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Abstract

Machine Learning models have started to outperform

medical experts in some classification tasks. Meanwhile,

the question of how these classifiers produce certain results

is attracting increasing research attention. Current inter-

pretation methods provide a good starting point in investi-

gating such questions, but they still massively lack the rela-

tion to the problem domain. In this work, we present how

explanations of an AI system for skin image analysis can

be made more domain-specific. We apply the synthesis of

Local Interpretable Model-agnostic Explanations (LIME)

with the ABCD-rule, a diagnostic approach of dermatolo-

gists, and present the results using a Deep Neural Network

(DNN) based skin image classifier.

1. Introduction

Skin cancer detection is a popular application for clinical

decision support [7]. Motivated by the increasing number of

skin cancer patients and the promising therapeutic results

for early detection, a lot of research has been done in this

field over the past few years. In this context, DNNs have

been established as a viable method in the task of develop-

ing a model for classifying skin images [2, 8, 12, 30].

The high attention in the community has led to a vari-

ety of different approaches with varying levels of perfor-

mances.1 Common to all is training a model that can be

used for diagnosis and thus for clinical decision support.

Consequently, the new approaches have often been evalu-

ated in terms of whether they enable models that lead to

better performance results in various dermatological diag-

nostic tasks [21]. At the same time interpretation of model

predictions is increasingly being considered in other areas

of AI research. In contrast, the application of these tech-

niques in a skin image classification setting has hardly been

addressed, although some recent work has recognized the

1An overview is available by the published results from the ISIC Chal-

lenges: https://challenge.isic-archive.com

need [5, 11, 30]. DNNs are known to be opaque and are

therefore considered black box models. For their use in crit-

ical environments such as the medical field, methods from

Explainable AI are needed. Here, like the model itself, the

explanations must be adapted to the problem in order to be

useful for the particular use case [17].

In this paper, we present a domain-specific idea for

this purpose. Our approach synthesizes the machine learn-

ing model interpretation methodology LIME [22] with the

ABCD rule of dermatoscopy [26], a human diagnosis pro-

cedure for distinguishing melanocytic and non-melanocytic

skin lesions. We modify the perturbation algorithm of

LIME along the dimensions of the ABCD rule and hypothe-

size predictions of the black box model as presented in sec-

tion 3. In addition to medically relevant dimensions, medi-

cally irrelevant perturbations are introduced to validate the

degree of importance of the explanation. Observations are

shown in section 4 and discussed in section 5 on a selec-

tion of test images from the HAM10000 data set [28]. But

first, we provide a brief overview of related work and its

methodology.

2. Domain-Specific Explainable AI

Explainable AI (XAI) is a growing field of research

that focuses on making a model’s decisions understand-

able. As a result, many innovative techniques recently

emerged to help with the interpretation of model behavior

[6, 13, 14, 18, 29, 31]. Due to the novelty of this research

field, rather generic but hardly problem domain-specific ap-

proaches have been developed so far, although the necessity

of customized explanations is acknowledged [3, 24].

Studies from a psychological and philosophical perspec-

tive has also shown that people are more likely to accept a

system if it can explain itself in a way they can understand

[17]. The objective is to develop AI systems that can explain

decisions in the same way humans do. Linking a machine-

aided technique with a human explanation approach can aid

us to achieve this goal.
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Sample 1

Image: ISIC_0024364

True Class: Nevus

Prediction: Nevus (0,999)

Sample 2

Image: ISIC_0025732

True Class: Melanoma

Prediction: Melanoma (0,999)

Figure 1. Local Explanations of a DNN-based classifier. Correct

model predictions of two test samples are explained by three dif-

ferent model interpretation methods. Colored overlays indicate the

degree of importance in relation to the predicted class.

2.1. Model Interpretation Methods

Techniques in the field of XAI can be categorized into

two high-level approaches: Ante-hoc and Post-hoc. The for-

mer describes methods which are intrinsically interpretable.

Initially, an interpretable, inherently transparent model is

defined and then trained. Methods for interpretation of

predictions from an previously trained black box model

are summarized as Post-hoc explanations. Driven by the

widespread use of DNN-based skin image classifiers, we

start to study methods that support this model type. Further-

more, we establish that a domain-specific approach should

allow local explanations for individual predictions.

Gradient-weighted Class Activation Mapping (Grad-

CAM) [25] is one of the suitable interpretation methods for

this type of model and explanation. However, this function-

based approach is limited to Convolution Neural Networks

and also needs insights into model parameters. The gradient

flowing into the last convolution layer is used to highlight

regions in the image that are important for its prediction.

Randomized Input Sampling for Explanation (RISE)

[20] is a model-agnostic approach to generate local expla-

nations for image data, based on the principle of occlusion.

First, random masks are generated to cover the image ar-

eas (pixels) for a given sample. To create an explanation,

the sample is occluded with these masks and acquire model

predictions. Results are combined by computing the impor-

tance of each pixel of the input image with respect to the

resulting classification.

An equally common technique are surrogate models, as

used in LIME [22]. Here, a data set with perturbed instances

is generated for the sample to be explained. The received

predictions of the perturbed data using the black box model

are weighted and an interpretable local model is trained.

For image data this will also work by occluding areas of

a given sample. By default, the choice of such sub-regions

is performed with super-pixels using the LASSO algorithm,

which can lead to the generation of potentially useless sub-

sections, especially in a medical context [16].

This challenge can also be found in Xiang and Wang’s

research [30], which focuses on interpretable skin image

analysis. They introduce an additional stage in a deep learn-

ing model training pipeline, and apply LIME to a skin im-

age classification model. It is clarified that such a model

interpretation method is able to show meaningful areas in

a given sample, but it may lack in specificity for both ma-

chines and humans.

In figure 1, three introduced methods were applied to a

DNN model. Although the classification of the model for

the two shown test samples is highly likely to be correct,

the outputs of the explanations reveal a fatal correlation: In

case of Sample 2, relevant areas of melanoma are marked.

Sample 1 shows a nevus and areas important to the model

are outside the lesion. A crucial feature seems to be the

skin, the nevus does not contribute to the prediction.

A plain application of such model interpretation meth-

ods in an AI system already shows their potential. Instead

of relying on the raw prediction, the outputs disclose how

the underlying model has come to its decision. However,

all these outputs of the different methods show only image

areas whose informative value varies considerably. There

is a clear lack of domain-specific contexts: To interpret the

outcome of these methods, a significant educational effort

for domain experts is required.

2.2. Dermatologist’s Human Approach

There are a variety of methods for melanoma detection

by human pattern recognition. One of the first easy-to-

understand frameworks for medical examination and self-

examination was introduced in 1985 [10]. Developing this

method further, it was later published as the nowadays com-

monly known ABCD rule of dermatoscopy by Stolz et al.

[26], which was evaluated 1994 by Nachbar et al. [19] and

2010 by Rigel et al. [23]. Achieved performance values are

reported in these papers with a sensitivity of ≈ 84% and a
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specificity of ≈ 83.5%.

A comparison of different human approaches compared

to a selection of machine-augmented pattern recognition is

given by Garau et al. [11]. They have illustrated that the

ABCD rule outperforms most of the other human- as well as

machine learning approaches on the receiver operator char-

acteristic (ROC) curves.

The medical algorithm for visually distinguishing

melanocytic and nonmelanocytic lesions is based on multi-

variate analysis of four criteria. A score is calculated using

the properties asymmetry A , abrupt truncation of the pig-

ment pattern at the border B , different colors C and dif-

ferent structural components D [19]. In simplified terms,

the lesion is examined for all four criteria separately. The

higher the score of a criterion applies to the lesion, the more

likely it is to be classified as melanocytic. The sum of the

scores finally leads to a diagnosis.

Thus, the ABCD rule is particularly suited for use as

an human-friendly explainability method for two reasons:

First, this approach not only leads to accurate classifica-

tions, it is easy to understand for humans, which means that

it can be applied not only by physicians, but also to a cer-

tain extent by patients themselves. Second, the characteris-

tics used to classify the lesion can be scored independently.

Conversely, this has the effect that the four ABCD dimen-

sions can be studied independently. In theory, adding or

removing features in the dimensions has a direct impact on

the classification.

3. Explainer for Skin Image Classifier

We present the fusion of a model interpretation method

with the previously introduced human medical algorithm.

Ribeiro’s approach in LIME[22], which is on the one hand

suitable for image data and on the other hand model-

agnostic, tempts to follow the perturbation-based strategy.

An explanation generated by LIME is the minimization

of a function considering the complexity Ω of the inter-

pretable model g. Ω(g) should be as low as possible to

be interpreted by a human and is largely determined by the

number of features K. Our domain-specific explainer com-

bines the two methods replacing LIME’s standard perturba-

tion logic with the criteria of the ABCD rule. Instead of

selecting image areas with K super-pixels and then occlud-

ing them, we modifying skin images along K diagnostic

characteristics.

3.1. Perturbation Dimensions

Scoring each characteristic separately leads to manipu-

lating only one respective dimension in the input image and

not changing any features regarding to another dimension.

To ensure this, we start with two of the four dermatoscopic-

dimensions for our explainer and define them as its medi-

cally relevant features: B Boundary and C Color.

+-

+-
+

-

+

-

B

C

SR

Figure 2. Perturbation dimensions of the explainer. The original

image in the center is perturbed along medically relevant (blue)

dimensions B Boundary and C Color, as well as medically ir-

relevant (gray) dimensions R Rotate and S Shift, each in a rein-

forcing (positive) and weakening (negative) manner.

Following Fong and Vedaldi’s research [9] we add two

further dimensions to investigate the degree of importance

of the explanation. For this the original image is perturbed

in a medically irrelevant way without touching any medi-

cally relevant features: R Rotate and S Shift.

Figure 2 illustrates four dimensions with perturbed im-

ages in their strongest manifestations of each dimension.2

These manipulated images are artifacts and may look arti-

ficial to a human. However, we have to recognize that the

particular characteristic is to be exaggerated. In the follow-

ing, we go into detail how the perturbation is generated.

B Boundary The implementation of the medically rel-

evant dimension is realized along the negative Boundary

direction by extracting the border area of the segmentation

and drawing a sharply delineated line around the lesion. The

color of this line corresponds to the average color values of

the surrounding image areas and it is ensured that no arti-

facts arise in relation to the color which is used.

To influence in the positive Boundary direction, the

edge region is extracted from the segment and a Gaus-

sian blur is added. This causes pixel values to fade into

each other and the transition between lesion and skin is less

sharply delimited.

C Color In the perturbed images of the negative Color

dimension, the area within the segmentation of the lesion

is turned into a uniform color. Possible color irregularities

are thus harmonized. The coloring is transparent such that

possible structures in the lesion are kept intact.

2All image manipulations were implemented with scikit-image:

https://scikit-image.org
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Adding random color patches in the lesion area produces

variation for the positive Color direction. They vary in size

and color, while ensuring that the color patches are trans-

parent and possible structures remain recognizable similar

to the procedure towards negative direction. The chosen

colors correspond to plausible shades of brown.

R Rotate This perturbation dimension is realized by ro-

tating the sample by a given range of degrees. The range

of values corresponds to the positive (left) and negative

(right) direction. We chose mode ’reflect’ as padding strat-

egy, which mirrors neighboring pixel values along the vec-

tor.

S Shift An affine transformation is performed to shift the

skin image. The translation parameter indicates the direc-

tion, which is increased with strengthening in the positive

(left) or negative (right) direction. Same as for rotation,

’reflect’ is used to pad the resulting gaps.

3.2. Hypotheses

To further simplify the problem space, we limit the

classes studied to nevus (nv) and melanoma (mel). The for-

mer describes benign neoplasms of melanocytes. In con-

trast to melanoma, they are usually symmetrical in terms of

distribution of color and structure. Melanomas, on the other

hand, are defined as malignant neoplasms, which can occur

in different variants. [28]

There are medically relevant features, where positive

perturbation d+ means transforming the sample towards

melanoma and negative perturbation d− means to reduce

possible features of melanoma in the image. Medically ir-

relevant perturbations d′ neither take away nor add impor-

tant characteristics. Let y be the probability value of which

class a given input sample x belongs to, the following hy-

potheses about the black box model f received predictions

ŷ = 1
n

∑
n

i=1 f(x
′), with n perturbed inputs x′ by relation

∼d, can be derived:

A
(nv)
1 Prediction for nevus will decrease with positive per-

turbation:

A
(nv)
1 (x, x′, f) = {x ∼d+ x′ ⇒ y > ŷ}

A
(nv)
0 Prediction for nevus will increase or remain un-

changed with positive perturbation.

B
(nv)
1 Prediction for nevus will increase with negative per-

turbation:

B
(nv)
1 (x, x′, f) = {x ∼d− x′ ⇒ y < ŷ}

B
(nv)
0 Prediction for nevus will decrease or remain un-

changed with negative perturbation.

The hypotheses are valid regardless of which dimension

of the medically relevant dimensions the perturbations be-

long to. However, they depend on the given input sample

and are therefore not independent of the true class of the

sample. Since we are analyzing a two-class problem, the

hypotheses for melanoma [A
(mel)
1 , A

(mel)
0 , B

(mel)
1 , B

(mel)
0 ]

hold in reverse formulation. In other words, we assume

that the negative perturbation of the sample should move the

prediction to nevus, while the positive perturbation moves

the prediction to melanoma.

Medically irrelevant dimensions should be independent

of both the true class of the original image and the dimen-

sion to which the perturbations belong. We therefore hy-

pothesize the following:

C1 The black box model is inherent to medically irrelevant

perturbations:

C1(x, x
′, f) = {x ∼d′ x′ ⇒ f(x) = f(x′)}

C0 Perturbation along medically irrelevant dimensions

have significant effects on predictions.

3.3. Experimental Setup

Previously presented hypotheses will be tested with a

DNN-based skin image classifier. Therefore, a model was

trained with the HAM10000 data set [28], a collection of

multi-source dermatoscopic images of common pigmented

skin lesions. It was used in the ISIC Skin Lesion Classifi-

cation Challenge for the past years as well as in numerous

studies to train a DNN. In addition to the dermatoscopic im-

ages, our explainer takes associated segmentation data [27]

as input such that the perturbation can be limited to the le-

sion.

As already successfully established in other studies

[2, 8, 12, 30], we use the transfer learning approach and

train a pre-trained MobileNet model [15] with skin image

data, which is subsequently able to distinguish between the

two relevant classes. Tschandl’s data set includes, among

other classes, 6,705 images of nevi and 1,113 samples of

melanoma. We agree on the annotations assigned by der-

matologists as ground truth and split them into training and

test data in an 80/20 ratio.

The model performances achieved on the test data can

be found in table 1. Obviously, the performance can be im-

Nevus Melanoma Total

Number of Samples 1, 354 216 1, 561
True Positives 1, 150 144 1, 294
False Positives 203 72 275
F1-Score ≈ 0.91 ≈ 0.57 ≈ 0.74*

Table 1. Evaluation results of the classifier. To ensure that class

imbalances have no influence, * ’macro’ is specified as F1 average.
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Original

Image: ISIC_0033672

True Class: Nevus

Prediction: Nevus (0,966)

Image: ISIC_0028481

True Class: Melanoma

Prediction: Melanoma (0,972)
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Figure 3. Two original samples, both correctly classified (True Positives), with their maximum perturbations for all four explanation-

dimensions. Scatter plots under the perturbed images show the prediction of the black box model, each acquired along the indicated

dimension.

proved, however, we have deliberately avoided feature en-

gineering and all model tuning techniques for this study in

order not to influence the raw output of our explainer in any

way.

4. Empirical Results

To study the presented domain-specific explainer in more

detail, explanations were generated on a selection from the

test images. In order to discuss the results, selected samples

with high confidence in the true positive case and low con-

fidence in the false negative case are shown in figures 3 and

4. Another selection criterion was that a significant class

flip manifests in at least one dimension.

Both figures can be read according to the following

scheme: Respective dimension values are indicated as a

heading and the respective maximum perturbed images are

shown below them. For each of the samples, scatter plots

can also be found in each dimension. Along the ordinate,

the prediction value of the black box model is related to the

strength of the perturbation, which is plotted along the ab-

scissa.

The scale of the prediction in all scatter plots is set to

[0; 1] and refers to the respective class to which the sam-

ple corresponds. The strength of the perturbation follows

a scale of [−1; 1], which indicates values in the negative

value range correspond to the negative perturbation dimen-

sion and correspondingly in the positive value range to the

positive perturbation dimension.

Furthermore, the scatter plots are separated by a dashed

vertical line at position 0. The y-value, represented by a red

cross, reflects the classifier’s prediction f(x) for the non-

perturbed original image. For each of the input samples,

n = 50 perturbed samples x′ in negative as well as positive

direction, were generated.

4.1. True Positives

The first case examines the model explanations for cor-

rectly classified samples and with our domain-specific ap-

proach we try to answer the question ”In which dimensions

does the model remain accurate?” by using two samples in

figure 3 to test the hypotheses.

As observed for Sample 1, the prediction in the medi-

cally relevant dimensions Boundary and Color decreases in

the area of positive perturbation, which is why we accept

A
(nv)
1 and reject A

(nv)
0 . Regarding the other perturbation

direction, B
(nv)
1 can only be accepted for the Color dimen-

sion, since in the case of negative perturbation the predic-

tion has a constant value. In the Boundary dimension, on

the other hand, B
(nv)
1 must be rejected and we accept B

(nv)
0

since the prediction does not stagnate or increase but de-

creases at a constant rate.

To test the third hypothesis C, we look at the two

medically irrelevant dimensions. Although the prediction

changes at individual perturbation points, we can still ob-

serve that it remains at a high level in both the positive and

negative value ranges. The average prediction value over all

perturbation values is ŷ = 0.931(−0.035) for Rotation and

ŷ = 0.959(−0.007) for Shift. Values in parentheses denote
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Original

Image: ISIC_0027020

True Class: Nevus

Prediction: Melanoma (0,502)

Image: ISIC_0029363

True Class: Melanoma

Prediction: Nevus (0,540)
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Figure 4. Two original samples, both incorrectly classified (False Positives), with their maximum perturbations for all four explanation-

dimensions. Scatter plots under the perturbed images show the prediction of the black box model, each acquired along the indicated

dimension.

the differences from the prediction of the non-perturbed im-

age and due to the low deviation we decide to accept hy-

pothesis C1 and reject C0.

For Sample 2, we need to reverse the statements in the

hypotheses, since the sample is a melanoma. Now, the pre-

diction for perturbation in the positive direction should in-

crease or remain constant, while the prediction for the nega-

tive direction should decrease. These observations are man-

ifested with both medically relevant dimensions Boundary

and Color, which is why we accept both A
(mel)
1 as well as

B
(mel)
1 .

Similar to Sample 1, in the medically irrelevant dimen-

sions we can observe that the prediction of the classifier

changes along the perturbations. We therefore recalculate

the average prediction along all perturbation variables as

ŷ = 0.971(−0.001) for Rotation, and ŷ = 0.907(0.065) for

Shift. The deviation in the prediction allows us to accept C1

for Rotation, but hypothesis C1 for Shift is not supported,

so we accept C0.

4.2. False Positives

The second case investigates model explanations for in-

correctly classified samples. Two of such test images are

shown in figure 4. An explanation in this scenario is in-

tended to help answer the question, ”Why did the model

fail?”.

As can be clearly seen in the positive direction for Sam-

ple 3 in Boundary, we can accept A
(nv)
1 , however B

(nv)
1

is rejected with regard to the negative direction. B
(nv)
1 ,

on the other hand, is accepted in the Color dimension.

The prediction shows both higher and lower values in the

positive direction, thus violating the formulation of A
(nv)
1 .

However, we decide to accept this hypothesis as well,

since the average prediction in the positive direction ŷ =
0.318(−0.184) is significantly lower than the prediction of

the non-perturbed input image. When testing hypothesis C,

it is noticeable at first glance at the Rotation and Shift di-

mensions that C1 must be rejected. The prediction of the

classifier shows very different values along all perturbation

variables.

With respect to the hypothesis tests of Sample 4, it can

be seen that for Boundary both A
(mel)
1 and B

(mel)
1 have to

be rejected. Perturbation in both positive and negative di-

rection results in a decreasing prediction. The situation is

different for the distribution of the Color dimension. Hy-

pothesis A
(mel)
1 can be accepted at first view because of the

decreasing prediction values in the negative area. However,

the evaluation of the positive area is less clear, since the val-

ues fluctuate along the ordinate here as well. As the average

prediction value ŷ = 0.688(+0.148) is significantly higher

than the prediction of the non-perturbed sample, we decide

to accept hypothesis B
(mel)
1 and to reject B

(mel)
0 .

Looking at the medically irrelevant dimensions, similar

observations can be made for Sample 3, which is why C1

is also rejected. It is apparent that the prediction behaviors

do not seem to follow a clear pattern, which may be related

to the weak model performances for both samples. Yet, the

output of the explainer is still helpful as it provides insights
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into the model not being robust here and this can help im-

prove both the decision making and the re-development of

the model.

5. Discussion

Empirical results presented above demonstrate how the

black box model responds to the perturbed images and al-

lows us to draw conclusions about which features may have

been important. However, this information still needs to be

translated into an explanation for the user.

The model behavior was observed with only one trained

model. Results may differ with various model architectures

and training data sets. Additionally, it should be noted that

the perturbation of input samples in the results is succes-

sive and simultaneous perturbation of multiple dimensions

remains to be investigated.

Our goal was to find a domain-specific approach for local

explanations of a DNN model. Besides the explanation for

a single sample, global model explanations provide indis-

pensable insights. A first step in this direction could be the

application of our explanation method to multiple instances

and the subsequent aggregation of the results.

In addition, there is missing evidence between the ob-

served importance of feature-dimension and the true score

according to the ABCD rule. This, along with measure-

ment of other metrics to evaluate explanations, leaves room

for future research.

6. Conclusion and Future Work

The skin image classifier in a clinical decision support

system can serve as a second opinion for a dermatologist.

To a limited degree, the strong research community has al-

ready made it possible to realize such tasks today. However,

the models in such an AI-based system for the dermatolo-

gist only provide predictions, but the physician cannot ask

why the classifier came up with its decision.

XAI methods are intended to meet this need. We have

shown how a domain-specific approach for skin image anal-

ysis can look like. A conceivable scenario would be that a

dermatologist diagnoses a lesion as a nevus, but the model

classifies it as a melanoma. This mismatch leaves the treat-

ing physician (and his patient) in a skeptical position, which

is why both people ask: ”Why?” With our approach, the an-

swer could be: ”If the color is harmonized in the lesion,

the confidence with respect to the given prediction of the

classifier decreases”. The physician recognizes a color ir-

regularity in the dermatoscopic image, which is not visible

on the lesion, and can therefore explain why the classifier

incorrectly tended to diagnose melanoma.

The physician is either confirmed in its diagnosis by a

clinical decision support system or a contrary diagnosis is

made by the system. In both cases, it is enormously helpful

if human-understandable explanations can be generated to

interpret the predictions. Approaches adapted to the respec-

tive domain not only create more trust, but also a greater

understanding of the system.

Following the current results from sections 4 and 5, fu-

ture work may study the two remaining medically relevant

dimensions, asymmetry and differential structure, for which

the work by Barata et al. provides a overview of feature ex-

traction in dermoscopy image analysis [4]. Ali et al. show

a way to extract these features from lesions [1]. Closely re-

sembling what Almaraz-Damian et al. have shown in their

paper [2], another possible task could be to use the data per-

turbed by our explainer as training data to investigate both

the performance of the resulting model and whether the pre-

dictions follow a different pattern.

Moreover, the approach of perturbation-based explana-

tions using medically relevant and medically irrelevant fea-

tures for diagnosis may be applicable in other medical spe-

cialties.

7. Acknowledgement

This work was funded by the German Federal Ministry

of Education and Research (BMBF) under reference num-

ber 031L9196B.

References

[1] Abder-Rahman Ali, Jingpeng Li, and Sally Jane O’Shea. To-

wards the automatic detection of skin lesion shape asymme-

try, color variegation and diameter in dermoscopic images.

PLOS ONE, 15(6):e0234352, 2020. 7

[2] Jose-Agustin Almaraz-Damian, Volodymyr Ponomaryov,

Sergiy Sadovnychiy, and Heydy Castillejos-Fernandez.

Melanoma and nevus skin lesion classification using hand-

craft and deep learning feature fusion via mutual information

measures. Entropy, 22(4):484, 2020. 1, 4, 7

[3] Vijay Arya, Rachel K. E. Bellamy, Pin-Yu Chen, Amit

Dhurandhar, Michael Hind, Samuel C. Hoffman, Stephanie

Houde, Q. Vera Liao, Ronny Luss, Aleksandra Mo-
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