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Abstract

Due to the popularity and mobility of smart phones,

phone-related pedestrian distracted behaviors, e.g.,

Texting, Game Playing, and Phone calls, have caused

many traffic fatalities and accidents. As an advanced

driver-assistance or autonomous-driving system, computer

vision could be used to automatically detect distractions

from cameras installed on the vehicle for useful safety

intervention. The state-of-the-art method models this

problem as a standard supervised learning method with a

two-branch Convolutional Neural Network (CNN) followed

by a voting on all image frames. In contrast, this paper

proposes a new synthetic dataset named SYN-PPDB (448

synchronized video pairs of 53,760 computer game images)

for this research problem and models it as a transfer

learning problem from synthetic data to real data. A new

deep learning model embedded with spatial-temporal

feature learning and pose-aware transfer learning is

proposed. Experimental results show that we could

improve the state-of-the-art overall recognition accuracy

from 84.27% to 96.67%.

1. Introduction

Pedestrian fatalities and injuries have increased in the

past decade. In the United States, the total number of

pedestrian fatalities increased from 4,302 in 2010 to 6,283

in 2018 [1]. Phone-related distracted behaviors are one

obvious reason for pedestrian-related collisions [19, 20].

Accident probability is increased when pedestrians are

distracted and interacting with their mobile phones [23]

and engaging in activities such as texting, watching videos,

viewing maps, playing games, making phone calls, and so

on. As described in [19, 20], the number of injuries to

pedestrians engaged with their mobile phones has more than

doubled since 2005.

As an advanced driver-assistance or autonomous-driving
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system, computer vision could be used to automatically

detect pedestrian distractions from cameras installed on the

vehicle. The pioneering work in phone-related pedestrian

distracted behavior detection using computer vision is

proposed by [19, 20], which designs a traditional supervised

machine learning method including the components of

phone location, pose estimation and pattern recognition.

With multiple cues, the proposed method in [19, 20] is

not an end-to-end learning system and it utilizes a single

image as input. The state-of-the-art method by [23] models

this problem as a supervised deep learning method with

a two-branch Convolutional Neural Network (CNN) with

two synchronized cameras installed on the vehicle, where

a benchmark dataset named PPDB of 448 synchronized

video pairs from a vehicle is collected for this research

problem. However, this method takes a synchronized image

pair as the input and is extended to video recognition by a

simple voting through the image sequence, ignoring spatial-

temporal feature learning, which has been proven to be

important for video recognition [33, 31].

Instead of the standard supervised learning, this paper

treats this problem as a transfer learning problem with a

proposed deep learning model named PPDBNet from the

synthetic data to real data as shown in Fig. 1. Previous

work [30, 22, 6] has shown that synthetic data, e.g.,

computer game data, could be very helpful for computer

vision tasks in the real world. In this paper, we make several

efforts to improve the research of detecting phone-related

pedestrian distracted behaviors in the real world. First,

we create a new computer game-based synthetic dataset

named SYN-PPDB to simulate phone-related pedestrian

normal and distracted behaviors. Second, we implement

spatial-temporal feature learning by CNN-based spatial

feature extraction and Long Short-Term Memory (LSTM)

based temporal feature learning. Finally, we transfer the

knowledge gained from the synthetic data to the real data

using pose-aware transfer learning.

In contrast with many transfer learning methods that

learn a latent subspace for feature alignment [11, 27]

or minimize the data distribution or style difference [34,



Figure 1: Illustration of the transfer learning with the proposed

PPDBNet from the synthetic data to real data to detect the phone-

related pedestrian distracted behaviors. With one synchronized

video pair of the same person from left and right cameras as

the input, the goal is to recognize it into three classes as defined

in [23]: Class 1: No Engagement, Class 2: Eye Engagement (e.g.,

Texting, Game Playing), Class 3: Phone Call Engagement (e.g.,

Phone Calling).

12] or learn the domain invariant features by Generative

Adversarial Networks (GANs) [26, 18], our pose-aware

transfer learning is accomplished using two strategies: fine-

tuning and 2D human pose feature embedding. In this

paper, we find that 2D human pose is a relatively stable

feature between synthetic data and real data. Therefore,

we use the 2D human pose feature as the domain invariant

feature for transfer learning.

In summary, this paper’s main contributions are three

folds: 1) We propose a new deep learning model

(PPDBNet) to detect phone-related pedestrian distracted

behaviors which incorporates spatial-temporal feature

learning and pose-aware transfer learning; 2) We propose

a new synthetic computer game dataset named SYN-PPDB

(448 synchronized video pairs of 53,760 images) for this

research problem; 3) By modeling this research problem as

a transfer learning problem from synthetic data to real data,

we improve the state-of-the-art overall recognition accuracy

from 84.27% to 96.67%.

2. Related Work

Pedestrian Distracted Behavior Detection: By

detecting nearby pedestrians [4] using cameras on moving

vehicles, it is possible to analyze pedestrian behaviors and

pedestrian motions for collision avoidance [21], pedestrian

trajectory prediction [28] and so on. In this paper, we

focus on the detection of phone-related pedestrian distracted

behaviors by computer vision methods. Previous works on

phone-related pedestrian distracted behaviors detection [19,

20] relied on traditional machine learning techniques for

activity classification using one single camera image as

input. Meanwhile, some deep learning based works on

pedestrian attribute recognition [15] also take phone-related

issues into consideration. Unlike these methods that take

one single image as input, in order to get better detection

result, we use image sequences from videos as input in this

work.

The most-related work to this paper is by Humberto

et al. [23], which displayed the advantages of using the

synchronized video pair from left and right cameras against

using one single camera as input, but [23] obtained the

video recognition result by a simple voting method from

the image recognition result, which ignored the spatial-

temporal features hidden in videos. Following the same

problem definition in [23], this paper embeds the spatial

CNN and temporal LSTM to learn spatial-temporal features

and also models this research as a transfer learning problem

from synthetic data to real data.

Learning from Synthetic Data: Synthetic data is

effective to solve the data scarcity problem and patterns

learned from synthetic data could also be useful in real

data [14, 6, 13, 30, 5, 18]. To solve different computer

vision and autonomous driving problems, many previous

works collected synthetic data from existing computer game

engines [30, 13] or by building their own virtual computer

game scenes [10, 29] on Unreal Engine [3] or Unity3D

Engine [2]. Since all these excellent works on synthetic

data are task-oriented, this paper creates our own synthetic

dataset SYN-PPDB for detecting phone-related pedestrian

distracted behaviors.

We exploit this synthetic data to improve the detection

performance in real-world data by modeling it as a

transfer learning problem. Transfer learning can be

realized in various ways, such as domain adaptation [26,

18], subspace feature alignment [11, 27], image style

distribution minimization [34, 12] and so on, while we

propose a pose-aware transfer learning method in this paper

by incorporating 2D human pose consistency into transfer

learning.

Table 1: Summary for the proposed synthetic SYN-PPDB dataset.

This data organization is same as that in the real-world PPDB

dataset collected by [23]. Each video has 60 frames.

Set Class
synchronized

video pairs
videos

synchronized

image pairs
frames

Training 1 110 220 6,600 13,200

2 120 240 7,200 14,400

3 110 220 6,600 13,200

Total 340 680 20,400 40,800

Testing 1 38 76 2,280 4,560

2 40 80 2,400 4,800

3 30 60 1,800 3,600

Total 108 216 6,480 12,960



3. Synthetic Dataset: SYN-PPDB

The first contribution in this work is proposing a

SYNthetic dataset of Phone-related Pedestrian Distracted

Behaviors, which is named as (SYN-PPDB). This dataset

is generated using Unity 3D Engine [2], which has been

widely used by game developers and researchers from

different fields. We created two virtual city environments

in Unity, along with ten 3D virtual actors and one virtual

vehicle. These actors consist of 5 female and 5 male

individuals with different heights, clothes and walking

speeds. The vehicle has a fixed velocity of 1 meter per

second, and has two cameras attached on its front panel with

a distance of 1.8 meters. In the real-world environment,

the vehicle speeds may vary, which will be considered as

a domain difference as well. These two cameras are used

to record synchronized video pairs of the same person from

the left and right cameras, same as the setting in the real

PPDB dataset [23]. In order to prevent the problem of data

imbalance, we keep the data size and distribution of SYN-

PPDB the same as PPDB.

Figure 2: Example images of the datasets. (a): proposed synthetic

SYN-PPDB dataset, (b): real PPDB dataset [23]. From top to

bottom: synchronized video pairs of the same person for Class

1, Class 2, Class 3 by the left and right cameras.

We then produced a total number of 448 video pairs

based on above elements. Each synchronized video pair

was captured simultaneously by two cameras on the moving

vehicle of the same person, when a randomly selected actor

was walking across the street in or near the front of the

vehicle while engaging in a phone-related behavior. Each

video has a duration of 2 seconds, frame rate of 30 frames

per second (fps), resolution of 64 × 128 pixels per image,

and a corresponding phone-related behavior label from:

c1: no engagement, c2: eye engagement and c3: phone

call engagement. In the end, all frames were extracted to

construct a new dataset with a total number of 448(pairs)×

2(videos) × 2(seconds) × 30(fps) = 53, 760 images.

This dataset was split into a training set of 40, 800 images

(from 340 video pairs) and a testing set of 12, 960 images

(from 108 video pairs). The total number of video pairs and

training-testing split of the SYN-PPDB dataset are the same

as the real PPDB dataset [23]. The detailed data distribution

and class distribution of the SYN-PPDB dataset are shown

in Table. 1. Some example images are shown in Fig. 2.

4. The Proposed Method

In this section, we will describe the architecture of

the proposed network named PPDBNet, along with our

strategies for extracting spatial-temporal features and pose-

aware transfer learning.

4.1. Network Overview

Following the same problem definition in [23], the goal

of the proposed PPDBNet is to classify a synchronized

video pair X of the same person from left and right

cameras into a behavior class Y . Different from many

existing methods only using the appearance color image, we

estimate the 2D human pose by applying the OpenPose [7]

Body-25 model to the corresponding human appearance

image. Each pose image includes 25 key-points and is

formatted to be the same size as the input images (64×128).
Therefore, mapping can be formulated as h(X ) → Y ,

where:

X = {XL = (IL,PL),XR = (IR,PR)},Y ∈ {c1, c2, c3}.
(1)

As shown in Eq. (1), X includes two image sequences XL

and XR from a synchronized left-right video pair, and each

image sequence X has an appearance part I = (i1, ..., ik)
and a pose part P = (p1, ..., pk), where i and p indicate

the appearance image and pose image, k indicates sequence

length. Y is a phone-related behavior label from three

classes {c1, c2, c3}.

The proposed PPDBNet is a siamese-like network, as

shown in Fig. 3. It consists of a left branch and right

branch, receiving image sequences from the left and right

camera video separately, but sharing weights with each

other. Each branch has two CNN backbone networks that

are used for extracting the spatial feature from appearance

image i and pose image p respectively, and two LSTM

layers followed by a temporal pooling layer that is used

for extracting temporal features. The outputs of these two

branches are then concatenated and passed into a fully-

connected layer followed by a softmax normalization to get

the classification confidences. During the training process,

we use the cross-entropy loss function in Eq. (2) to optimize

the network:

Loss(X ,y) = −

n∑

j=1

yj log vj , (2)



Figure 3: The overall architecture of the proposed PPDBNet. Its goal is to classify a synchronized video pair of the same person from left

and right cameras into a behavior class, same as the problem definition in [23]. The 2D human pose is estimated by OpenPose [7].

where n is the number of classes, y = [y1, ..., yn]
⊤ is

the ground truth one-hot label vector with yj = 1 if the

input X belongs to class j, and v = [v1, .., vn]
⊤ is the

predicted vector where vj represents the confidence (0 ≤
vj ≤ 1) of the input X belonging to class j after the softmax

normalization.

4.2. Spatial­temporal Feature Learning

In order to capture spatial-temporal features from input

image sequences, we employ both CNN and LSTM in our

network. CNN has become a powerful tool for harnessing

rich spatial features from a single image in recent years.

While RNN (Recurrent Neural Network) has demonstrated

its edge over CNN in handling sequential data by exploring

the reserved information among different timesteps, and

has been applied in a wide range of areas, such as the

processing of texts, voices and videos. Here we utilize a

classic CNN VGG16 [25] to extract the spatial cues from

a single appearance image or pose image, and an improved

RNN unit LSTM to extract the temporal cues from image

sequences. It is also possible to have two separate LSTMs

for the appearance and pose cues respectively, followed by

a fusion. In this paper, we just fuse the spatial features of

appearance and pose cues first and then feed them into one

LSTM for the temporal feature learning.

Since the whole network is a siamese-like network, we

only take the left branch as an example to explain the

workflow for the sake of simplicity. Given the input image

sequence XL = (IL,PL) for the left branch, there are two

images (it, pt) at timestep t, where it is the appearance

image and pt is the pose image. These two images are fed

into two CNNs accordingly (with different weights) to get a

feature vector of size (4096 × 1). Their feature vectors are

then concatenated as a single vector of size (8192× 1), and

this vector becomes the input data for the LSTM layers at

timestep t. The LSTM layers take a tensor of size (8192×k)
as input and produce the output tensor of size (512 × k),
where k is the length of image sequence, 512 is the number

of LSTM hidden units. The output tensor is then passed

into the temporal pooling layer to get a feature vector of

size (512× 1) as shown in Eq. (3):

f = Pooling(X) =

∑k

i=1
xi

k
, (3)

where X = [x1, ...,xk] ∈ R
512×k is the input tensor for

temporal pooling layer, xt ∈ R
512×1 is the vector at time

step t, and f ∈ R
512×1 is the output vector. In this way,

we can construct a robust representation for the input image

sequence by extracting its spatial-temporal features within

each branch. Finally, the outputs from two branches are

concatenated and fed into a fully-connected layer to get the

classification result.

4.3. Pose­aware Transfer Learning

4.3.1 Human pose as domain-invariant feature

In this paper, we treat the 2D human pose as a kind of

domain invariant feature. The assumption is based on

two observations. First, in the same class, we find that

the LPIPS distance [32] between 2D human pose images

estimated by [8] is smaller than the corresponding human
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Figure 4: Illustration of human pose reducing the domain gap

between the synthetic data as source domain (a, c) and real data as

target domain (b, d). The LPIPS distance [32] between estimated

2D human pose by [8] is significantly smaller than that between

the corresponding human appearance images.

appearance images between the synthetic data (source

domain) and real data (target domain), as shown in Fig. 4.

The Learned Perceptual Image Patch Similarity (LPIPS)

is a popular deep learning-based perceptual metric with

a better mimic to human perception, which computes

the distance of multi-level activations of a pre-trained

deep CNN network. Smaller LPIPS distance indicates

more similar perception. Second, we implement the t-

Distributed Stochastic Neighbor Embedding (t-SNE) [17]

based statistical data analysis. Specifically, we randomly

select 100 images and their corresponding 2D human pose

images estimated by [8] for each class in the synthetic

data and real data. The images are the high-dimensional

data and the t-SNE is an algorithm to reduce dimensions

to visualize the high-dimensional data. With dimension

reduction by t-SNE to 2D space, we extracted the centers

for each class in source domain as CSi
and the centers for

each class in target domain as CTi
, where i = 1, 2, 3 for

the three defined classes. The L2 distance between CS1

and CT1
is 29.9 using human appearance images while the

L2 distance between CS1
and CT1

is much smaller as 6.7

using the estimated 2D human pose images, which also

happens for other two classes in our experiment. Based on

these two observations, it is obvious that the human pose

could reduce the domain gap between the synthetic data

and real data. Because the human appearance images might

contain different background contexts and many foreground

color/texture variances between the synthetic data and real

data, the human pose is considered as the relatively domain-

invariant feature in this paper.

4.3.2 Transfer learning strategies

In this paper, we propose a pose-aware transfer learning for

this task, which mainly includes two strategies: human pose

based domain-invariant feature embedding and network

fine-tuning. First, we estimate the 2D human pose of

each synthetic image and that of each real image by

OpenPose [8]. Second, we incorporate the estimated 2D

human pose into the proposed network as shown in Fig. 3

and train it on the synthetic data. Third, we fine-tune

the pretrained network model using the real data. In this

way, the trained network could well inherit the spatial-

temporal feature and pose information on the synthetic data

and be further adapted to the real data. By embedding

the human pose as the domain-invariant feature into the

proposed network, the domain gap is reduced, leading to

a better transfer learning.

5. Experiments

Focusing on the task of phone-related pedestrian

distracted behavior detection from videos or image

sequences, we study the performance of proposed method

in this section. First we introduce the experiment setting and

comparison methods, then show the experimental results on

the real PPDB dataset. Finally, we discuss the performance

of the proposed method in different parameter settings.

5.1. Experiment setting

We employ two datasets in our experiment: the synthetic

SYN-PPDB dataset proposed by us and the real-world

PPDB dataset collected by [23]. It is worth mentioning that

the SYN-PPDB dataset and the real PPDB dataset are with

the same data organization (video numbers, training-testing

splitting), as shown in Table. 1. During the experiment, we

use these two datasets in two different ways. On one hand,

we pre-train networks on SYN-PPDB and fine-tune them on

PPDB to observe the effect of transfer learning; on the other

hand, we train networks only on PPDB for comparison

with typical supervised learning. In the end, all experiment

results are reported on the testing set of PPDB. We utilize

the classification accuracy and confusion matrix to show the

detailed recognition performance for each behavior class,

and use the average classification accuracy of all classes to

evaluate the overall recognition performance.

Since each video has 60 frames, it is hard to cover all

the 60 frames into the proposed PPDBNet due to the large

GPU memory cost. Therefore, we split the 60 frames of one

video into 60

k
sub-sequences (chunks) with sequence length

k, and the overall classification confidence of the video is

averaged over these sub-sequences for the final recognition

of the video. We set k = 10 in this experiment, and the

choice about k will be discussed later in this section.

During our training process, the batch size was set as

1 and Adam method was used for optimizing the network

weights with a weight decay of 5 × 10−4, and the training

epoch was set as 40 and the learning rate was fixed as

1 × 10−7. All experiments were conducted on an NVIDIA

GeForce RTX 3090 GPU, and the overall GPU memory was

about 10GB during training and 2.5GB during testing based

on above setting.



5.2. Comparison methods

We compare the results of proposed method with several

state-of-the-art methods: Dual-branch CNN [23], Graph

Convolution Networks based 2s-AGCN [24], and MS-

G3D [16]. The last two networks, 2s-AGCN and MS-

G3D, take skeletal human pose image sequence as input for

action recognition, thus can handle the video recognition

task properly. The Dual-branch CNN takes one image pair

as input for action recognition and then it applies a voting

approach to average the confidence outputs of all video

frames to obtain the final video recognition result. All

these three networks are trained on the real PPDB dataset,

note that 2s-AGCN and MS-G3D are trained and tested on

skeletal human pose images, while Dual-branch CNN is

trained and tested on human appearance images.

In order to investigate the influence of human appearance

images and pose images to our proposed PPDBNet, we

simplify the input image sequences to get two variants of

PPDBNet. The one with only human appearance image

sequence as input is denoted as PPDBNet∗, the other with

only human pose image sequence as input is denoted as

PPDBNet∗Pose. The PPDBNet∗ method is similar to the

LRCN method [9] for activity recognition.

Besides, when a network is trained first on the synthetic

SYN-PPDB dataset and then fine-tuned on the real PPDB

dataset, we add a “-S2R-FT” suffix to its name, where

“S2R” means the transfer from the synthetic data to the real

data and “FT” indicates fine-tuning based transfer learning.

For example, PPDBNet∗-S2R-FT denotes that we train the

PPDBNet∗ network on the synthetic SYN-PPDB dataset

first and then fine-tune it on the real PPDB dataset, while

PPDBNet∗ with no suffix denotes that we train it only on

the real PPDB dataset. In this way, we can study the effect

of our transfer learning strategy.

In addition, we compare our proposed Fine-tuning

(FT) based pose-aware transfer learning method with the

image style transfer based domain adaptation method

CycleGAN [34]. We first train a CycleGAN [34] model to

transfer the style of synthetic images to that of real images,

and then train the PPDBNet∗ network on the transferred

fake images by CycleGAN and finally fine-tune the pre-

trained PPDBNet∗ model on the real PPDB dataset, which

is denoted as PPDBNet∗-S2R-CycleGAN.

5.3. Experimental results

The detailed recognition accuracy scores of different

methods are reported in Table. 2. The confusion

matrices of some representative methods are shown in

Fig. 5. From the experimental results, we can see

that the proposed PPDBNet-S2R-FT method achieved

the best overall average classification accuracy 96.67%,

which is a significant improvement from the state-of-the-

art performance 84.27% by the Dual-branch CNN [23].

Compared to Dual-branch CNN, other methods include

spatial-temporal feature learning, so they obtained better

overall performance.

When trained with only human appearance images

on the real PPDB dataset, the average accuracy of our

PPDBNet∗ (88.12%) is 3.85% higer than Dual-branch CNN

(84.27%), this proves the power of spatial-temporal feature

learning in our network architecture. When trained with

only human pose images on the real PPDB dataset, our

PPDBNet∗Pose (92.73%) outperformed MS-G3D (91.91%),

but fell behind 2s-AGCN(92.78%) slightly. However, it

is worth noting that our PPDBNet∗Pose obtained equal or

better accuracy than 2s-AGCN on two more important

classes, class 2 Eye Engagement and class 3 Phone Call

Engagement.

With the help of transfer learning, PPDBNet∗-S2R-FT

obtained higher average accuracy (92.28%) than the average

accuracy (88.12%) by PPDBNet∗, and PPDBNet∗Pose-S2R-

FT obtained higher average accuracy (93.89%) than the

average accuracy by PPDBNet∗Pose (92.73%). This result

demonstrates the advantages of the proposed synthetic

SYN-PPDB dataset, which could improve the recognition

accuracy on the real PPDB dataset by transfer learning. This

result also shows that the deep learning model performs

better in this task if estimated 2D human pose images are

embedded by comparing PPDBNet∗Pose and PPDBNet∗.

PPDBNet∗-S2R-CycleGAN [34] did not obtain high overall

accuracy (89.96%), which indicates that only using human

appearance images for transfer learning might be difficult

for this task.

The proposed PPDBNet learns the spatial-temporal

features for the recognition ability from both the human

appearance and skeletal human pose, leading to the second

best performance 95.83%. The PPDBNet is pose-aware

and when it is combined with the fine-tuning based transfer

learning, the final approach PPDBNet-S2R-FT learns the

recognition ability on the synthetic data first and then

transfers the learned ability to the real-world data, leading

to the best performance 96.67%. This phenomena shows

that the Pose-aware Transfer Learning from the synthetic

data to real data could really help the recognition on

the real data. Compared to other skeletal human pose

based activity recognition methods MS-G3D [16] and 2s-

AGCN [24], the proposed methods got better performance

because it used the comprehensive spatial-temporal features

(human appearance and skeletal human pose) and the

advanced Pose-aware Transfer Learning method. From

the PPDBNet method (Proposed) to the PPDBNet-S2R-FT

method (Proposed+), we can see the improvement for Class

2 (Eye engagement) recognition accuracy (from 97.5% to

100%). Because Class 2 (Eye engagement) is the most

dangerous class in the phone-related distracted behaviors,

we think this improvement is quite valuable. The confusion



Table 2: Recognition accuracy (%) on the real PPDB dataset [23]. “S2R” means the transfer from the synthetic SYN-PPDB dataset to the

real PPDB dataset. “FT” indicates Fine-tuning based transfer learning. Note that the methods without “S2R” means the pure supervised

learning on the real PPDB dataset, and the proposed PPDBNet is pose-aware, and Dual-branch CNN [23] applies a voting approach to

summarize all the image frames for a video recognition.

Methods Class #1 Class #2 Class #3 Average

Dual-branch CNN [23] 71.10 95.00 86.70 84.27

MS-G3D [16] 97.40 95.00 83.33 91.91

2s-AGCN [24] 100.00 95.00 83.33 92.78

PPDBNet∗ 86.84 87.51 90.00 88.12

PPDBNet∗-S2R-FT 86.84 100.00 90.00 92.28

PPDBNet∗-S2R-CycleGAN [34] 81.58 95.00 93.33 89.96

PPDBNet∗Pose 97.37 97.50 83.33 92.73

PPDBNet∗Pose-S2R-FT 100.00 95.00 86.67 93.89

PPDBNet (Proposed) 100.00 97.50 90.00 95.83

PPDBNet-S2R-FT (Proposed+) 100.00 100.00 90.00 96.67

Figure 5: Confusion matrices of the three-class recognition accuracy (%) on the real PPDB dataset [23] by different methods: (a) Dual-

branch CNN [23], (b) MS-G3D [16], (c) 2s-AGCN [24], (d) PPDBNet∗, (e) PPDBNet∗-S2R-FT [9], (f) PPDBNet∗-S2R-CycleGAN [34],

(g) PPDBNet∗Pose, (h) PPDBNet∗Pose-S2R-FT, (i) PPDBNet (Proposed), (j) PPDBNet-S2R-FT (Proposed+).

matrices in Fig. 5 also show that the proposed methods has

less misclassifications for the three classes. In the cases

of human ambiguity actions, slight variations between the

way pedestrians interact with their phones (talking using

speaker, etc.) can lead to minor misclassifications for the

Proposed+ method.

These results demonstrate that the proposed PPDBNet,

along with the new synthetic dataset and pose-aware

transfer learning method, is able to well classify the phone-

related pedestrian distracted behaviors.

5.4. Discussion on Sub­Sequence Length

To demonstrate the effect of sub-sequence (chunk)

length k on overall classification accuracy, we have

experimented on various sub-sequence lengths. When using

sub-sequence length of 4 frames, PPDBNet-S2R-FT is able

to classify the input image sequence in nearly real-time

(43.25 ms) while maintaining a good average classification

accuracy of 92.18%. When using sub-sequence length of

10 frames, PPDBNet-S2R-FT obtains the best accuracy of

96.67%, which is used in our experiment. Our results for



Table 3: Recognition accuracy (%) and inference time (ms) of the

proposed PPDBNet-S2R-FT under various sub-sequence (chunk)

lengths.

Sub-sequence Length Average Accuracy Inference Time

k=4 92.18 43.25

k=6 94.96 64.73

k=10 96.67 107.97

k=15 94.55 161.75

Table 4: Effect of spatio-temporal learning on the recognition

accuracy (%).

Method Class 1 Class 2 Class 3 Average

PPDBNet-S2R-FT 100.00 100.00 90.00 96.67

PPDBNetFC-S2R-FT 100.00 97.50 83.33 93.61

various sub-sequence lengths are listed on Table. 3. It is

worth mentioning that we fix the same length for the non-

overlapping frames per sub-sequence (no sliding window

approach) to make it simple.

5.5. Discussion on Spatio­Temporal Learning

In the proposed method, spatio-temporal learning in the

video plays an important role, which is realized by the

LSTM layers. In order to show the effect of spatio-temporal

learning, we replace the LSTM layers with a Fully-

Connected (FC) layer for the Proposed+ method, which is

denoted as PPDBNetFC-S2R-FT. The experimental results

are available on Table. 4. PPDBNetFC-S2R-FT achieves

93.61%, which is lower than 96.67% by PPDBNet-S2R-

FT (Proposed+). It means that the LSTM layers for spatio-

temporal learning by the Proposed+ method could improve

the network’s video recognition ability compared to the

same network without spatio-temporal learning.

6. CONCLUSIONS

In this paper, we proposed a new way for detecting

phone-related pedestrian distracted behaviors. First, we

proposed a new synthetic dataset named SYN-PPDB (448

synchronized video pairs of 53,760 images) for this

research. Second, we proposed a new network architecture

named PPDBNet with a Pose-aware Transfer Learning

method to improve the recognition accuracy on the real-

world data by inheriting the information gained from the

synthetic data. On the real PPDB dataset [23], the proposed

method could improve the state-of-the-art overall average

recognition accuracy from 84.27% to 96.67%.
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