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Abstract

Medical image segmentation annotations suffer from

inter- and intra-observer variations even among experts due

to intrinsic differences in human annotators and ambiguous

boundaries. Leveraging a collection of annotators’ opin-

ions for an image is an interesting way of estimating a gold

standard. Although training deep models in a supervised

setting with a single annotation per image has been ex-

tensively studied, generalizing their training to work with

datasets containing multiple annotations per image remains

a fairly unexplored problem. In this paper, we propose an

approach to handle annotators’ disagreements when train-

ing a deep model. To this end, we propose an ensemble of

Bayesian fully convolutional networks (FCNs) for the seg-

mentation task by considering two major factors in the ag-

gregation of multiple ground truth annotations: (1) han-

dling contradictory annotations in the training data origi-

nating from inter-annotator disagreements and (2) improv-

ing confidence calibration through the fusion of base mod-

els’ predictions. We demonstrate the superior performance

of our approach on the ISIC Archive and explore the gen-

eralization performance of our proposed method by cross-

dataset evaluation on the PH2 and DermoFit datasets.

1. Introduction

The semantic segmentation task in computer vision in-

volves partitioning an image into a set of multiple non-

overlapping and semantically interpretable regions [10],

and this entails assigning pixel-wise class labels to the entire

image, making it a dense prediction task. Segmentation is

a crucial task in the visual computing pipeline and is often

used to improve several downstream tasks such as classi-

fication and depth estimation [39]. Following the seminal

work of Long et al. [24], deep learning-based semantic im-

age segmentation models have gained prominence because

of their superior performance over traditional approaches.

The majority of deep learning-based semantic segmentation

models, however, rely on supervised learning of dense pixel

annotations for the labels in images. State of the art super-

vised learning algorithms rely upon training using large vol-

umes of data to yield acceptable results, and previous work

has shown the importance of sufficient annotated data for vi-

sual tasks [28, 12, 34]. Particularly, Sun et al. [34] showed

that the performance of segmentation models in terms of

overlap based measures exhibits a logarithmic relationship

with the amount of training data used for representation

learning for semantic segmentation.

Collecting ground truth annotations for semantic seg-

mentation is considerably more expensive than doing so

for other visual tasks such as classification and object de-

tection because of the dense annotations involved. While

this can partly be ameliorated by crowd-sourcing the an-

notation process to non-experts, the presence of multiple

object classes in a scene, coupled with factors such as illu-

mination, shading, and occlusion, makes delineating the ex-

act object boundaries an ambiguous and tedious task, lead-

ing to inter-annotator disagreements. The presence of mul-

tiple annotations (Figure 1) further leads to the challenge

of deciding upon an ideal ground truth against which the

model’s performance is assessed. Moreover, there exists a

tradeoff between the precision and the generalizability of

an ‘ideal’ segmentation ground truth, since aoverly precise

delineation may not be reflective of the typical uncertainty

encountered in practice when localizing the boundary [38].

A similar trade-off exists between the quality and the ef-

ficiency of these annotations: High quality dense annota-

tions, although useful, take up more time to collect than

relatively less informative approximate annotations (e.g.,

bounding boxes or simplified polygons). These problems

are exacerbated further for medical images since medical

imaging datasets with accurate pixel-level annotations are

much smaller than their natural image counterparts [35],

which can be attributed to the high cost associated with

expert annotations, the difficulty in quantifying a true ref-

erence standard, the laborious nature of making dense an-

notations, which is even more difficult for 3D medical im-

age volumes, and patient data privacy concerns. To add to
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this, the manual annotation of anatomical regions of interest

can be very subjective and presents considerable inter- and

intra-annotator disagreements even amongst experts across

multiple medical imaging modalities [37, 7, 36, 29, 9], mak-

ing it difficult to converge on a single gold standard annota-

tion for model training and evaluation.

One of the seminal works on comparing a segmenta-

tion model’s performance by comparing against a collec-

tion of (human-annotated) segmentations is that proposed

by Warfield et al. [38], where they proposed an expectation

maximization algorithm for the simultaneous truth and per-

formance level estimation (STAPLE). Given a collection of

segmentation masks, STAPLE generates a probabilistic es-

timate of the true segmentation mask as well as the segmen-

tation performance of each of the segmentations in the col-

lection. This was followed by several other extensions of

STAPLE which addressed its limitations such as suscepti-

bilities to large variations in inter-annotator uncertainty and

annotator performance [3, 14, 21, 23].

More recently, Mirikharaji et al. [27] showed that

leveraging different levels of annotation reliability, using

spatially-adaptive reweighting while learning deep learn-

ing based segmentation model parameters, helps improve

performance, and demonstrated superior segmentation ac-

curacy using a large number of low quality, ‘noisy’ anno-

tations along with only a small fraction of precise anno-

tations. Hu et al. [11] used a modified probabilistic U-

Net [17] model to generate quantifiable aleatoric and epis-

temic uncertainty estimates for segmentation using a super-

vised learning framework which modeled inter-annotator

variability as aleatoric uncertainty ground truth. Ribeiro et

al. [29] proposed an approach to improve inter-annotator

agreement by conditioning the segmentation masks using

morphological image processing operations (opening and

closing), convex hulls and bounding boxes to remove de-

tails specific to any single particular annotator. They argue

that the conditioning could be deemed as denoising opera-

tions, removing the annotator specific details from the seg-

mentation masks. The same authors then proposed to train

their segmentation model on a subset of the images, derived

by filtering out all samples whose mean pairwise Cohen’s

kappa score was less than 0.5, thus using only those seg-

mentations which largely agree between annotators [30].

Despite the obvious benefits of improving segmentation

performance, it is also crucial to analyze the predictive un-

certainty of deep networks in medical image segmentation.

In machine learning, the uncertainty has been classified into

aleatoric and epistemic types. The aleatoric, which reflects

the inherent noise in the data, has been estimated using

a second auxiliary output in the network [16]. Bayesian

neural networks (BNNs) have adopted Monte Carlo (MC)

dropout [8] to reflect the epistemic uncertainty associated

with the network parameters. Thanks to their simplicity,

MC dropout uncertainty estimation has been studied in the

context of general semantic segmentation [15] as well as

medical image segmentation [18, 33]. However, the uncer-

tainty estimates obtained using MC dropout tend to be mis-

calibrated, i.e., they do not correspond well with the model

error [22]. Recently, there have been efforts to improve the

uncertainty calibration using ensemble learning. Particu-

larly, Lakshminarayanan et al. [19] demonstrated the ad-

vantage of ensemble learning, i.e., averaging a collection

of models trained from different initializations, in yielding

more accurate predictive uncertainty estimates for classifi-

cation and regression tasks. Mehrtash et al. [25] studied

the performance of ensemble learning for predictive uncer-

tainty in medical image segmentation. Particular to skin le-

sion segmentation, Jungo et al. [13] thoroughly studied the

reliability of existing uncertainty estimation methods and

showed their benefits and limitations [13].

Deep neural networks have been shown to potentially

overfit to noisy labels [40] and our motivation for this work

is to avoid single annotator bias [20]. Therefore, we seek

training deep segmentation models to learn from multiple

annotations as available instead of discarding some anno-

tations. Rather than selecting a subset of images to learn

from Ribeiro et al. [30], we instead propose a generalized

approach of annotation weighting by leveraging different

groups of consistent annotations in an ensemble method

towards efficiently learning from all available annotations.

We also utilize uncertainty estimates [16, 19] in an ensem-

ble learning framework to improve predictive uncertainty

and calibration confidence in the final prediction.

Contribution claims: We consider two major factors in the

aggregation of multiple ground truth annotations: (1) han-

dling contradictory annotations in the training data origi-

nating from inter-annotator disagreements, and (2) improv-

ing the model’s confidence calibration through deep ensem-

bling. Our hypothesis is that given a new image, leveraging

different experts’ skills independently and fusing them in

an ensemble model, while considering their estimated un-

certainty, makes for a more reliable final prediction.

2. Method

2.1. Problem Statement and Method Overview

Let X = {Xn}
N
1 and Y = {Yn}

N
1 be a set of N im-

ages and segmentation ground truth masks, respectively. In

a supervised learning scheme, a network is trained to learn

a function fθ : Xn 7→ Ŷn parameterized by θ, which maps

an image Xn to the corresponding estimated segmentation

mask Ŷn. Approximating the mapping function fθ using

a single annotation per image has been well studied in the

literature. However, training supervised models in the pres-

ence of multiple annotations remains largely unexplored.

Let us assume that K annotators have independently an-
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ISIC_0013073 (2 annotations) ISIC_0000056 (3 annotations) ISIC_0009872 (4 annotations) ISIC_0011227 (4 annotations)

ISIC_0000174 (4 annotations) ISIC_0000549 (4 annotations) ISIC_0010183 (5 annotations) ISIC_0000401 (5 annotations)

Figure 1: Sample skin lesion images from the ISIC Archive which contain multiple lesion boundary annotations (denoted by

different colors).

notated different subsets of the images resulting in a set of

segmentation ground truths Y = {{Ymn}
Mn

m=1
}Nn=1, where

Mn denotes the number of available annotations for Xn.

Inconsistent annotations for a given image could mislead

the network and substantially deteriorate the performance

of the model. Let M indicate the maximum number of an-

notations per image over the entire dataset. Instead of ag-

gregating multiple annotations to estimate a single ground

truth before the training phase, we propose to (1) learn a

set of M mapping functions F = {fθi} through ensem-

bling M base deep models trained over the union of avail-

able annotations and (2) minimize the confusion induced

from observing multiple annotations through a spatial re-

weighting scheme during training. (3) Lastly, we demon-

strate that our proposed ensemble learning framework not

only improves the segmentation performance but also pro-

vides a well-calibrated predictive uncertainty. Figure 2 il-

lustrates the overview of our ensemble learning framework

for skin lesion segmentation with multiple annotations.

2.2. Detailed Method

Non-contradictory Subsets Selection: To handle contra-

dictory annotations arising from having multiple annota-

tions per image during the training, we partition the entire

dataset into M disjoint subsets, denoted by {Ci}Mi=1
, such

that each Ci includes at most one unique annotation for ev-

ery image. In particular, for each image, with Mn ≤ M

annotations, we randomly assign the Mn annotations to

{Ci}Mn

i=1
subsets.

A naı̈ve approach is to utilize these disjoint subsets to

train individual base models independently. Even though

this solution prevents exposing each ensemble base model

to multiple annotations per image and encourages a diverse

set of model performance, however, each disjoint set in-

cludes a small number of training samples which can ad-

versely affect the generalization capability of individual

base models. To address this issue, we combine all images

along with all available annotations into a union dataset, de-

noted as U , and use it to train M base networks. Following

Mirikharaji et al. [27], we utilize these non-contradictory

subsets to assess the quality of annotations in U . Specifi-

cally, spatially-adaptive weight maps associated with vary-

ing annotations in U are learned to adjust the contribution

of each annotated pixel in the optimization of deep network

based on its consistency with clean annotations in {Ci}.

Learning Models: In more details, for each base model i,
i ∈ 1, ...,M , we define a cross-entropy loss, denoted as

L = {LC
i

ce} over each non-contradictory set Ci. We then, in

a meta-learning paradigm, learn a set of spatial weight maps

Wi = {{W i
mn}

Mn

m=1
}Nn=1 for all annotations U based on

the gradients of the cross-entropy losses with respect to the

weights maps, i.e. ∇W iLC
i

ce . This way, Wi is optimized to

cancel out the contributions of annotations inconsistent with

Ci while optimizing the parameters for ith base network, i.e.
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Figure 2: An overview of our proposed framework for skin lesion segmentation with multiple annotations. (top left) Multiple

users annotating different, potentially overlapping, subsets of the original data. (top right) Each set of non-contradictory

labels is considered as ground truth and, along with the remaining annotations that are deemed potentially noisy, are used

to train a different base model. (bottom) At inference, each base model’s prediction, along with its estimated aleatoric

uncertainty maps are fused to obtain the final prediction.

θi. Mathematically:

Wi∗ = argmin
Wi, Wi>0

∑

n∈Ci

Ln
ce(Ŷ

i
n, Yn; θ

i(Wi)). (1)

Note that every image in Ci has only one ground truth. Wi

are encoded in L and they are optimized along with the net-

work parameters θi for each individual base model. By in-

tegrating the information in the optimized Wi, we can de-

termine the degree by which a pixel-level annotation from

any of annotators is considered noisy for model i, depend-

ing on how similar this annotation is to the annotations in

Ci. Therefore:

L(Ŷ i
n, Ymn; θ

i,W i
mn) = −

∑

q∈Xn

W i
mnqYmnq log Ŷ

i
nq, (2)

Ŷ i
nq = softmax(U i

nq). (3)

Fusion of Predictions: Once the individual base models

are trained, the final prediction of the entire ensemble for

the Xn is obtained by using a weighted fusion [31], that is:

Ŷn =
M
∑

i=1

αi
nŶ

i
n, (4)

where αi
n is the combination coefficient for prediction by

model i. The simplest way to determine αi
n is to consider

equally weighted averaging and set them to 1/M . Another
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popular technique is to set αi
n coefficients according to the

confidence of the model [32]. In this work, we explore both

aggregation techniques in our experimental evaluations.

Uncertainty-driven Aggregation: For the uncertainty-

driven aggregation of base models, we leverage aleatoric

uncertainty, which models irreducible observation noise, to

estimate how confident a base model is about its prediction,

and utilize the confidence when combining the base models’

prediction maps. Following Kendall et al. [16], we approx-

imate the aleatoric uncertainty for each pixel q ∈ Xn by

placing a Gaussian distribution over the logit space before

applying a sigmoid function in the last layer and reformu-

late the network output as:

U i
nq ∼ N

(

f i
nq, (σ

i
nq)

2
)

, (5)

where fi and σi are the network i outputs.

We use the aleatoric uncertainty in two forms: (1)

considering the pixel-wise uncertainty values as spatially-

adaptive coefficients and (2) averaging the pixel-wise un-

certainty into a single scalar image-level coefficient.

3. Experiments

3.1. Data

For training, we used the International Skin Imaging

Collaboration (ISIC) Archive data [1, 6, 5], the largest der-

moscopic public dataset with over 13,000 images, captured

by diverse devices in international clinical centers. All im-

ages are 8-bit RGB color dermoscopy images. Similar to

Ribeiro et al. [30], we utilized 2,223 images with more than

one segmentation ground truth mask (2,094 with two, 100

with three and 36 with four and 3 with five) to train our mod-

els. We split all 2,223 images to 80% for training and 20%

for validation. For model selection, we randomly selected

which annotation to use in validation set. To create our non-

contradictory annotation sets, all training data are randomly

and uniformly partitioned into five groups of overlapping

images but unique ground truth annotations. ISIC ground

truth masks were generated using three different pipelines

with different levels of border irregularities all involving a

dermatologist with expertise in dermoscopy: (1) an auto-

matic algorithm followed by an expert review; (2) a semi-

automatic algorithm controlled by an expert; and (3) man-

ually drawing a polygon by an expert. A large variation of

disagreement based on Cohen’s kappa scores with the mean

0.67 is reported in Ribeiro et al. [29]. Figure 1 shows some

examples of skin lesion images with multiple lesion bound-

ary annotations from this dataset.

To thoroughly assess the segmentation performance of

our proposed ensemble framework, we leveraged three pub-

licly available datasets in our evaluations. All the images in

the used datasets are resized into 96 × 96 pixels and nor-

malized using the per-channel mean and standard deviation

across the entire dataset. A brief description of these test

datasets are provided as follows:

• ISIC: Ribeiro et al. [30] randomly selected a test set of

2,000 images with just one segmentation ground truth

from ISIC Archive. We used the exact set in our ex-

perimental evaluations for fair comparisons.

• PH2: The PH2 (Pedro Hispano Hospital) dataset con-

tains 200 8-bit RGB color dermoscopic images [26].

All images are acquired under the same condition us-

ing Tuebinger Mole Analyzer system at 20× magnifi-

cation.

• DermoFit: This dataset has 1300 8-bit RGB color

clinical images [2]. The images are captured with a

Canon EOS 350D SLR camera at the same distance

from the lesion under controlled lighting conditions.

3.2. Base Models and Implementation Details

Our architecture is an encoder-decoder architecture with

residual and skip connections transferring the information

in the encoder modules to the corresponding decoder mod-

ules [4]. Since the images in our training dataset are paired

with at most five annotations (M = 5), our ensemble frame-

work consists of five base deep neural networks. Each net-

work outputs two spatial maps in the last layer: the dense

segmentation prediction and the predicted aleatoric uncer-

tainty map. In training the aleatoric loss, 10 Monte Carlo

samples from logits are taken. Stochastic gradient descent

with an initial learning rate of 10−4 is used to optimize the

network parameters. The batch size for optimizing the spa-

tial weight maps and network parameters is 64 and 2. The

momentum and weight decay are set to 0.99 and 5 ×105,

respectively.

3.3. Results

Table 1 compares the segmentation performance of our

baseline models as well as the individual base models,

across different prediction fusion schemes, using the Jac-

card index. To train the baseline model, for every image in

the training batch, we randomly select which ground truth

to use when optimizing the loss function (row A). While it

is interesting to consider each annotator separately and eval-

uate their performance, the assignments between annotators

and ground truth are not stated in the ISIC Archive dataset.

Instead, we evaluate the performance of each base model

trained on non-contradictory annotations simulating an ex-

pert knowledge (rows B to F). In addition, we compare the

performance of our proposed method against the work of

Ribeiro et al. [30] where a subset of samples with small an-

notator disagreements is taken into account during the train-
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Table 1: Comparing the segmentation performance based on Jaccard index reported in percent (% ± standard error) on three

datasets.

Method ISIC Archive [1] PH2 [26] DermoFit [2]

A baseline 68.00 ± 0.56 81.30 ± 0.77 70.30 ± 0.54

B model 0 69.22 ±0.53 82.82 ± 0.75 72.57 ± 0.50

C model 1 69.75 ± 0.55 82.40 ± 0.75 71.05 ± 0.55

D model 2 70.33 ± 0.52 83.46 ± 0.74 72.80 ± 0.51

E model 3 70.37 ± 0.51 83.31 ± 0.70 73.04 ± 0.53

F model 4 69.73 ± 0.52 82.29 ± 0.72 70.87 ± 0.48

G equally weighted fusion (ours) 72.11± 0.51 84.96± 0.73 74.22± 0.51

H pixel-level confidence (ours) 71.46± 0.49 84.52± 0.74 73.91± 0.53

I image-level confidence (ours) 72.08± 0.49 85.20 ± 0.70 74.33± 0.50

J less is more [30] 69.20 81.25 72.55

Table 2: Comparing predictive uncertainty based on negative log-likelihood (NLL) and Brier score (Br) on three datasets.

Lower NLL and Br values correspond to a better predictive uncertainty estimate.

Dataset ISIC Archive PH2 DermoFit

Method NLL Br NLL Br NLL Br

A MC dropout model 0 0.073 0.019 0.166 0.048 0.272 0.082

B MC dropout model 1 0.075 0.020 0.151 0.044 0.310 0.099

C MC dropout model 2 0.075 0.019 0.149 0.044 0.283 0.087

D MC dropout model 3 0.078 0.020 0.152 0.042 0.291 0.091

E MC dropout model 4 0.075 0.019 0.155 0.045 0.312 0.100

F deep ensemble (ours) 0.070 0.018 0.144 0.041 0.254 0.078

ing.For the fusion stage, we examine three approaches as

listed below:

• Uniformly weighted fusion: The predictions from the

base models are combined by averaging the output

probabilities.

• Pixel level confidence-based fusion: The predictions

from the models are fused using normalized confi-

dence spatial maps computed by inverting the pre-

dicted aleatoric outputs.

• Image level confidence-based fusion: The aleatoric

uncertainty maps are aggregated into an image level

aleatoric scalars and the predictions of the base mod-

els are combined based on the image-level normalized

confidence scalars computed by inverting the uncer-

tainty scalars.

Our results demonstrate that leveraging all available an-

notations effectively in an ensemble framework consistently

improves the performance of the segmentation performance

both in a held-out test set and over two other distinct

datasets. Looking into different variants of our deep ensem-

ble method, it is evident that aggregating the aleatoric un-

certainty into the image-level scalar and leveraging them in

the fusion stage (row H) either outperforms or exhibits com-

petitive performance against the uniform averaging scheme

(row G).

While modeling predictive uncertainty in clinical appli-

cations without a ‘real’ gold standard is helpful in decision

making, miscalibrated uncertainty with overconfident pre-

dictions leads to an unreliable outcome. To evaluate the

calibration quality of our ensemble annotation aggregation

against Bayesian FCNs, we implemented Bayesian epis-

temic uncertainty using dropout for each base model. Sim-

ilar to Bayesian SegNet [15], we added five dropout lay-
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Figure 3: Qualitative evaluation of weighting matrices: (first row) a sample training image and trusted annotations in base

models 0 to 4. (second row) inconsistency maps (INC) between the trusted ground truth in Model 0 and other ground truth

annotations. (third row) learned weight maps in iteration 100K overlaid over the inconsistency maps (INC+WT). Color-coded

boxes indicates the change when the trusted annotations in base models 0, 1 and 2 are different.

ers in the central part of the encoder and the decoder after

each convolutional layer. Dropout probability is set to 0.3

and they are kept active at the inference time. Fifteen feed-

forwards are executed to perform MC sampling and the out-

put mean is considered as the final segmentation prediction.

To evaluate the quality of the predictive uncertainty,

we use two widely used metric in the literature [19, 8];

negative log-likelihood (NLL) and Brier score (Br). Given

a segmentation network with sigmoid non-linearity in the

output layer, NLL and Br for Xn are calculated as follows:

NLL =
−1

|Xn|

∑

q∈Xn

Ynq log Ŷnq + (1− Ynq) log(1− Ŷnq)

(6)

Br =
1

|Xn|

∑

q∈Xn

[Ynq − Ŷnq]
2 (7)

Consistent with prior studies on deep ensembling [19,

25], Table 2 indicates that our annotation aggregation en-
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Figure 4: Qualitative evaluation of weighting matrices: (first row) a sample training image and trusted annotations in base

models 0 to 4. (second row) inconsistency maps (INC) between the trusted ground truth in Model 3 and other ground truth

annotations. (third row) learned weight maps in iteration 100K overlaid over the inconsistency maps (INC+WT). Color-coded

boxes indicate the changes when the trusted annotations in base models 3 and 4 are different.

semble with five base models consistently improves the

confidence calibration and predictive uncertainty for three

datasets in comparison to modeling epistemic uncertainty

by MC dropout.

The spatially adaptive weight maps for model i, Wi, are

learned to prevent penalizing the pixels whose feature maps

are similar to the feature maps of data in Ci while their gra-

dient direction is not similar to the direction of loss gradient

on annotations in Ci. To qualitatively evaluate matrices Wi,

in Figures 3 and 4, we overlay the learned weight maps, in

training iteration 100K, over the inconsistency maps (abso-

lute differences of ground truth masks). Looking into the

color-coded boxes shows how the location of the cyan pix-

els matches the inconsistency maps (zero or very close to

zero weights are assigned to inconsistent annotated pixels),

which results in exclusively leveraging the experts knowl-

edge in Ci when learning θi.

4. Conclusion

Approaches to train deep segmentation models do not

trivially generalize to datasets with multiple image anno-

tations. We propose an ensemble paradigm to deal with

discrepancies in segmentation annotations. A robust-to-

annotation-noise learning scheme is utilized to efficiently

leverage the multiple experts’ opinions toward learning

from all available annotations and improve the generaliza-

tion performance of deep segmentation models. The qual-

ity of predictive uncertainty in clinical applications without

true gold standards is critical. Our model captures two types

of uncertainty, aleatoric uncertainty modeled in the training

loss function and epistemic uncertainty modeled in the en-

semble framework to improve confidence calibration.
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