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1. Photometric or Perceptual

In this Section, we want to additionally explore the possi-
ble reason behind the effectiveness of perceptual loss func-
tions. Photometric loss is known to be sensitive to illumi-
nation conditions, while high-level features extracted from
pretrained networks care more about perceptual similarity
[1, 2]. To better understand the behavior of both losses
we prepare a simple experiment, where the target image is
shifted by a given number of pixels in the X and Y axis w.r.t
the source image. Then we report L1 distance in pixel space
and L; distance in feature space produced by the Loss Net-
work g between both images. To bring both distances in the
same range we normalize them by the maximum observed
distance. The average of one hundred images for both S-
COCO and PDS-COCO is presented in Figure 1.

The distance curve of photometric loss and perceptual
loss on S-COCO is similar, so we expect the comparable
performance of both loss functions. However, when photo-
metric distortion is introduced, the perceptual loss function
is smoother and will likely produce better results. Indeed,
both conclusions are supported by the illumination robust-
ness experiments shown in Section 5.3 of the main paper.

2. biHomE Performance on Real-World
Dataset

The dataset proposed by Zhang et al. [3] is composed of
80k image pairs extracted from short video clips containing
small camera movements and dynamic objects on the scene.
The image pairs are divided into 5 categories: regular (RE),
low-texture (LT), low-light (LL), small-foregrounds (SF),
and large-foreground (LF) scenes. We reproduced the orig-
inal Zhang et al. [3] method and using the same learning
setting we also learned our biHomE loss.

As one can observe in Table 1 the performance of the
original Zhang et al. [3] method is only slightly better than
using our biHomE loss. A similar effect could be observed
also in Section 5.3, where for small viewpoint change p
and small photometric distortion ¢ original Zhang method
is also better than with our biHomE loss.
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Figure 1: Normalized distance as a function of image shift. The
Figure is prepared for one hundred random images from S-COCO
(dashed) PDS-COCO dataset (solid), where the target image was
shifted by a given number of pixels in both X and Y axes. We used
pretrained ResNet34 up to the first residual block as perceptual
Loss Network and MSE as photometric distance. For S-COCO
distance statistics is similar for both distances, but for PDS-COCO
perceptual distance is smoother.
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RE LT LL SF LF Avg

Zhang (reported) 1.81 1.90 1.94 1.75 1.72 1.82
Zhang (reproduced) 1.813 +0.013 2.139 +0.013 1.906 +0.013 1.837 +0.010 1.894 +0.006 1.918 +0.006
Zhang + biHomE 1.822 +0.006 2.178 +0.031  1.924 +0.011  1.842 +0.006 1.994 +0.009 1.941 +0.008

Table 1: The performance of the original Zhang et al. [3] method (reported in the paper and reproduced by us) and trained with our biHomE
loss on their dataset [3]. The performance of the original Zhang et al. [3] method is only slightly better than using our biHomE loss. We
hypothesize this is because this dataset consists mostly of image pairs with small viewpoint and illumination changes.
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