-

ing on the stage of the sentence.

In their evaluation Section, Park et al. [28] showed

degradation of captioning performance as viewpoint shift

increases – our reproduced results are shown in Figure 5.

The Dual Attention module intrinsically assumes the im-

Figure 5. Change captioning performance breakdown by view-

point shift (measured by IoU). Aligning images with Zhang [44]

method before learning to generate captions improves the metrics,

but performance degradation between smaller and bigger view-

point shifts is still present. Learning Zhang [44] with our biHomE

loss seems to alleviate this problem.



Total Scene Change Distractor

Approach B C M S B C M S B C M S

{No alignment} + DUDA [28] 53.0 115.2 37.4 31.3 50.8 100.3 33.2 27.8 62.3 115.9 49.8 34.8

{Zhang [44] + TripletLoss} + DUDA [28] 54.5 120.7 40.2 33.0 52.1 111.4 36.0 31.4 61.2 115.3 51.6 34.6

{Zhang [44] + biHomE} + DUDA [28] 53.0 124.5 40.2 33.0 50.6 117.3 36.9 30.9 63.7 117.1 50.5 35.0

Table 5. Change Captioning evaluation on CLEVR Change dataset. Aligning images before learning to generate captions improves all

captioning metrics: BLEU-4 (B), CIDEr (C), METEOR (M), and SPICE (S) in each setting (i.e. Total, Scene Change, Distractor). For

more details, we refer to Park et al. [28]. The model trained with our biHomE loss achieves the best result in most of the cases.

ages before and after the change are roughly aligned, thus

finding corresponding objects on images with big viewpoint

change is challenging. We argue that aligning those images

helps DUDA architecture learn better captions of the change

on the scene.

We conducted experiments for Zhang et al. [44] archi-

tecture with and without our biHomE loss. Unless stated

otherwise, the following are the steps that have been fol-

lowed in all our experiments: first, the homography estima-

tion is learned. Second, we transform images after change

onto images before change using the trained homography

estimation model. The pre-processed images are trained us-

ing the DUDA model and the captioning quality metric is

reported in Table 5. Moreover, we also prepare similar vali-

dation of the robustness of the model to viewpoint shift, ac-

cording to the methodology shown in Park et al. [28] which

is depicted in Figure 5.

Experimental evaluation shows that aligning images be-

fore learning to caption is beneficial not only for overall

captioning quality but also for performance degradation be-

tween smaller and bigger viewpoint shifts. A sample image

the small brown metal cylinder that is in front of

the small purple rubber object has been newly placed

the scene remains the same

before change after change

D
U

D
A

D
U

D
A

+
iH

o
m

E

Figure 6. Qualitative result comparing DUDA [28] output with and

without image alignment. The blue and red attention maps are

applied before and after the change, respectively. After adding

the image alignment step, DUDA [28] architecture produces the

correct caption.

pair with caption generated with and without image align-

ment step is presented in Figure 6. Note that using our bi-

HomE loss the performance degradation is negligible for the

CLEVR Change dataset, which can be explained by facili-

tated correspondence search in the Dual Attention module

on aligned images.

7. Conclusion

We presented an unsupervised approach to homogra-

phy estimation that is robust to big illumination and view-

point changes at the same time. We showed that disen-

tangling the homography estimation from representation

learning provides better estimates. We also proposed to

use an additional photometric distortion step in the syn-

thetic COCO dataset generation (PDS-COCO) and encour-

age future works to use it as a new evaluation benchmark

of robust homography estimation. Then, we presented a

study of modern homography estimation baselines along

with our bidirectional implicit Homography Estimation (bi-

HomE) loss on both S-COCO and PDS-COCO. biHomE

loss achieves a new state-of-the-art performance for unsu-

pervised homography estimation, which is also comparable

or better compared to supervised approaches. Furthermore,

we investigated the influence of image alignment using ho-

mography on change captioning quality. We showed that

aligning the images using our biHomE loss is not only ben-

eficial for the overall captioning quality of DUDA archi-

tecture on the CLEVR Change dataset but also for perfor-

mance degradation from smaller to bigger viewpoint shifts.
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