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Abstract

Despite the growing availability of high-quality public

datasets, the lack of training samples is still one of the main

challenges of deep-learning for skin lesion analysis. Gen-

erative Adversarial Networks (GANs) appear as an entic-

ing alternative to alleviate the issue, by synthesizing sam-

ples indistinguishable from real images, with a plethora of

works employing them for medical applications. Neverthe-

less, carefully designed experiments for skin-lesion diagnosis

with GAN-based data augmentation show favorable results

only on out-of-distribution test sets. For GAN-based data

anonymization — where the synthetic images replace the

real ones — favorable results also only appear for out-of-

distribution test sets. Because of the costs and risks associ-

ated with GAN usage, those results suggest caution in their

adoption for medical applications.

1. Introduction

The lack of training images is perhaps the main challenge

faced by medical deep learning, deep skin-analysis being no

exception. Although the availability of high-quality public

datasets has mitigated the issue [4, 10, 22, 26, 33, 41], the

total number of annotated skin-lesion images available to

researchers is still 1–2 orders of magnitude smaller than the

size of general-purpose computer vision datasets [34, 39].

More training images translate to better results, especially

for deeper network architectures [27, 42]. However, annotat-

ing skin-lesion images to increase datasets process is very

costly, depending on the scarce time of medical specialists.

Generative Adversarial Networks (GANs) [15] appear as an

alternative to increase the amount of training data without

incurring those costs.

GANs aim to artificially synthesize samples that are in-

distinguishable from real images. They may be employed as

a complement to traditional data augmentation [30], artifi-

cially increasing the amount of training samples. A plethora

of existing works, which we discuss in our literature sur-

vey, suggest applying them for that purpose, but — as we

will show — obtaining reliable improvements from GAN-

based data augmentation is far from obvious: in our carefully

designed experiments, GAN-based augmentation failed to re-

liably improve the classification performance of skin-lesion

diagnosis, although we obtained good results for selected

special cases.

Another potential application of GANs is data anonymiza-

tion, where the synthetic images are used to replace, instead

of augment, the original training set. Here again, our re-

sults recommend caution, although they were promising for

out-of-distribution tests.

The main contribution of this work is a detailed study

of the factors that can impact GAN-based augmentation,

including GAN architectures, amount of real images used,

proportion of real and synthetic images, and method for sam-

pling synthetic images. The procedure adopted, from GAN

checkpoint selection until classification network evaluation,

can serve as a guideline to increase the reliability of future

works using GAN-based augmentation. In addition, we carry

out a systematic literature review, where we summarize the

techniques used for GAN-based augmentation. In that re-

view, we list issues in experimental design that may lead to

overoptimistic results.

The text follows the usual organization, with the literature

review next, proposed approach in Section 3, followed by

results in Section 4. We close the paper with a discussion of

the main findings, the risks of using GAN-based augmenta-

tion in medical applications, as well as cautious avenues for

continuing their use in this context.

2. Literature review

The review in this section started to seed an attempt to

obtain reliable performance improvements from GAN-based

data augmentation. Since several existing works reported

measurable gains, we explored literature to understand which

factors previous authors had tested in their experiments. For

more details over different GAN methods, we direct the

reader to surveys in the area [37, 44].
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RefYear GAN Target Model Domain Dataset Real:Synth. Sampling Gain/Metric†

C
la

ss
ifi

ca
ti

o
n

[7]2018 pix2pixHD,

PGAN

Inception-v4 skin lesions ISIC 2018 Tasks 1–2 1:1, 1:2 random 1 / AUC

[12]2018 DCGAN custom CNN liver CT private (182 samples) 1:0.6 random 7.1 / acc

[45]2018 translation-based ResNet-50 mammography DDSM 1:0.111 to 1:1 fixed 0.9 / AUC

[5]2019 DCGAN ResNet-50 skin lesions ISIC 2017 1:0.26 random 4 / AUC

[9]2019 translation-based VGG-16, ResNet-18,

DenseNet

chest x-ray ChestXRay14 learned Bayesian NN —

[16]2019 PGAN, MUNIT,

SimGAN

ResNet-50 brain MRI BraTS 2016 1:0.96 — 1.7 / acc

[11]2020 DCGAN LeNet-5, AlexNet esophagus MICCAI 2016 EndoVis

Challenge

1:1, 1:5 random 2 / acc

[14]2020 pix2pix-based MobileNet skin lesions private (49920 clinical

images)

1:0.4 balancing -11.3–13.4 /

F1-score

[23]2020 PGAN VGG19 histopathology TCGA, OVCARE 1:22.8 random 4 / balanced

acc

[46]2020 — ResNet-34 histopathology PatchCamelyon, private

(2647 patches)

RL-based RL-based 4.6 / AUC

S
eg

m
en

ta
ti

o
n

[38]2018 pix2pix GAN-based brain MRI BraTS 2015 1:1* fixed 1 / Dice

[3]2019 pix2pixHD FCN-8s red blood cells private (100 images) 1:1* fixed 0.3 / Dice

[36]2019 CycleGAN U-Net abdomen CT Kidney NIH, (Liver, Spleen)

DataDecathlon

1:0.06 to 1:2.6 random 1–60 / ood

Dice

[1]2020 translation-based modified U-Net cardiac MRI ACDC, SCD, York Cardiac

MRI, private test set

1:0.66 fixed 1–11 / Dice

[24]2020 translation-based cascaded net, U-Net,

DeepLab-v3

brain MRI BraTS 2017 1:1 fixed 3 / Dice

[25]2020 translation-based U-Net, DenseUNet opt. coher. tomogr. RETOUCH 0:1* fixed 2 / Dice

[31]2020 DCGAN,

LAPGAN

custom CNN skin lesions ISIC 2017 — random 2 / Jaccard

[19]2021 translation-based U-Net covid lung CT Radiopaedia 1:0.1 to 1:.0.5 fixed 2.5 / Dice

Table 1: The 18 works selected for our analysis of existing art. —: unclear or missing. *: missing details. †All gains in

percentage points over the metric, min–max: ranges of gains found in experiments, ood:out of distribution, acc: accuracy.
,

However, as our experiments progressed without reveal-

ing reliable improvements, we returned to literature to sub-

sidize a larger-scale experiment. Our review grew, in scope

and formality, proportionally to our experimental ambitions.

Although this review does not intend to be a formal meta-

analysis, we took inspiration from Preferred Reporting Items

for Systematic Reviews and Meta-Analysis (PRISMA) [28]

to gather a representative sample of existing art.

Our starting point was all GAN-related works published

in the past ISIC Workshops. To that we added a database

search, in Google Scholar, with the query “GAN genera-

tive adversarial networks medical image synthetic image

data augmentation classification OR segmentation -NLP

-temporal -tabular”, which gave 251 results. Notice that

we did not restrict our query to skin-lesion analysis but to all

medical-image applications. We excluded from the sample

all works outside our scope (i.e., no GAN data augmentation,

no test on a medical dataset, no classification or segmen-

tation), as well as works without experimental results. We

excluded surveys and reviews from our sample as well. To

get a manageable sample of papers to study, we kept our

sample only works from top conferences (CVPR, NeurIPS,

MICCAI), and their respective workshops, or published in

journals of impact factor 3.0 or higher. For the same reason,

we did not include unpublished preprints.

The resulting collection of 18 works appears in Table 1.

The table details which GANs each work evaluated, which

deep-learning model was the target of the data augmentation,

what was the medical application domain, which datasets

were used on the evaluation, and which improvements the

authors reported over which metrics.

Depending on the domain, dataset, and task at hand,

different families of GANs may be more appropriate,

or conversely, completely unfeasible. Translation-based

GANs, which include pix2pix [18], pix2pixHD [43], and

SPADE [29], learn to translate between different types of

images, e.g., from a segmentation mask into a new synthe-

sized input, or from a non-contrast to a contrast CT-scan.

Their main advantage is that adherence to the mask tends to

improve their biological/medical coherence.

In contrast, noise-based generation models, like DC-

GAN [32] and PGAN [20] offer flexibility, the latter being

able to generate high-resolution images. Noise-based gener-

ation may suffer, however, if the training sets are too small,

requiring mitigating techniques such as patch extractions

and traditional data augmentation.

During the review, we took freehand notes about the

experimental protocol of each paper, to understand which

factors literature considered the most important to evaluate,

and which varied the most among works. We found the

proportion of real training images to images synthesized by

the GAN to be one of the foremost factors, as well as the

technique used to sample the images from the GAN.
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Application GANs Real:Synthetic Ratios

(Real:Synthetic Benign:Synthetic Malignant)

Sampling

Technique

Augmentation pix2pixHD, PGAN,

SPADE, StyleGAN2

1:0, 1:1/4, 1:1/2, 1:1, (1:1/2:1/2), (1:1/2:3/4), (1:1/2:1) random, diverse,

best, worst

Anonymization StyleGAN2 1/16:0, 1/16:1/16, 1/16:15/16, 1/8:0, 1/8:1/8, 1/8:7/8, 1/4:0, 1/4:1/4,
1/4:3/4, 1/2:0, 1/2:1/2, 1:1, 1:0

random

Table 2: Summary of the two proposed experiments, with the main factors and their levels.

In addition to requiring an input to serve as a guide for

generation, translation-based GANs tend to have a limited

range of outputs, each input being able to create a single syn-

thetic image (which is why most of them are marked as fixed

for sampling in Table 1). For that same reason, works using

them tend to employ a 1:1 proportion of real:synthesized im-

ages, although 1: < 1 ratios are also possible. Works using

noise-based GANs tend to display more diverse choices of

sampling and image ratios.

In our freehand comments, we also noticed possible is-

sues with experimental protocols that we wished to avoid

in our large-scale experiments. The main issues we found

amidst existing art were: (1) giving to the GAN-augmented

models better data-access than to the baseline model, es-

pecially by choosing hyperparameters directly on the test

set; (2) (hyper)optimizing the GAN-augmented models more

thoroughly than the baseline models; (3) failing to use best

current training practices on the baseline model, e.g. best

available (conventional) data-augmentation, learning-rate

choice, normalization, etc.; (4) ignoring performance fluc-

tuations, e.g., by performing a single run, or by failing to

report the deviation statistics. Not all works suffer from all

those issues, of course, but we believe they may explain the

discrepancy between the results we report next, and those

found in current art.

We decided to limit the scope of this review to works

that apply GANs to medical applications, and not to the

GANs themselves. We remark, however, that choosing the

GAN model for medical-image augmentation puts stringent

requirements on the model. First, the model must be able

to generate high-resolution images, to accommodate the

visual patterns that characterize medical images. For skin-

lesion analyses, the patterns that differentiate benign or ma-

lignant skin lesions are rather fine-grained, and state-of-the-

art classification networks have inputs from 224 × 224 to

1024×1024 pixels. Second, the model must able to generate

class-conditional samples, i.e., to create synthetic samples

which convincingly belong for each of the dataset classes,

so those may join the supervised training dataset coherently.

3. Experiment design

When we started this study, the initial goal was to maxi-

mize the performance of GAN data-augmentation for skin-

lesion analysis. As our preliminary experiments progressed,

we found our results to be extremely noisy. Performance im-

provement, when it happened at all, was completely random:

the choice of GAN model or other factors had no explanatory

power. We changed our research question to a more funda-

mental one: can GAN data-augmentation actually improve

the performance of skin-lesion analysis? Failing that, can

GANs be used to anonymize the training data? The latter

application — using synthetic samples instead of the actual

real data — would be profitable even with a small, tolerable

drop in accuracy, since it could make feasible for different

countries and institutions to share knowledge in situations

where direct patient images could not be exchanged (e.g., due

to incompatible privacy laws). We design two experiments

(Table 2) to answer those questions, which we detail below.

GAN-based data augmentation. As seen in the previous

section, literature shows no consensus on how to perform

GAN-based data augmentation. Our experimental design

attempted to reflect the diversity of approaches found in ex-

isting art, contemplating a diversity of GANs, real:synthetic

image ratios, real training dataset sizes, and synthetic sam-

pling techniques. We present those choices next.

The GAN models investigated were pix2pixHD [43],

PGAN [20], SPADE [29], and StyleGAN2 [21]. We chose

pix2pixHD and PGAN because they are known to work on

skin-lesion data augmentation [7], while SPADE and Style-

GAN2 are considered the state of the art on image generation.

Pix2pixHD and SPADE are translation-based, while PGAN

and StyleGAN2 are noise-based techniques. While the for-

mer tend to generate very high-quality images, they have

stringent limitations on the amount of images they can gen-

erate, due to the requirement of using segmentation masks

or different image modalities as inputs. Noise-based tech-

niques have no such limitations, but tend to generate images

with lower visual quality, and risk reproducing artifacts (e.g.,

vignettes, rulers) that may reinforce biases in the dataset [6].

For pix2pixHD and SPADE, we use the whole training set’s

mask to generate our synthetic set. For PGAN and Style-

GAN2, we sample enough images to keep a 1:1/2 ratio. In

Figure 1, we show lesions generated by the GANs used in

our investigation. For pix2pixHD and SPADE, we use a

mask from the training set as input, causing the synthetic
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Test Dataset Size Imaging Tech. Diagnostic Classes Notes

isic19 [10] 3, 863 Dermoscopic melanocytic nevus, melanoma, benign

keratosis, actinic keratosis, dermatofibroma,

vascular lesion

in-distribution, same classes as train

isic20 [33] 1, 743 Dermoscopic melanocytic nevus, melanoma, benign

keratosis, actinic keratosis, lentigo, benign

unknown

mainly in-distribution, potential

out-of-distribution samples among

the ‘benign unknown’ samples

derm7pt–derm [22] 872 Dermoscopic melanocytic nevus, melanoma, seborrhoeic

keratosis

out-of-distribution, fewer classes

than train

derm7pt–clinic [22] 839 Clinical melanocytic nevus, melanoma, seborrhoeic

keratosis

out-of-distribution, fewer classes

than train

dermofit [4] 973 Clinical melanocytic nevus, melanoma, seborrhoeic

keratosis, actinic keratosis, pyogenic

granuloma, haemangioma, dermatofibroma

out-of-distribution benign classes

Table 3: Description of the test sets used in the evaluation of the classification networks trained with the augmented training set.

images to be almost identical to the real ones for the hu-

man eye (although features from deep networks may be still

considerably different between the two kinds of images).

For real:synthetic ratios, we considered the ratios 1:1/4,
1:1/2, and 1:1, where 1 is the size of our original real-

image training set (14, 805 samples). We considered ad-

ditional experiments varying the proportion of benign and

malignant synthetic images proportion, to evaluate the op-

portunity of using GAN-based data augmentation to cor-

rect class-imbalance [14]. Those experiments are notated

(real:synthetic benign:synthetic malignant), and we consid-

ered the ratios (1:1/2:1/2) (which is the same as 1:1/2 and has

no balancing effect), (1:1/2:3/4), and (1:1/2:1). The baseline

for all the experiments in this group is the ratio 1:0, i.e., the

experiment with the entire real training set and no synthetic

data augmentation.

We varied the amount of real images employed in train-

ing mainly as an evaluation of GAN-based anonymization

(see below). Those experiments may also be interpreted as

the impact of GAN-based data-augmentation for different

training-set sizes. We used real-image training set sizes with

fractions of 1/16, 1/8, 1/4, 1/2, and 1/1 (the baseline) of the

whole dataset.

Finally, we investigate different ways of sampling the

synthetic images from the generated pool. That only ap-

plies to the noise-based GANs (PGAN and StyleGAN2),

which can generate a limitless amount of images. We gener-

ated 100, 000 images for each of the 2 classes (benign and

melanoma), and evaluated different methods to select the

ones to compose the training set: choosing them at random,

choosing them at random but with a criterion of diversity

inspired on the perceptual-sensitive hash (pHash) to exclude

near-duplicates, or choosing the ones best-classified (low-

est error) or worst-classified (highest error) by an ancillary

skin-lesion classification model.

GAN-based anonymization. In anonymization, instead

of using GANs to augment the training set, synthetic images

replace real images. That application has received less atten-

tion in literature [25], but could be invaluable for researchers

and institutions wishing to share knowledge while having to

navigate issues of patient confidentiality.

For that experimental design, we evaluate a single GAN

(StyleGAN2) and a single sampling technique (random),

explained above. In contrast, we evaluate many more

real:synthetic ratios in this experiment, varying the amount

of both kinds of images, in order to evaluate the situation

where an institution was training a model with its own real

images, adding synthetic images from a GAN provided by

another institution. For each group of experiments with a

fraction of the initial real training-set 1/x, we evaluated ex-

periments with ratios 1/x:0 (the baseline for the group, with

no synthetic images), 1/x:1/x (doubling the training set), and
1/x:x−1/x (topping up the training set). We included the 1:0
ratio as a reference for the expected upper bound on the

accuracy for those experiments.

3.1. Datasets

For all experiments, the reference training set of real

images was based on the training set of the ISIC 2019

challenge [10, 41]. We split that dataset into a training set

(14, 805 samples) and a validation set (1, 931 samples) used

in all our experiments, and a test set, with 3, 863 samples,

added to our collection of test sets (isic19 on Table 3).

We trained the noise-based PGAN and StyleGAN2 with

the entire training set, but pix2pixHD and SPADE require

semantic segmentation masks to guide the generation. We

employ the clinical attribute semantic masks of the ISIC

Challenge 2018 Task 2, which are available for only 2, 594
images, or about 1/6 of the training set.
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(a) Real (b) pix2pixHD (c) SPADE (d) PGAN (e) SytleGAN2

Figure 1: Synthetic samples for different GAN-based approaches: (a) Real, (b) pix2pixHD, (c) SPADE, (d) PGAN,

(e) StyleGAN2. In the first row, we present the full image, while in the second, we zoom-in to focus on the details.

When fine-tuning the target models, fractions of real im-

ages refer to selections of that same training dataset (e.g.,
1/4:0 would refer to a training set of 3, 701 randomly se-

lected samples from the 14, 805 real ones). Fractions of the

synthetic dataset refer to the same size of the real dataset,

for a selection on the synthetic generated images (e.g., 0:1/4
would refer to a training set of 3, 701 randomly selected

while keeping the real dataset class ratio, sampled from the

200, 000 synthetic images, half benign, and half malignant).

We perform our tests in five gold-standard datasets (Ta-

ble 3), selecting the classes to always perform a melanoma-

vs.-benign task (carcinomas, if present in the dataset, are

discarded from both training and testing). Having an array

of test sets, both similar to our training set (“in-distribution”)

and very different (“out-of-distribution”) is an attempt to

mitigate the effect of dataset bias [6, 8, 13] and measure

the models’ generalization ability. For derm7pt, we remove

near duplicates, and keep only classes present in the ISIC

2018 Challenge Task 2 dataset (melanoma, sebhorreic ker-

atosis, and nevus). Those alterations result in 872 samples

for derm7pt-derm and 839 samples for derm7pt-clinic. For

dermofit, we remove the carcinomas, leaving 973 samples.

Analyses. We replicated each experiment ten times, vary-

ing the selection of the real images from the training set

and repeating the fine-tuning of the target model. In all

experiments, the metric was the area under the ROC-curve

of the target model (AUC) for melanoma-vs.-benign clas-

sification. A visual analysis of the results is given by blot-

ting the individual data-points superimposed with a box-plot

that, as usual, reveals the medians, quartiles, and range.

We also plot the arithmetic means (red dots). There are

two sets of plots, one for each application (augmentation

and anonymization), plots were separated per test dataset,

and within each plot, experiments were grouped (blue and

black colors) to facilitate comparison. The labels of the

experiments reveal the proportion of real:synthetic — or

(real:synthetic benign:synthetic malignant) — images used

in the training set used to fine-tune the target model, with ad-

ditional information for the choice of GAN (p2p: pix2pixHD,

spd: SPADE, pgn: PGAN2, sgn: StyleGAN2, all: samples

from all GANs together), and the choice of sampling method

(wst: worst, bst: best, div: diverse). When omitted, the GAN

is StyleGAN2 and the sampling method is random.

3.2. Implementation details

For PGAN and pix2pixHD, we follow Bissoto et al.’s

[7] implementation, modifications, and hyperparameters.

We also adopt their pix2pixHD generation procedure to

SPADE. For StyleGAN2, we do not need to adapt the origi-

nal GAN model implementation1, as it could generate class-

conditioned samples from the start.

Evaluating the quality of synthetic images is an open prob-

lem. Available metrics often fail to evaluate diversity, and

both broad- and fine-grained details. Most popular metrics

(e.g., FID [17], Inception Score [35]) rely on ImageNet-

trained networks to extract characteristics, and are, thus,

questionable for applications where classes are very differ-

ent, such as medical applications. We address that issue

using a broad analysis, comprising traditional GAN metrics,

metrics on classifier models, and visualization techniques of

the trained classifier.

To select the best training checkpoint for the GAN model,

we considered both the time spent on training, and the FID

metric [17] preferring later checkpoints (longer training) for

similar FID (< 0.3 difference). The exact training lengths,

and corresponding FIDs, appear in Table 4.

1https://github.com/NVlabs/stylegan2
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GAN Architecture Epochs FID

SPADE 300 16.62

pix2pixHD 400 19.27

PGAN 890 39.57

StyleGAN2 565 15.98

Table 4: Amount of epochs and FIDs for each of the genera-

tive models used in this research. To select the checkpoint

used to generate the samples that compose our classification

model’s training dataset, we consider both FID, and time

spent training the GAN.

The target model for both the data-augmentation and

anonymization experiments is a skin-lesion classification

Inception-v4 [40], pre-trained on ImageNet. We chose this

model based on its well-known performance on skin-lesion

analysis, including its ability to profit from larger training

sets [42]. The full set of weights of the target model is fine-

tuned with stochastic gradient descent with momentum of

0.9, weight decay of 0.001 and learning rate of 0.001, which

we reduce by 10 on each validation plateau after a 10-epoch

patience until a minimum of 10−5. We use a batch size of 32,

shuffling the data before each epoch. We resize input images

to 299 × 299 pixels, and z-normalize the input with Ima-

geNet’s training set mean and standard deviation. We train

for a maximum of 100 epochs, and an early stopping with

a patience of 22 epochs. We apply (conventional) data aug-

mentation to all experiments both during train and test, with

random horizontal and vertical flips, resized crops containing

75–100% of the original image area, rotations from -45–45◦

degrees, and hue changes of −10–10%. We apply the same

augmentations on both train and test. For test augmentation

we average the predictions of 50 augmented replicas of each

sample [30]. We run each experiment 10 times, and in each

one, we vary the real images, but keep the synthetics the

same (following the sampling criteria).

Full-reproducible source code is available in our repos-

itory https://github.com/alceubissoto/gan-

aug-analysis.

4. Results

In this section, we evaluate GAN-based augmentation

procedures for skin lesion analysis. In all the following

experiments, we want to make the comparisons as fair as

possible, giving equal opportunity to all models to be at their

peak performance.

4.1. Augmentation

The experiments for GAN-based data augmentation ap-

pear on the top row of Figure 2. Comments on how to

read and interpret those plots appear in Section 3, under the

heading “Analyses”.

The leftmost experiment in each plot, with label 1:0, is

the baseline with no synthetic-data augmentation. The plots

reveal that, for dermoscopic test images, augmented-train

sets are unable to confer a significant advantage, with aug-

mented models showing lower — or at best similar — to

the baseline. The experiments suggest that the more syn-

thetic images we add to the training set, the worse the results

are. The performance of different GANs fluctuated across

datasets, but translation-based GANs tended to work bet-

ter than noise-based GANS — but please notice that this

factor is slightly confounded with image proportion in our

tests due to the very limited generation ability of translation-

based GANs. Of the two noise-based GANs, StyleGAN2

performed better (or at least, less worse).

The scenario was less clear for the derm7pt-clinic dataset,

where most experiments significantly improved the results.

Those results departed from the other datasets also by show-

ing StyleGAN2 ahead of all other GANs. However, the

results on the dermofit dataset, also with clinical images,

were more similar to the results on the dermoscopic datasets

than to the ones on derm7pt-clinic.

We remind that the experiments on anonymization (ex-

plained next), may also be interpreted as experiments on data-

augmentation for small training datasets, i.e., an anonymiza-

tion experiment with ratio 1/x:y can be reinterpreted as a data

augmentation experiment with ratio 1:x/y for a test dataset

with 1/x of the samples of our main one. As we will show,

those experiments failed to reveal the advantage of synthetic

augmentation, even for small datasets.

4.2. Anonymization

The experiments for GAN-based anonymization appear

on the bottom row of Figure 2. Comments on how to read and

interpret those plots appear in Section 3, under the heading

“Analyses”.

Those experiments are organized in groups of alternat-

ing blue and black colors, the rightmost experiment in each

group, with label 1/x:0, being the baseline for the group.

GAN-based anonymization only has interest if the perfor-

mance of the experiment is significantly above that baseline

— otherwise, it can be trivially obtained by simply discard-

ing the problematic samples. The rightmost experiment

shows the model trained with all real samples, and gives an

expected upper bound of accuracy for the plot.

Unfortunately, for dermoscopic test images, no experi-

ment appeared above that baseline. The derm7pt-clinic was

again an exception, showing three experiments above the

baseline, and one even slightly above the expected upper

bound. In this set of experiments, the results on the (also

clinical-image) dermofit dataset were also positive, with sev-

eral configurations above the baseline.
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Figure 2: Results for GAN-based data augmentation (left) and GAN-based anonymization (right), separated by test dataset.

Box-plots display medians, quartiles, and range, as usual; red dots show arithmetic means. Y-axis labels show real:synthetic

or (real:synthetic benign:synthetic malignant) training image proportion, with additional information for the choice of GAN

(p2p: pix2pixHD, spd: SPADE, pgn: PGAN2, sgn: StyleGAN2, all: samples from all GANs together), and the choice of

sampling method (wst: worst, bst: best, div: diverse). When omitted, the GAN is StyleGAN2 and the sampling method is

random. Experiments showcasing a factor are grouped together in alternating blue/black color.
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5. Discussion

Our results suggest future authors interested in GAN-

based data augmentation to be conservative about expected

results, and cautious about evaluation protocols.

GAN-based augmentation is a technique extensively ex-

plored in the literature for mitigating the scarcity of training

images, being particularly interesting for the medical images

community. However, we found our preliminary experi-

ments to be excessively noisy, and noticed flaws in some

experimental protocols during our literature review. Reli-

ably transforming synthetic images into reliable performance

gains is far from obvious.

We will not go as far as condemning GAN-based data aug-

mentation. Our experiments suggest that for some specific

out-of-distribution scenarios (e.g., training on isic19 and test-

ing on derm7pt-clinic) the technique may provide reliable

improvements. Characterizing exactly which scenarios are

those is, however, still an open question, as experiments on

the also clinical-image dermofit dataset did not confirm those

findings.

Because training GANs requires a huge computation

investment — a single training of StyleGAN2 takes up

to a month of GPU time — researchers and practition-

ers should carefully evaluate whether their application to

data-augmentation is justifiable, considering, among other

things, their energetic footprint [47]. The finicky nature of

GAN training also brings other risks: missing modes [2]

may aggravate dataset biases, reinforcing the disparity of

over/underrepresented groups instead of correcting them.

GANs may also fixate on artifacts (such as vignettes, rulers,

gel bubbles, etc.) and introduce or reinforce spurious corre-

lations on the data [6].

Our results for GAN-based anonymization show modest

results, but here, at least, there seems to be a trend, with

results for out-of-distribution data being generally favorable,

and results for in-distribution data being generally unfavor-

able. Those data suggest that using GANs may be possible

at least as an ancillary method for sharing knowledge while

preserving patient privacy. For making that application safe,

however, we need further studies on how much the GAN

“remembers” each original training sample and on its abil-

ity to (purposefully or accidentally) reconstructing original

samples.

Possible avenues for unblocking GAN-based data aug-

mentation point towards attempting to conciliate the advan-

tages of translation-based and noise-based techniques —

obtaining the high-quality of the former and the limitless

sampling availability of the latter — but such conciliation

is a hard open problem. More achievable may be enhanced

sampling methods, able to select the highest-quality, or bet-

ter yet most relevant for decision, samples from the limitless

sample of a noise-based technique. Even if future works

fail to improve the ability of GANs to reliably provide data-

augmentation or anonymization, a better characterization of

the cases they are able to improve may provide interesting

insights on the fundamental workings of deep learning.
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