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Abstract

How does the accuracy of deep neural network models

trained to classify clinical images of skin conditions vary

across skin color? While recent studies demonstrate com-

puter vision models can serve as a useful decision support

tool in healthcare and provide dermatologist-level classifi-

cation on a number of specific tasks, darker skin is under-

represented in the data. Most publicly available data sets do

not include Fitzpatrick skin type labels. We annotate 16,577

clinical images sourced from two dermatology atlases with

Fitzpatrick skin type labels and open-source these annota-

tions. Based on these labels, we find that there are signifi-

cantly more images of light skin types than dark skin types

in this dataset. We train a deep neural network model to

classify 114 skin conditions and find that the model is most

accurate on skin types similar to those it was trained on. In

addition, we evaluate how an algorithmic approach to iden-

tifying skin tones, individual typology angle, compares with

Fitzpatrick skin type labels annotated by a team of human

labelers.

1. Motivation

How does the accuracy of deep neural network mod-

els trained to classify clinical images of skin conditions

vary across skin color? The emergence of deep neural net-

work models that can accurately classify images of skin

conditions presents an opportunity to improve dermatology

and healthcare at large [23, 36, 51, 48, 12]. But, the data

upon which these models are trained are mostly made up

of images of people with light skin. In the United States,

dark skin is underrepresented in dermatology residency pro-

grams [35], textbooks [5, 3], dermatology research [34],

and dermatology diagnoses [43, 28]. With the exception

of PAD-UFES-20 [42], none of the publicly available data

sets identified by the Sixth ISIC Skin Image Analysis Work-

shop at CVPR 2021 (Derm7pt [30], Dermofit Image Li-

brary, ISIC 2018 [16, 52], ISIC 2019 [15, 52, 18], ISIC

2020[46, 17], MED-NODE [27], PH2 [37], SD-128 [49],

SD-198, SD-260) include skin type or skin color labels or

any other information related to race and ethnicity. The only

dataset with such skin type labels, PAD-UFES-20, contains

Fitzpatrick skin type labels for 579 out of 1,373 patients in

the dataset. The lack of consideration of subgroups within a

population has been shown to lead deep neural networks to

produce large accuracy disparities across gender and skin

color for facial recognition [11], across images with and

without surgical markings in dermatology [56, 10], and

across treated and untreated conditions in radiology [40].

These inaccuracies arise from dataset biases, and these un-

derlying data biases can unexpectedly lead to systematic

bias against groups of people [8, 1]. If these dataset biases

are left unexamined in dermatology images, machine learn-

ing models have the potential to increase healthcare dispar-

ities in dermatology [2].



By creating transparency and explicitly identifying likely

sources of bias, it is possible to develop machine learning

models that are not only accurate but also serve as dis-

crimination detectors [41, 32, 19]. By rigorously examin-

ing potentials for discrimination across the entire pipeline

for machine learning model development in healthcare [14],

we can identify opportunities to address discrimination

such as collecting additional data from underrepresented

groups [13] or disentangling the source of the dispari-

ties [44]. In this paper, we present the Fitzpatrick 17k

dataset which is a collection of images from two online der-

matology atlases annotated with Fitzpatrick skin types by a

team of humans. We train a deep neural network to classify

skin conditions solely from images, and we evaluate accu-

racy across skin types.

We also use the Fitzpatrick 17k dataset to compare Fitz-

patrick skin type labels to a computational method for es-

timating skin tone: individual typology angle (ITA). ITA

is promising because it can be computed directly from im-

ages, but its performance varies with lighting conditions and

may not always be effective for accurately annotating clini-

cal images with skin types [55, 33, 31].

2. Fitzpatrick 17k Dataset

The Fitzpatrick 17k dataset contains 16,577 clinical im-

ages with skin condition labels and skin type labels based

on the Fitzpatrick scoring system [25]. The dataset is ac-

cessible at https://github.com/mattgroh/fitzpatrick17k.

The images are sourced from two online open-source

dermatology atlases: 12,672 images from DermaAmin and

3,905 images from Atlas Dermatologico [4, 26]. These

sources include images and their corresponding skin condi-

tion label. While these labels are not known to be confirmed

by a biopsy, these images and their skin condition labels

have been used and cited in dermatology and computer vi-

sion literature a number of times [23, 29, 9, 45, 6, 50, 53].

As a data quality check, we asked a board-certified der-

matologist to evaluate the diagnostic accuracy of 3% of

the dataset. Based on a random sample of 504 images,

a board-certified dermatologist identified 69.0% of images

as diagnostic of the labeled condition, 19.2% of images

as potentially diagnostic (not clearly diagnostic but not

necessarily mislabeled, further testing would be required),

6.3% as characteristic (resembling the appearance of such

a condition but not clearly diagnostic), 3.4% are considered

wrongly labeled, and 2.0% are labeled as other. A second

board-certified dermatologist also examined this sample of

images and confirmed the error rate. This error rate is con-

sistent with the 3.4% average error rate in the most com-

monly used test datasets for computer vision, natural lan-

guage processing, and audio processing [39].

We selected images to annotate based on the most com-

mon dermatology conditions across these two data sources

excluding the following 22 categories of skin conditions:

(1) viral diseases, HPV, herpes, molluscum, exanthems, and

others (2) fungal infections, (3) bacterial infections, (4) ac-

quired autoimmune bullous disease, (5) mycobacterial in-

fection (6) benign vascular lesions (7) scarring alopecia,

(8) non-scarring alopecia (9) keratoderma (10) ichthyosis,

(11) vasculitis, (12) pellagra like eruption (13) reiters dis-

ease (14) epidermolysis bullosa pruriginosa (15) amyloi-

dosis, (16) pernio and mimics (17) skin metastases of tu-

mours of internal organs (18) erythrokeratodermia progres-

sive symmetric, (19) epidermolytic hyperkeratosis, (20) in-

fections, (21) generalized eruptive histiocytoma, (21) dry

skin eczema. We excluded these categories because they

were either too broad, the images were of poor quality, or

the categories represented a rare genodermatosis. The final

sample includes 114 conditions with at least 53 images (and

a maximum of 653 images) per skin condition.

This dataset also includes two additional aggregated lev-

els of skin condition classification based on the skin lesion

taxonomy developed by Esteva et al. 2017, which can be

helpful to improve the explainability of a deep learning sys-

tem in dermatology [23, 7]. At the highest level, skin con-

ditions are split into three categories: 2,234 benign lesions,

2,263 malignant lesions, and 12,080 non-neoplastic lesions.

At a slightly more granular level, images of skin condi-

tions are split into nine categories: 10,886 images labeled

inflammatory, 1,352 malignant epidermal, 1,194 genoder-

matoses, 1,067 benign dermal, 931 benign epidermal, 573

malignant melanoma, 236 benign melanocyte, 182 malig-

nant cutaneous lymphoma, and 156 malignant dermal. At

the most granular level, images are labeled by skin condi-

tion.

The images are annotated with Fitzpatrick skin type la-

bels by a team of human annotators from Scale AI. The

Fitzpatrick labeling system is a six-point scale originally

developed for classifying sun reactivity of skin and adjust-

ing clinical medicine according to skin phenotype [25]. Re-

cently, the Fitzpatrick scale has been used in computer vi-

sion for evaluating algorithmic fairness and model accuracy

across skin type [11, 36, 22]. Fitzpatrick labels allow us to

begin assessing algorithmic fairness, but we note that the

Fitzpatrick scale does not capture the full diversity of skin

types [54]. Each image is annotated with a Fitzpatrick skin

type label by two to five annotators based on Scale AI’s dy-

namic consensus process. The number of annotators per

image is determined by a minimal threshold for agreement,

which takes into account an annotator’s historical accuracy

evaluated against a gold standard dataset, which consists of

312 images with Fitzpatrick skin type annotations provided

by a board-certified dermatologist. This annotation process

resulted in 72,277 annotations in total.

In the Fitzpatrick 17k dataset, there are significantly

more images of light skin types than dark skin. There are



7,755 images of the lightest skin types (1 & 2), 6,089 im-

ages of the middle skin types (3 & 4), and 2,168 images of

the darkest skin types (5 & 6). Table 1 presents the distri-

bution of images by skin type for each of the three highest

level categorizations of skin conditions. A small portion

of the dataset (565 images) are labeled as unknown, which

indicates that the team of annotators could not reasonably

identify the skin type within the image.

The imbalance of skin types across images is paired with

an imbalance of skin types across skin condition labels.

The Fitzpatrick 17k dataset has at least one image of all

114 skin conditions for Fitzpatrick skin types 1 through

3. For the remaining Fitpatrick skin types, there are 113

skin conditions represented in type 4, 112 represented in

type 5, and 89 represented in type 6. In other words, 25

of the 114 skin conditions in this dataset have no exam-

ples in Fitzparick type 6 skin. The mean Fitzpatrick skin

types across these skin condition labels ranges from 1.77

for basal cell carcionma morpheaform to 4.25 for pityriasis

rubra pilaris. Only 10 skin conditions have a mean Fitz-

patrick skin type above 3.5, which is the expected mean for

a balanced dataset across Fitzpatrick skin types. These 10

conditions include: pityriasis rubra pilaris, xeroderma pig-

mentosum, vitiligo, neurofibromatosis, lichen amyloidosis,

confluent and reticulated papillomatosis, acanthosis nigri-

cans, prurigo nodularis, lichen simplex, and erythema ele-

vatum diutinum.

Non-Neoplastic Benign Malignant

# Images 12,080 2,234 2,263

Type 1 17.0% 19.9% 20.2%

Type 2 28.1% 30.0% 32.8%

Type 3 19.7% 21.2% 20.2%

Type 4 17.5% 16.4% 13.3%

Type 5 10.1% 7.1% 6.5%

Type 6 4.4% 2.0% 2.7%

Unknown 3.2% 3.3% 4.6%

Table 1. Distribution of skin conditions in Fitzpatrick 17k by Fitz-

patrick skin type and high level skin condition categorization.

Accuracy Accuracy (off-by-one) # of Images

Type 1 49% 79% 10

Type 2 38% 84% 100

Type 3 25% 71% 98

Type 4 26% 71% 47

Type 5 34% 85% 44

Type 6 59% 83% 13

Table 2. Accuracy of human annotators relative to the gold stan-

dard dataset of 312 Fitzpatrick skin type annotations provided by

a board-certified dermatologist.

3. Classifying Skin Conditions with a Deep

Neural Network

3.1. Methodology

We train a transfer learning model based on a VGG-16

deep neural network architecture [47] pre-trained on Ima-

geNet [20]. We replace the last fully connected 1000 unit

layer with the following sequence of layers: a fully con-

nected 256 unit layer, a ReLU layer, dropout layer with a

40% change of dropping, a layer with the number of pre-

dicted categories, and finally a softmax layer. As a re-

sult, the model has 135,335,076 total parameters of which

1,074,532 are trainable. We train the model by using

the Adam optimization algorithm to minimize negative log

likelihood loss. We address class imbalance by using a

weighted random sampler where the weights are determined

by each skin condition’s inverse frequency in the dataset.

We perform a number of transformations to images before

training the model which include: randomly resizing im-

ages to 256 pixels by 256 pixels, randomly rotating images

0 to 15 degrees, randomly altering the brightness, contrast,

saturation, and hue of each image, randomly flipping the

image horizontally or not, center cropping the image to be

224 pixels by 224 pixels, and normalizing the image arrays

by the ImageNet means and standard deviations.

We evaluate the classifier’s performance via 5 ap-

proaches: (1) testing on the subset of images labeled by

a board-certified dermatologist as diagnostic of the labeled

condition and training on the rest of the data (2) testing on a

randomly selected 20% of the images where the random se-

lection was stratified on skin conditions and training on the

rest of the data (3) testing on images from Atlas Dermato-

logico and training on images from Derma Amin (4) testing

on images from Derma Amin and training on images from

Atlas Dermatologico (5) training on images labeled as Fitz-

patrick skin types 1-2 (or 3-4 or 5-6) and testing on the rest

of the data. The accuracy on the validation set begins to

flatten after 10 to 20 epochs for each validation fold. We

trained the same architecture on each fold and report accu-

racy scores for the epoch with the lowest loss on the valida-

tion set.

3.2. Results

We report results of training the model on all 114 skin

conditions across 7 different selections of holdout sets in

Table 3.

In the random holdout, the model produces a 20.2%

overall accuracy on exactly identifying the labeled skin con-

dition present in the image. The top-2 accuracy (the rate

at which the first or second prediction of the model is the

same as the image’s label) is 29.0% and the top-3 accuracy

is 35.4%. These numbers can be evaluated against random

guessing, which would be 1/114 or 0.9% accuracy. Across



Holdout Set Verified Random Source A Source B Fitz 3-6 Fitz 1-2 & 5-6 Fitz 1-4

# Train Images 16,229 12,751 12,672 3,905 7,755 6,089 2,168

# Test Images 348 3,826 3,905 12,672 8,257 10,488 14,409

Overall 26.7% 20.2% 27.4% 11.4% 13.8% 13.4% 7.7%

Type 1 15.1% 15.8% 40.1% 6.6% - 10.0% 4.4%

Type 2 23.9% 16.9% 27.7% 8.6% - 13.0% 5.5%

Type 3 27.9% 22.2% 25.3% 13.7% 15.9% - 9.1%

Type 4 30.9% 24.1% 26.2% 17.1% 14.2% - 12.9%

Type 5 37.2% 28.9% 28.4% 17.6% 10.1% 21.1% -

Type 6 28.2% 15.5% 25.7% 14.9% 9.0% 12.1% -

Table 3. Accuracy rates classifying 114 skin conditions across skin types on six selections of holdout sets. The verified holdout set is a

subset of a randomly sampled set of images verified by a board-certified dermatologist as diagnostic of the labeled condition. The random

holdout set is a randomly sampled set of images. The source A holdout set are all images from Atlas Dermatologico. The source B holdout

set are all images from Derma Amin. The 3 Fitzpatrick holdout sets are selected according to Fitzpatrick labels. In all cases, the training

data are the remaining non-held out images from the Fitzpatrick 17k dataset.

Predicted Class

Benign Malignant Non-neoplastic

Actual Class

Benign 275 52 54

Malignant 106 487 109

Non-neoplastic 788 448 1586

Table 4. Confusion matrix for deep neural network performance on

predicting the high-level skin condition categories in the holdout

set of images from Atlas Dermatologico.

the 114 skin conditions, the median accuracy is 20.0% and

ranges from a minimum of 0% accuracy on 10 conditions

(433 images in the random holdout) and a maximum of

93.3% accuracy on 1 condition (30 images).

When we train the model on the 3 category partition

of non-neoplastic, benign, and malignant, the model pro-

duces an accuracy of 62.4% on the random holdout (ran-

dom guessing would produce 33.3% accuracy). Likewise,

the model trained on the 9 category partition produces an

accuracy of 36.1% on the random holdout (random guess-

ing would produce 11.1% accuracy). Another benchmark

for this 3 partition and 9 partition comes from Esteva et

al. which trained a model on a dataset 7.5 times larger to

produce 72.1% accuracy on the 3 category task and 55.4%

accuracy on the 9 category task [23].

Depending on each holdout selection, the accuracy rates

produced by the model vary across skin types. For the first

four holdout selections in Table 3 – the verified selection,

the random holdout, the source A holdout based on images

from Atlas Dermatologico, and the source B holdout based

on images from Derma Amin – we do not find a system-

atic pattern in accuracy scores across skin type. For the

second three holdout selections where the model is trained

on images from two Fitzpatrick types and evaluated on im-

ages in the other four Fitzpatrick types, we find the model

is most accurate on the images with the closest Fitzpatrick

skin types to the training images. Specifically, the model

trained on images labeled as Fitzpatrick skin types 1 and 2

performed better on types 3 and 4 than types 5 and 6. Like-

wise, the model trained on types 3 and 4 performed better

on types 2 and 5 than 1 and 6. Finally, the model trained on

types 5 and 6 performed better on types 3 and 4 than types

1 and 2.

4. Evaluating Individual Typology Angle

against Fitzpatrick Skin Type Labels

4.1. Methodology

An alternative approach to annotating images with Fitz-

patrick labels is estimating skin tone via individual typol-

ogy angle (ITA), which is calculated based on statistical

features of image pixels and is negatively correlated with

the melanin index [55]. Ideally, ITA is calculated over pix-

els in a segmented region highlighting only non-diseased

skin [31]. But, segmentation masks are expensive to obtain,

and instead of directly segmenting healthy skin, we apply

the YCbCr algorithm to mask skin pixels [33]. We compare

Fitzpatrick labels on the entire dataset with ITA calculated

on the full images and the YCbCr masks.

The YCbCr algorithm takes as input an image in RGBA

color space and applies the following masking thresholds.

R > 95 (1)

R > G (2)

R > B (3)

G > 40 (4)

B > 20 (5)

|R−G| > 15 (6)

A > 15 (7)



Then, the image is converted from RGBA to YCbCr color

space, and applies a further masking along the following

thresholds:

Cr > 135 (8)

Cr ≥ (0.3448 · Cb) + 76.2069 (9)

Cr ≥ (−4.5652 · Cb) + 234.5652 (10)

Cr ≤ (−1.15 · Cb) + 301.75 (11)

Cr ≤ (−2.2857 · Cb) + 432.85 (12)

where R−G−B −A are the respective Red-Green-Blue-

Alpha components of the input image, and Y − Cb − Cr

are the respective luminance and chrominance components

of the color-converted image. As a result, the YCbCr algo-

rithm attempts to segment healthy skin from the rest of an

image.

We calculate the ITA of each full and YCbCr masked

image by converting the input image to CIE − LAB color

space, which contains L: luminance and B: yellow, and

applying the following formula [38]:

ITA = arctan(
L∗ − 50

B∗
) ·

180

π
(13)

where L∗ and B∗ are the mean of non-masked pixels with

values within one standard deviation of the actual mean.

4.2. Results

In Table 5, we compare ITA calculations on both the full

images and YCbCr masks with Fitzpatrick skin type labels.

Furthermore, we compare two different methods for calcu-

lating Fitzpatrick type given ITA, as described in Equations

14 and 15. For each entry, we calculate the proportion of

ITA scores in the range of plus or minus one of the anno-

tated Fitzpatrick score.

Fitzpatrick(ITA) =







































1 ITA > 55

2 55 ≥ ITA > 41

3 41 ≥ ITA > 28

4 28 ≥ ITA > 19

5 19 ≥ ITA > 10

6 10 ≥ ITA

(14)

Fitzpatrick(ITA) =







































1 ITA > 40

2 40 ≥ ITA > 23

3 23 ≥ ITA > 12

4 12 ≥ ITA > 0

5 0 ≥ ITA > −25

6 −25 ≥ ITA

(15)

In Table 5, the columns labeled “Kinyananjui” compare

Fitzpatrick skin type labels with ITA following Equation

14, a modified version of the ITA thresholds described by

Kinyanjui et al. [31]. The columns labeled “Empirical”

follow Equation 15, which we developed based on the em-

pirical distribution of ITA scores minimizing overall error.

Figure 1 plots the empirical distribution of ITA scores for

each Fitzpatrick skin type label. The discrepancy between

Fitzpatrick skin type labels and the ITA approach appears

to be driven mostly by high variance in the ITA algorithm

as Figure 3 reveals.

Full Image YCbCr Mask

Kinyanjui Empirical Kinyanjui Empirical

Overall 45.87% 60.34% 53.30% 70.38%

Type 1 50.97% 65.35% 52.22% 66.00%

Type 2 42.60% 59.57% 49.15% 69.47%

Type 3 35.43% 55.20% 45.13% 66.41%

Type 4 34.09% 58.54% 40.24% 72.10%

Type 5 78.21% 65.49% 93.41% 82.26%

Type 6 74.80% 65.04% 90.71% 79.69%

Table 5. Plus or minus one concordance of individual typology

angle (ITA) with Fitzpatrick skin type labels. Each column shows

the percent of ITA scores that are within plus or minus 1 point of

the annotated Fitzpatrick labels after converting ITA to Fitzpatrick

types via Equations 14 and 15.

5. Conclusion

We present the Fitzpatrick 17k, a new dataset consist-

ing of 16,577 clinical images of 114 different skin condi-

tions annotated with Fitzpatrick skin type labels. These

images are sourced from Atlas Dermatologico and Derma

Amin and contain 3.6 times more images of the two light-

est Fitzpatrick skin types than the two darkest Fitzpatrick

skin types. By annotating this dataset with Fitzpatrick skin

type labels, we reveal both an underrepresentation of dark

skin images in online dermatology atlases and accuracy dis-

parities that arise from training a neural network on only a

subset of skin types.

By training a deep neural network based on an adapted

VGG-16 architecture pre-trained on ImageNet, we achieve

accuracy results that approach the levels reported on a much

larger dataset [23]. We find that the skin type in the im-

ages on which a model is trained affects the accuracy scores

across Fitzpatrick skin types. Specifically, we find that

models trained on data from only two Fitzpatrick skin types

are most accurate on holdout images of the closest Fitz-

patrick skin types to the training data. These relation-

ships between the type of training data and holdout accu-

racy across skin types are consistent with what has been

long known by dermatologists: skin conditions appear dif-

ferently across skin types [3].



Figure 1. Observed distribution of individual typology angles by Fitzpatrick.

An open question for future research is in which skin

conditions do accuracy disparities appear largest across skin

types. Recent research shows that diagnoses by medi-

cal students and physicians appears to vary across skin

types [24, 21]. Future research at the intersection of derma-

tology and computer vision should focus on specific groups

of skin conditions where accuracy disparities are expected

to arise because visual features of skin conditions (e.g. red-

ness in inflammatory conditions) do not appear universally

across skin types.

The large set of Fitzpatrick skin type labels enable an

empirical evaluation of ITA as an automated tool for assess-

ing skin tone. Our comparison reveals that ITA is prone to

error on images that human labelers can easily agree upon.

The most accurate ITA scores are off by more than one point

on the Fitzpatrick scale in about one third of the dataset.

One limitation of this comparison is that we calculated ITA

based on either the entire image or an automatic segmenta-

tion mask. Future work should refine this comparison based

on more precise segmentation masks.

We present this dataset and paper in the hopes that it

inspires future research at the intersection of dermatol-

ogy and computer vision to evaluate accuracy across sub-

populations where classification accuracy is suspected to be

heterogeneous.
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[9] Alceu Bissoto, Fábio Perez, Vinı́cius Ribeiro, Michel For-

naciali, Sandra Avila, and Eduardo Valle. Deep-learning

ensembles for skin-lesion segmentation, analysis, classifi-

cation: Recod titans at isic challenge 2018. arXiv preprint

arXiv:1808.08480, 2018.

[10] Alceu Bissoto, Eduardo Valle, and Sandra Avila. Debiasing

skin lesion datasets and models? not so fast. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, pages 740–741, 2020.

[11] Joy Buolamwini and Timnit Gebru. Gender shades: Inter-

sectional accuracy disparities in commercial gender classifi-

cation. In Conference on fairness, accountability and trans-

parency, pages 77–91. PMLR, 2018.

[12] M Emre Celebi, Noel Codella, and Allan Halpern. Der-

moscopy image analysis: overview and future direc-

tions. IEEE journal of biomedical and health informatics,

23(2):474–478, 2019.

[13] Irene Chen, Fredrik D Johansson, and David Sontag.

Why is my classifier discriminatory? arXiv preprint

arXiv:1805.12002, 2018.

[14] Irene Y Chen, Emma Pierson, Sherri Rose, Shalmali Joshi,

Kadija Ferryman, and Marzyeh Ghassemi. Ethical machine

learning in health. arXiv preprint arXiv:2009.10576, 2020.

[15] Noel Codella, Veronica Rotemberg, Philipp Tschandl,

M Emre Celebi, Stephen Dusza, David Gutman, Brian

Helba, Aadi Kalloo, Konstantinos Liopyris, Michael

Marchetti, et al. Skin lesion analysis toward melanoma

detection 2018: A challenge hosted by the interna-

tional skin imaging collaboration (isic). arXiv preprint

arXiv:1902.03368, 2019.

[16] Noel CF Codella, David Gutman, M Emre Celebi, Brian

Helba, Michael A Marchetti, Stephen W Dusza, Aadi

Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kit-

tler, et al. Skin lesion analysis toward melanoma detection:

A challenge at the 2017 international symposium on biomed-

ical imaging (isbi), hosted by the international skin imaging

collaboration (isic). In 2018 IEEE 15th International Sym-

posium on Biomedical Imaging (ISBI 2018), pages 168–172.

IEEE, 2018.

[17] International Skin Imaging Collaboration et al. Siim-isic

2020 challenge dataset. International Skin Imaging Collab-

oration, 2020.

[18] Marc Combalia, Noel CF Codella, Veronica Rotemberg,

Brian Helba, Veronica Vilaplana, Ofer Reiter, Cristina Car-

rera, Alicia Barreiro, Allan C Halpern, Susana Puig, et al.

Bcn20000: Dermoscopic lesions in the wild. arXiv preprint

arXiv:1908.02288, 2019.

[19] Bo Cowgill and Catherine E Tucker. Algorithmic fairness

and economics. The Journal of Economic Perspectives,

2020.

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009.

[21] James A Diao and Adewole S Adamson. Representation and

misdiagnosis of dark skin in a large-scale visual diagnostic

challenge. Journal of the American Academy of Dermatol-

ogy, 2021.

[22] Brittany Dulmage, Kyle Tegtmeyer, Michael Z. Zhang,

Maria Colavincenzo, and Shuai Xu. A Point-of-Care, Real-

Time Artificial Intelligence System to Support Clinician Di-

agnosis of a Wide Range of Skin Diseases. Journal of In-

vestigative Dermatology, page S0022202X20321679, Oct.

2020.

[23] Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko,

Susan M. Swetter, Helen M. Blau, and Sebastian Thrun.

Dermatologist-level classification of skin cancer with deep

neural networks. Nature, 542(7639):115–118, Feb. 2017.

[24] Anne Fenton, Erika Elliott, Ashkan Shahbandi, Ekene

Ezenwa, Chance Morris, Justin McLawhorn, James G Jack-

son, Pamela Allen, and Andrea Murina. Medical students’

ability to diagnose common dermatologic conditions in skin

of color. Journal of the American Academy of Dermatology,

83(3):957, 2020.

[25] Thomas B Fitzpatrick. The validity and practicality of sun-

reactive skin types i through vi. Archives of dermatology,

124(6):869–871, 1988.

[26] Samuel Freire da Silva. Atlas dermatologico.

http://atlasdermatologico.com.br/.

[27] Ioannis Giotis, Nynke Molders, Sander Land, Michael Biehl,

Marcel F Jonkman, and Nicolai Petkov. Med-node: A

computer-assisted melanoma diagnosis system using non-

dermoscopic images. Expert systems with applications,

42(19):6578–6585, 2015.

[28] Alpana K Gupta, Mausumi Bharadwaj, and Ravi Mehrotra.

Skin cancer concerns in people of color: risk factors and pre-

vention. Asian Pacific journal of cancer prevention: APJCP,

17(12):5257, 2016.

[29] Seung Seog Han, Myoung Shin Kim, Woohyung Lim,

Gyeong Hun Park, Ilwoo Park, and Sung Eun Chang. Clas-

sification of the clinical images for benign and malignant cu-

taneous tumors using a deep learning algorithm. Journal of

Investigative Dermatology, 138(7):1529–1538, 2018.

[30] Jeremy Kawahara, Sara Daneshvar, Giuseppe Argenziano,

and Ghassan Hamarneh. Seven-point checklist and skin

lesion classification using multitask multimodal neural

nets. IEEE journal of biomedical and health informatics,

23(2):538–546, 2018.

[31] Newton M. Kinyanjui, Timothy Odonga, Celia Cintas, Noel

C. F. Codella, Rameswar Panda, Prasanna Sattigeri, and

Kush R. Varshney. Estimating Skin Tone and Effects

on Classification Performance in Dermatology Datasets.

arXiv:1910.13268 [cs, stat], Oct. 2019. arXiv: 1910.13268.

[32] Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and

Cass R. Sunstein. Algorithms as discrimination detectors.

Proceedings of the National Academy of Sciences, page

201912790, July 2020.

[33] S. Kolkur, D. Kalbande, P. Shimpi, C. Bapat, and J. Jatakia.

Human skin detection using rgb, hsv and ycbcr color models.

Proceedings of the International Conference on Communica-

tion and Signal Processing 2016 (ICCASP 2016), 2017.

[34] J.C. Lester, J.L. Jia, L. Zhang, G.A. Okoye, and E. Linos.

Absence of images of skin of colour in publications of



COVID-19 skin manifestations. British Journal of Derma-

tology, 183(3):593–595, Sept. 2020.

[35] Jenna Lester and Kanade Shinkai. Diversity and inclusivity

are essential to the future of dermatology. Cutis, 104(2):99–

100, 2019.

[36] Yuan Liu, Ayush Jain, Clara Eng, David H. Way, Kang Lee,

Peggy Bui, Kimberly Kanada, Guilherme de Oliveira Mar-

inho, Jessica Gallegos, Sara Gabriele, Vishakha Gupta,

Nalini Singh, Vivek Natarajan, Rainer Hofmann-Wellenhof,

Greg S. Corrado, Lily H. Peng, Dale R. Webster, Dennis Ai,

Susan J. Huang, Yun Liu, R. Carter Dunn, and David Coz.

A deep learning system for differential diagnosis of skin dis-

eases. Nature Medicine, 26(6):900–908, June 2020.

[37] Teresa Mendonça, Pedro M Ferreira, Jorge S Marques,

André RS Marcal, and Jorge Rozeira. Ph 2-a dermoscopic

image database for research and benchmarking. In 2013

35th annual international conference of the IEEE engineer-

ing in medicine and biology society (EMBC), pages 5437–

5440. IEEE, 2013.

[38] Michele Merler, Nalini Ratha, Rogerio S. Feris, and John R.

Smith. Diversity in faces, 2019.

[39] Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Per-

vasive label errors in test sets destabilize machine learning

benchmarks. arXiv preprint arXiv:2103.14749, 2021.

[40] Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro,

and Christopher Re. Hidden stratification causes clinically

meaningful failures in machine learning for medical imag-

ing. In Proceedings of the ACM Conference on Health,

Inference, and Learning, pages 151–159, Toronto Ontario

Canada, Apr. 2020. ACM.

[41] Ziad Obermeyer, Brian Powers, Christine Vogeli, and

Sendhil Mullainathan. Dissecting racial bias in an algo-

rithm used to manage the health of populations. Science,

366(6464):447–453, Oct. 2019.

[42] Andre GC Pacheco, Gustavo R Lima, Amanda S Sa-

lomão, Breno Krohling, Igor P Biral, Gabriel G de Angelo,
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