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Abstract

In this paper, we focus on the multi-object tracking

(MOT) problem of automatic driving and robot navigation.

Most existing MOT methods track multiple objects using a

singular RGB camera, which are prone to camera field-of-

view and suffer tracking failures in complex scenarios due

to background clutters and poor light conditions. To meet

these challenges, we propose a MultiModality PAnoram-

ic multi-object Tracking framework (MMPAT), which takes

both 2D panorama images and 3D point clouds as input

and then infers target trajectories using the multimodality

data. The proposed method contains four major modules,

a panorama image detection module, a multimodality data

fusion module, a data association module and a trajectory

inference model. We evaluate the proposed method on the

JRDB dataset, where the MMPAT achieves the top perfor-

mance in both the detection and tracking tasks and signifi-

cantly outperforms state-of-the-art methods by a large mar-

gin (15.7 and 8.5 improvement in terms of AP and MOTA,

respectively).

1. Introduction

Multiple Object Tracking (MOT) aims to locate the po-

sitions of interested targets, maintains their identities across

frames and infers a complete trajectory for each target. It

has a wide range of applications in video surveillance [82,

27], custom behavior analysis [21, 27], traffic flow moni-

toring [56] and etc. Benefited from the rapid development

of object detection techniques [64, 24, 8, 48, 74, 87, 40],

most state-of-the-art MOT trackers follow a tracking-by-

detection paradigm. They first detect targets in each im-

age using modern object detectors and then associate these

∗Corresponding author.

Figure 1. Illustrations of multimodality panoramic multi-object

tracking. (a) 360◦ panorama image. (b). Multimodality collab-

oration.

detection responses into trajectories by data association.

These methods have achieved significant improvement in

recent years and became the main stream of MOT.

Accurate and efficient as they are, these methods are

prone to camera field-of-view (FOV) and cannot handle the

blind areas of camera views. Besides, limited to the prop-

erties of RGB cameras, these methods also have difficulties

tracking targets in complex scenarios such as poor light con-

ditions and background clutters. Figure 2 illustrates a cou-

ple of tracking examples of the singular camera multi-object

tracking. In (a), the MOT trackers track targets in a crowd-

ed scene. We can see that, the MOT trackers only generate

sporadic trajectories while unconscious of the other targets

in the surrounding. In (b), MOT trackers are failed to track

targets due to background clutters and poor light condition-
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s. These drawbacks of the single-camera MOT trackers pre-

vent them from many important applications such as robot

navigation [54] and automatic driving [22, 6].

To meet this challenge, we propose a MultiModality

PAnoramic multi-object Tracking framework (MMPAT),

which takes 2D 360◦ panorama images and 3D LiDAR

point clouds as input and generates trajectories for target-

s by multimodality collaboration. The key insights of our

MMPAT are twofold. First, a wider vision brings more in-

formation. As shown in Figure 1 (a), compared with the

singular-camera MOT that tracks targets in a local view, tak-

ing the 360◦ panorama images as input enables us to have a

global view of the surroundings and opens up opportunities

for optimal tracking. Second, singular modality is biased

while multimodality complement each other. As shown in

Figure 1 (b), when the target in red bounding box is invisi-

ble due to poor light condition, the 3D point cloud supple-

ments the target information for tracking. This provides a

foundation for robust object tracking in complex scenarios.

On this basis, we design the MMPAT algorithm with taking

both the 2D 360◦ images and 3D point clouds as input. The

proposed method is an online MOT method containing four

major modules, 1) a panoramic object detection module, 2)

a multimodality data fusion module, 3) a data association

module and 4) a trajectory extension module. The Module

1 takes 2D images as input and outputs detection results for

the panorama images. As panorama images are often long-

width, the target responses in the feature maps of panorama

images are narrow. This makes it difficult to locate the tar-

gets and generate accurate bounding boxes. To handle this

problem, we design a split-detect-merge detection mecha-

nism to detect targets in panorama images, which first splits

panorama image into image slices, then detects targets in

each slice, and finally merges detection responses from dif-

ferent slices. In Module 2, we fuse 2D images with 3D point

clouds and append each detection with a 3D location char-

acteristic. In Module 3, we match existing trajectories with

newly obtained detections, where target appearance, motion

and 3D location are exploited for data association. In Mod-

ule 4, we generate accurate and complete trajectories for tar-

gets according to the data association results. The proposed

MMPAT achieves the best performance in the detection and

tracking tracks of the 2nd JRDB workshop1 and significant-

ly outperforms state-of-the-art methods by a large margin

(15.7 and 8.5 improvements on AP and MOTA, respective-

ly).

In summary, the contributions of this paper include:

• We propose a MultiModality PAnoramic multi-object

Tracking framework (MMPAT) for robot navigation

and automatic driving.

• We provide an efficient object detection mechanism to

1https://jrdb.stanford.edu/workshops/jrdb-cvpr21

detect targets in panorama images.

• We design a 3D points collection algorithm to asso-

ciate the point clouds with 2D images.

• The proposed method significantly improves the detec-

tion and tracking performance by a large margin.

2. Related Work

2.1. 2D Multi­object Tracking

Motivated by the rapid development of using Deep Con-

volution Neural Network in computer vision tasks [53, 40,

24, 26, 46], most state-of-the-art MOT methods follow a

tracking-by-detection paradigm due to the rapid develop-

ment of the DCNN-based detection techniques. According

to whether frames following the future frame are available

in the tracking process, these methods can be further divid-

ed into two subcategories: offline and online trackers

Offline MOT methods allow using (a batch of) the entire

sequence to obtain the global optimal solution of the data

association problem. A series of works [51, 69, 73, 75, 83,

84] use graph models to link detections or tracklets (short

trajectories) in the graph into trajectories. Ma et al. [51] in-

troduce a hierarchical correlation clustering (HCC) frame-

work which builds different graph construction schemes at

different levels to generate local, reliable tracklets as well

as globally associated tracks. Wang et al. [75] utilize a

graph model to generate tracklets by associating detections

based on the appearance similarity and the spatial consis-

tency measured by the multi-scale TrackletNet and cluster

these tracklets to get global trajectories. A few method-

s [32, 23, 33] tackle MOT problems by finding the most

likely tracking proposals. Kim et al. [32] propose a nov-

el multiple hypotheses tracking (MHT) method which enu-

merates multiple tracking hypothesis and selects the most

likely proposals based on the features from long-term ap-

pearance models. There are also methods formulating the

result optimization problem of MOT as a minimum cost lift-

ed multicut problem [73], a multidimensional assignmen-

t problem for multiple tracking hypothesis [32], a Maxi-

mum Weighted Independent Set (MWIS) problem [68] or

a lifted disjoint paths problem [28]. Besides, a series of

deep network based trackers are developed, such as Deep

Tracklet Association (DTA) [88], bilinear LSTM (bLST-

M) [33], Message Passing Netowrk (MPN) [4], and Track-

letNet Tracker (TNT) [75]. There are other methods im-

prove the performance of MOT by Tracklet-Plane Matching

(TPM) [58] and Correlation Co-Clustering (CCC) [31].

Online MOT methods require that only the information

in the current frame and the previous frame can be used to

predict the tracking result of current frame, and the track-

ing result of the previous frame cannot be modified based
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Figure 2. Limitations of the single-modality single-camera tracking. (a) Limitation of camera field-of-view. (b) Tracking failures in

background clutters and poor light conditions. The red arrows point to tracking failures.

on the information of the current frame. A large num-

ber of research studies [77, 14, 78, 80, 66] utilize bipar-

tite matching to tackle online MOT problems. Wojke et

al. [77] divide the existing trajectories and new detection-

s into two disjoint sets, and tackle the trajectory-detection

matching problems by the Hungarian algorithm [55]. The

method [66] uses a Recurrent Neural Networks (RNN) to

integrate Appearance, Motion and Interaction information

(AMIR) to jointly learn robust target representations. A se-

ries of deep learning approaches are proposed to measure

the similarity between a target and a tracklet, like Spatial

Temporal Attention Mechanism (STAM) [16], Recurrent

Autoregressive Network (RAN) [20], Dual Matching Atten-

tion Network (DMAN) [90], and Spatial-Temporal Relation

Network (STRN) [80]. In FAMNet [15], Feature extrac-

tion, Affinity estimation and Multi-dimensional assignmen-

t are integrated into a single Network. Besides, there are

several works that incorporate the technologies from oth-

er fields, such as Tracktor++ [1] leverages bounding box

regression from object detection, Instance Aware Tracking

(IAT) [14] leverages the idea of model updatng from single

object tracking, and GSM [47] leverages the graph match-

ing module from target relations.

2.2. 3D Multi­object Tracking

3D Object Detection. There is a large literature on the

use of instant sensor data to detect 3D object in the do-

main of autonomous driving. Depending on the modality

of input data, 3D object detectors can be roughly divid-

ed into three categories: monocular image-based method-

s, stereo imagery-based methods, and LiDAR-based meth-

ods. Given a monocular image, early 3D object detec-

tion works [85, 11, 10, 38] usually exploit the rich detail

information of the 3D scene representation to strengthen

the understanding of 3D targets, like semantic and objec-

t instance segmentation, shape features and location pri-

ors, key-point, and instance model, while later state-of-the-

art studies [79, 36, 62, 52, 5] pay more attention to 3D

contexts and the depth information encoding from multi-

ple levels for accurate 3D localization. Compared with

the monocular-image based methods, stereo-imagery based

methods [12, 42, 76, 59] add additional images with known

extrinsic configuration and achieve much better 3D objec-

t detection accuracy.The method [12] first generates high-

quality 3D object proposals with stereo imagery by encod-

ing depth informed features that reason about free space,

point cloud densities and distance to the ground, and em-

ploys a CNN on these proposals to perform 3D object de-

tection. Stereo R-CNN [42] exploits object-level disparity

information and geometric-constraints to get object detec-

tion by stereo imagery alignment. Wang et al. [76] convert

image-based depth maps generated from stereo imagery to

pseudo-LiDAR representations and apply existing LiDAR-

based detection approaches to detect object in 3D space. In

addition to image-based methods, there is abundant litera-

ture [41, 18, 89, 39, 60, 71] directly using the 3D informa-

tion from the LiDAR point cloud to detect 3D objects. Sev-

eral works [18, 89, 39] sample the unstructured point cloud

as a structured voxel representation and encode the fea-

tures using 2D or 3D convolution networks to detect objec-

t. Methods [41, 81] utilize conventional 2D convolutional

networks to achieve 3D object detection by projecting point

clouds to the front or bird’s-eye views. Besides, there are al-

so methods [60, 71] directly employ raw unstructured point

clouds to localize 3D objects with the help of PointNet [61]

encoder. Moreover, there are other methods [13, 45, 35, 44]

fusing LIDAR point clouds and RGB images at the feature

level for multi-modality detection.

3D Object Tracking. Due to the success of the

tracking-by-detection paradigm in 2D object tracking,

many 3D object tracking methods also follow this paradig-

m. Based on the 3D detection results, methods [57, 67, 72]

utilize filter-based (Kalman filter; Poisson multi-Bernoulli

mixture filter) algorithm to continuously track 3D objects,
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Figure 3. Overview of the MMPAT framework. The inputs are 2D image frames and 3D point clouds. The proposed method contains

four major modules. a) The object detection module. b) The Multimodality data fusion module. c) The data association module. d) The

Trajectory inference module.

while Hu et al. [29] design an LSTM-based module using

data-driving approaches to directly learn the object motion

for more accurate long-term tracking. However, the loss

of information caused by decoupling detection and tracking

may lead to sub-optimal solutions. Benefit from stereo im-

ages, the method [19] focuses on reconstructing the object

using 3D shape and motion priors, and the method [43] ex-

ploits a dynamic object bundle adjustment (BA) approach

which fuses temporal sparse feature correspondences and

the semantic 3D measurement model to continuously track

the object, while the performance on 3D localization for

occluded objects is limited. From another aspect, Luo et

al. [50] encode 3D point clouds into 3D voxel representa-

tions and jointly reason about 3D detection, tracking and

motion forecasting so that it is more robust to occlusion as

well as sparse data at range.

3. Methodology

In this section, we first overview the framework of our

proposed method and then provide detailed descriptions of

the key techniques.

3.1. Framework Overview

As illustrated in Figure 3, the proposed MMPAT is an

online MOT method containing four major modules: 1) an

object detection module to locate targets in the panorama

images, 2) a multimodality data fusion module to associate

3D point clouds with 2D images, 3) a data association mod-

ule to match existing trajectories with newly obtained detec-

tions and 4) a trajectory inference module to generate tra-

jectories for targets. In the following, we provide detailed

descriptions of each module.

3.2. Object Detection in Panorama Image

Compared with object detection on ordinary-size images

(such as 720P and 1080P images), there are two additional

challenges that need to be solved with the panorama im-

ages. First, most two-stage object detectors resize the input

images into a fixed size and then generate region proposals

on the feature maps. However, as the 2D panorama images

have a long width, the target responses are narrow and fee-

ble in the feature maps of resized images. This makes it

difficult to locate the target in the feature maps and gener-

ate accurate proposals for the targets. Second, in panorama

images, the size of targets often varies in a large range due

to perspective changes. This leaves a challenging problem

to handle the size variations of targets for accurate objec-

t detection. To tackle these problems, we design an object

detection algorithm for panorama image. As shown in Fig-

ure 4, we first split the panorama image into several im-

age slices along the image width. Then, we detect objects

in each image slice following a cascade detection paradig-

m [7]. In the end, detections responses from different image

slices are merged together using NMS [3].

3.2.1 Detection Pipeline

Panorama image split. Given the panorama image It at

time t, we first split the image It into N image slices It =
{Int }

N
n=1, where the image slices It are obtained by splitting

image It along the width dimension with an overlap of 0.2.

Cascade object detector. We then detect objects in each

image slice Int using a cascade object detector. As shown

in Figure 4, the object detector is composed of three com-

ponents, i.e., a deformable convolution network, a region

proposal network and a cascade detection header. In the

deformable convolution network, we take the ResNet50 ar-

chitecture [25] as our backbone, with the fully-connected

layers and last pooling layer removed. To handle the tar-

get size variations, a deformable convolution [17] is em-

ployed, which adds 2D offsets to the sampling location of

standard convolutions and enables free form deformations

of the sampling grid. Then, taking the feature maps, a re-

gion proposal network [64] is adopted to generate proposals

of targets. Taking the region proposals and feature maps as

input, the cascade detection header iteratively regresses the

bounding boxes to produce more accurate bounding box-
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Figure 4. Pipeline of object detection. The “DCN” denotes de-

formable convolution network, “RPN” denotes region proposal

network, “pool” denotes pooling layers, “H” denotes regression

head layer, “B” and “C” denote bounding box and classification,

respectively.

es. At each regression layer l, there is a classifier hl and a

bounding box regressor fl. For a bounding box b, the cas-

cade object detector iteratively regresses the bounding box,

which can be written as:

f(x,b) = fL ◦ fL−1 ◦ . . . f1(x,b), (1)

where x is the input feature map andL is the total number of

regression layers. At the inference, the regression takes the

region proposals as input and iteratively regresses bounding

boxes. We use b0 to denote the input region proposals and

bl = fl(xl,bl−1) to denote the output bounding box of the

l-th regressor.

Detection merge. We use Bt(i) to denote the bounding

box collection of the i-th image slice Iit. We merge detec-

tion responses from all the image slices by Non-Maximum

Suppression (NMS) [3]:

Bt = NMS(Bt(1), ...,Bt(N)), (2)

where Bt denotes the detection set of panorama image It.

We use Bi
t to denote the i-th detection in Bi

t.

3.2.2 Loss Function

For each regression layer l of the cascade object detector,

the loss function is composed of two parts: bounding box

regression and classification.

Bounding box regression. The objective of bound-

ing box regression is to refine a candidate bounding box

bl = (bx
l ,b

y
l ,b

w
l ,b

h
l ) into a ground-truth bounding box

gl = (gx
l ,g

y
l ,g

w
l ,g

h
l ), where (∗x, ∗y) are the coordinate

of bounding box center and ∗w and ∗h are the width and

height, respectively. Transforming this objective into loss

function, we have:

Lloc(bl,gl) =
∑

j∈{x,y,w,h}

smoothL1(b
j
l − g

j
l ), (3)

in which

smoothL1(a) =

{

0.5 a2, if |a| < 1,
|a| − 0.5, else.

(4)

Classification. We adopt the cross-entropy loss to opti-

mize the classification header. We use yl to denote the one-

hot ground-truth label of bl and use pl = hl(bl) to denote

the output classification vector of bl. Then the classification

loss function can be written as:

Lcls(bl,yl) = CrossEntropy(pl,yl), (5)

in which

CrossEntropy(p, q) = −

C+1
∑

i

p(i) · log(q(i)), (6)

where C is the number of classes and p(i) (or q(i)) is the

i-th element of the vector p (or q). On this basis, the loss

function of the cascade object detector can be formulated

as:

Ltotal(bl,gl,yl) =

L
∑

l=1

Lcls(bl,yl) + δ(yl) · Lloc(bl,gl),

(7)

where δ(yl) = 0 if yl belongs to background class and

δ(yl) = 1 for otherwise.

3.3. Multimodality Data Fusion

As shown in Figure 5, this module aims to associate de-

tections with 3D points and append each detection Bi
t with a

3D location characteristic lit. The collection of 3D points for

a detection contains two steps. First, we perform instance

segment in the 2D bounding box to filter out the background

clutters. Then, we collect 3D points of the target based on

3D-to-2D projection.

Specifically, let M be the projection matrix from 3D

point cloud to 2D image plane, Ωbox be the collection of

foreground pixels of the 2D bounding box and Ωptc be the

collection of 3D points in the point cloud. We collect 3D

points of the target by:

P = {h | ∀ h ∈ Ωptc, if ρ(h;M) ∈ Ωbox}, (8)

where ρ(h;M) projects the input 3D point h to 2D pix-

el using the input projection matrix M. For computation

efficiency, similar to [60], we define a 3D frustum search

space according to the 2D bounding box and then project

3D points to image plane within the search space. We use

Pv
t to denote the 3D points of detection Bv

t , the 3D loca-

tion lvt of Bv
t is obtained by averaging the points in Pv

t , i.e.,

lvt = average(Pv
t ).

3.4. Data Association

We use Tt−1 = {T 1
t−1, ..., T

Kt−1

t−1 } to denote the collec-

tion of trajectories at time t− 1, where Kt−1 is the number

of trajectories. Each trajectory T i
t−1 is made of a serious

tuples:

T i
t−1 = {(aik, b

i
k, l

i
k), k ∈ ϕi

t−1}, (9)
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Figure 5. Illustration of multimodality data fusion.

where ϕi
t−1 is the time index set of the trajectory T i

t−1, aik,

bik, lik are the appearance feature, bounding box and location

of the target at time k. Taking the bounding box collection

Bt = {B1
t , ...,B

Qt

t }, where Qt is the number of detections

at time. The objective of data association is to match the

newly obtained bounding boxes Bt−1 with the existing tra-

jectories Tt−1, and manage target trajectories according to

the matching result.

We formulate the data association as a bipartite graph

matching problem, where we first compute a pairwise

trajectory-detection affinity matrix between trajectoreis and

detections and then solve the matching problem using the

Hungarian algorithm [37].

3.4.1 Affinity Measurement

We use A ∈ R
Kt−1×Qt

≥0
to denote the pairwise affinity ma-

trix of Tt−1 and Bt, where each element A(u, v) in A de-

notes the affinity between T u
t−1 and Bv

t . The larger A(u, v)
is, the higher affinity of T u

t−1 and Bv
t is. We compute the

affinity A(u, v) score of each trajectory-detection pair us-

ing the appearance, motion and 3D location information:

A(u, v) = ψapp(T
u
t−1,B

v
t )+ψmot(T

u
t−1,B

v
t )+ψloc(T

u
t−1,B

v
t ),

(10)

where ψapp(·, ·), ψmot(·, ·) and ψloc(·, ·) compute the ap-

pearance, motion and location affinity of the input trajectory

and detection, respectively.

Appearance similarity. The appearance similarity is

computed by an averaged cross-correlation between the tra-

jectory and detection appearance features, which can be

written as:

ϕapp(T
u
t−1,B

v
t ) =

∑

∀k∈τu

t−1

[

ek−t · γ(auk , φ(B
v
t ))

]

∑

∀k∈τu

t−1

ek−t
,

(11)

where τut−1 is the collection of time index of trajectory

T u
t−1, φ(·) is a feature extractor and γ(·, ·) outputs the cross-

correlation score of the input features.

Motion affinity. The motion affinity is calculated by

computing the Intersection-over-Union (IoU) between a

predicted bounding box Oi
t and detection Bv

t :

ϕmot(T
u
t−1,B

v
t ) = area(Ou

t ∩ Bv
t )/area(Ou

t ∪ Bv
t ), (12)

where Ou
t = Φ(T u

t−1) is a predicted bounding box accord-

ing to the input trajectory T u
t−1 using the Kalman filter [30].

Location proximity. We calculate the 3D location prox-

imity between a trajectory T u
t−1 and a detection Bv

t by:

ϕloc(T
u
t−1,B

v
t ) =

∑

k∈τu

k

σt(k, t) · σl(T
u
t−1(k)loc, l

v
t )

|τuk |
, (13)

where τut−1 is the time index set of trajectory T u
t−1,

T u
t−1(k)loc is the 3D location of trajectory T u

t−1 at time k.

The σt(·, ·) and σl(·, ·) output normalized time distance and

location distance using two RBF kernels, respectively.

3.4.2 Bipartite Graph Matching

Given the trajectory-detection affinity matrix A, we aim to

calculate a matching matrix Xt ∈ {0, 1}Kt−1×Qt according

to A. Each element X(u, v) in X corresponds to the match-

ing (i.e., X(u,v)=1) and non-matching (i.e., X(u,v)=0) be-

tween trajectory T u
t−1 and detection Bv

t . The bipartite graph

matching can be solved by the following optimization prob-

lem:

X∗ = argmax
X

||A⊙X||2,

s.t. ∀ u,
∑

X(u, :) ≤ 1,

∀ v,
∑

X(:, v) ≤ 1,

(14)

where ⊙ denotes element-wise matrix multiplication and

|| · ||2 outputs the L2-norm of input matrix. The constraints

ensure the mutual exclusion of trajectories, where each de-

tection will be occupied with at most one trajectory. On this

basis, the optimization problem can be efficiently solved by

the Hungarian algorithm [37].

3.5. Trajectory Inference

In this module, we manage the target trajectories accord-

ing to the matching matrix X. As shown in Figure 6, there

are three conditions of the matching results: a) detection

Bv
t does not match with any trajectories, i.e.,

∑

X(:, v) =
0. b) Trajectory T u

t−1 is matched with detection Bv
t , i.e.,

X(u, v) = 1. c) Trajectory T u
t−1 does not match with any

detections, i.e.,
∑

X(u, :) = 0. In the following, we pro-

vide detailed descriptions of the trajectory management of

different matching results.

If
∑

X(:, v) = 0, i.e., the detection Bv
t does not match

with any existing trajectories. This indicates the detection

is either a new occurred target or a false positive (FP) de-

tection. Similar to [77], we initialize a “tentative” trajectory

T i
t using Bv

t :

T i
t = {(φapp(B

v
t ), φbox(B

v
t ), φloc(B

v
t ))}, (15)
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Figure 6. Illustration of data association. The rectangles and cir-

cles denote trajectories and detections, respectively. The lines in-

dicate the linkage between trajectories and detections.

where φapp(·), φbox(·) and φloc(·) output the appearance

feature, bounding box and 3D location of the input detec-

tion, respectively. If the trajectory T i
t is matched with de-

tections in coming image frames, the T i
t is then converted

into a “confirmed” trajectory. Otherwise, we remove T i
t

from trajectory list.

If X(u, v) = 1, the detection Bv
t is assigned to trajectory

T u
t−1. We extend the trajectory T u

t−1 using Bv
t :

T u
t = T u

t−1 ∪ {(φapp(B
v
t ), φbox(B

v
t ), φloc(B

v
t ))}. (16)

If
∑

X(u, :) = 0, i.e., the trajectory T u
t−1 does not match

with any detections, the target is temporally occluded or

leaves the scene. If the trajectory is matched again in a

following temporal window (such as within a coming 30

frames), we consider the target reappear after occlusion.

Otherwise, we remove T u
t−1 from trajectory list.

4. Experiment

4.1. Dataset

We evaluate our proposed method on the JRDB

dataset [54]. This dataset contains over 60K data from 5

stereo cylindrical panorama RGB cameras and two Velo-

dyne 16 LiDAR sensors. There are 54 sequences of 64 min-

utes captured from both indoor and outdoor environments,

where 27 sequences are used for training and the others are

for testing. The frame rate is at 15 FPS and the resolution

is 752×480. The dataset has over 2.3 million annotated 2D

bounding boxes on 5 camera images and 1.8 million anno-

tated 3D cuboids of over 3,500 targets.

4.2. Implementation Details

We follow the cascade detection paradigm [7] and adopt

a ResNet50 [25] as the backbone of our detector. We split

the panorama image into 7 image slices with an overlap 0.2

along the image width, and the ground-truth annotations to

Table 1. Detection results on the JRDB Dataset
Method AP ↑ Runtime ↓

YOLOV3 [63] 41.73 0.051

DETR [9] 48.51 0.350

RetinaNet [46] 50.38 0.056

Faster R-CNN [64] 52.17 0.038

Ours 67.88 0.070

Table 2. Tracking Results On the JRDB Dataset
Method MOTA ↑ IDS ↓ FP ↓ FN ↓

Tracktor [1] 19.7 7026 79573 681672

DeepSORT [77] 23.2 5296 78947 650478

JRMOT [70] 22.5 7719 65550 667783

Ours 31.7 5742 67171 580565

different image slices accordingly. We augment the train-

ing data by mixup [86] and multiscale augment. During

training, the parameters of the detector are updated using

an Adam optimizer [34] with a total number of 20 epochs,

and the initial learning is set to 10−5. In the tracking, we

adopt a ReID model [49] as our feature extractor, which is

pre-trained on the DukeMTMC dataset [65] using a triplet

loss.

4.3. Evaluation Result

We compare the detection and tracking performance

of our MMPAT on the JRDB dataset with state-of-the-art

methods. For detection, we evaluate the proposed method

in terms of Average Precision (AP ↑) and processing time

(Runtime ↓). For tracking, we evaluate the MMPAT in

terms of Multi-Object Tracking Accuracy (MOTA ↑) [2],

IDentity Switch (IDS ↓), False Positive (FP ↓), and False

Negative (FN ↓). The ↑ indicates the higher is better, and ↓
is on the contrary.

Table 1 shows the detection results. We can see that, the

proposed method significantly outperforms the other state-

of-the-art method by a large margin (at least 15.7 improve-

ment on AP) with a competitive processing speed (about 14

frames per second). This is a strong evidence that demon-

strates the proposed detection algorithm is efficient for ob-

ject detection in panorama image. In Table 2, compared

with state-of-the-art method JRMOT, the proposed method

significantly improves the tracking performance by a large

margin (9.2 improvement on MOTA) by reducing IDS and

FN number (reduce 25% and 13% IDS and FN, respective-

ly), while slightly worse on FP.

Figure 7 illustrates some qualitative tracking results of

the MMPAT on JRDB dataset. It can bee seen that, no mat-

ter in outdoor scenario with poor light conditions or in in-

door scene with complex background clutters, the proposed

method can robustly track targets and generate accurate tra-

jectories for targets.

4.4. Ablation Study

In Table 3, we provide ablation studies on the valida-

tion set of the JRDB dataset to analyze the influence of d-

ifferent components. The cascade r-cnn [7] is adopted as

7



Figure 7. Qualitative tracking results of (a) Huang-intersection (b) Tressider subsets of the JRDB dataset, where (a) is an outdoor scene

and (b) is an indoor scene. The numbers upon bounding boxes denote ID labels.

Table 3. Ablation Study on Object Detection
Method AP ↑

Baseline 52.8

Baseline+DCN 53.1

Baseline+DCN+split 64.6

Baseline+DCN+split+mixup 68.2

Baseline+DCN+split+mixup+multiscale 69.7

Baseline+DCN+split+mixup+multiscale+softnms 70.7

the Baseline. The DCN stands for deformable convolu-

tional network [17], split denotes splitting the panora-

ma image into image slices, mixup denotes data mixing

up, multiscale denotes multiscale testing, softnms

denotes using the softnms. It can be seen that: 1) com-

pared with the baseline method, our detector dramatically

improves the detection performance by a large margin (17.9

improvement on AP). 2) The split of image can efficiently

improves detection in panorama image (11.5 improvement

on AP). This demonstrates that the response regions of tar-

gets in the feature maps can largely affect the detection per-

formance. 3) Adding different data augmentation methods

can steadily improves the performance.

5. Conclusion

This paper focuses on the multi-object tracking (MOT)

problem of automatic driving and robot navigation. We

propose a MultiModality PAnoramic multi-object Tracking

framework (MMPAT), which takes both 2D 360◦ panora-

ma images and 3D point clouds as input. An object detec-

tion mechanism is designed to detect targets in panorama

images. Besides, we also provide a 3D points collection al-

gorithm to associate the point clouds with 2D images. We

evaluate the proposed method on the JRDB dataset, which

achieves the top performance in detection and tracking tasks

and significantly outperforms state-of-the-art methods by a

large margin (15.7 improvement on AP and 8.5 improve-

ment on MOTA).
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Céline Teuliere, and Thierry Chateau. Deep manta: A

coarse-to-fine many-task network for joint 2d and 3d vehi-

cle analysis from monocular image. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 2040–2049, 2017. 3

[11] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma,

Sanja Fidler, and Raquel Urtasun. Monocular 3d object de-

tection for autonomous driving. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2147–2156, 2016. 3

[12] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Huimin Ma,

Sanja Fidler, and Raquel Urtasun. 3d object proposals us-

ing stereo imagery for accurate object class detection. IEEE

transactions on pattern analysis and machine intelligence,

40(5):1259–1272, 2017. 3

[13] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xi-

a. Multi-view 3d object detection network for autonomous

driving. In Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, pages 1907–1915, 2017. 3

[14] Peng Chu, Heng Fan, Chiu C Tan, and Haibin Ling. On-

line multi-object tracking with instance-aware tracker and

dynamic model refreshment. In 2019 IEEE Winter Con-

ference on Applications of Computer Vision (WACV), pages

161–170. IEEE, 2019. 2, 3

[15] Peng Chu and Haibin Ling. Famnet: Joint learning of fea-

ture, affinity and multi-dimensional assignment for online

multiple object tracking. arXiv preprint arXiv:1904.04989,

2019. 3

[16] Qi Chu, Wanli Ouyang, Hongsheng Li, Xiaogang Wang, Bin

Liu, and Nenghai Yu. Online multi-object tracking using

cnn-based single object tracker with spatial-temporal atten-

tion mechanism. In Proceedings of the IEEE International

Conference on Computer Vision, pages 4836–4845, 2017. 3

[17] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In Proceedings of the IEEE international confer-

ence on computer vision, pages 764–773, 2017. 4, 8

[18] Martin Engelcke, Dushyant Rao, Dominic Zeng Wang,

Chi Hay Tong, and Ingmar Posner. Vote3deep: Fast objec-

t detection in 3d point clouds using efficient convolutional

neural networks. In 2017 IEEE International Conference on

Robotics and Automation (ICRA), pages 1355–1361. IEEE,

2017. 3

[19] Francis Engelmann, Jörg Stückler, and Bastian Leibe. Samp:

shape and motion priors for 4d vehicle reconstruction. In

2017 IEEE Winter Conference on Applications of Computer

Vision (WACV), pages 400–408. IEEE, 2017. 4

[20] Kuan Fang, Yu Xiang, Xiaocheng Li, and Silvio Savarese.

Recurrent autoregressive networks for online multi-object

tracking. In 2018 IEEE Winter Conference on Applications

of Computer Vision (WACV), pages 466–475. IEEE, 2018. 3

[21] James Ferryman and Ali Shahrokni. Pets2009: Dataset and

challenge. In 2009 Twelfth IEEE international workshop on

performance evaluation of tracking and surveillance, pages

1–6. IEEE, 2009. 1

[22] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 3354–3361. IEEE, 2012. 2

[23] Mei Han, Wei Xu, Hai Tao, and Yihong Gong. An algorithm

for multiple object trajectory tracking. In Proceedings of the

2004 IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition, 2004. CVPR 2004., volume 1,

pages I–I. IEEE, 2004. 2

[24] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017. 1,

2

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 4, 7

[26] Yuhang He, Zhiheng Ma, Xing Wei, Xiaopeng Hong, Wei

Ke, and Yihong Gong. Error-aware density isomorphism re-

construction for unsupervised cross-domain crowd counting.

AAAI, 2021. 2

[27] Yuhang He, Xing Wei, Xiaopeng Hong, Weiwei Shi, and Y-

ihong Gong. Multi-target multi-camera tracking by tracklet-

to-target assignment. IEEE Transactions on Image Process-

ing, 29:5191–5205, 2020. 1

9



[28] Andrea Hornakova, Roberto Henschel, Bodo Rosenhahn,

and Paul Swoboda. Lifted disjoint paths with application in

multiple object tracking. arXiv preprint arXiv:2006.14550,

2020. 2

[29] Hou-Ning Hu, Qi-Zhi Cai, Dequan Wang, Ji Lin, Min Sun,

Philipp Krahenbuhl, Trevor Darrell, and Fisher Yu. Joint

monocular 3d vehicle detection and tracking. In Proceedings

of the IEEE/CVF International Conference on Computer Vi-

sion, pages 5390–5399, 2019. 3

[30] Rudolph Emil Kalman. A new approach to linear filtering

and prediction problems. 1960. 6

[31] Margret Keuper, Siyu Tang, Bjorn Andres, Thomas Brox,

and Bernt Schiele. Motion segmentation & multiple object

tracking by correlation co-clustering. IEEE transactions on

pattern analysis and machine intelligence, 2018. 2

[32] Chanho Kim, Fuxin Li, Arridhana Ciptadi, and James M Re-

hg. Multiple hypothesis tracking revisited. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 4696–4704, 2015. 2

[33] Chanho Kim, Fuxin Li, and James M Rehg. Multi-object

tracking with neural gating using bilinear lstm. In Proceed-

ings of the European Conference on Computer Vision (EC-

CV), pages 200–215, 2018. 2

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 7

[35] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh,

and Steven L Waslander. Joint 3d proposal generation and

object detection from view aggregation. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), pages 1–8. IEEE, 2018. 3

[36] Jason Ku, Alex D Pon, and Steven L Waslander. Monocular

3d object detection leveraging accurate proposals and shape

reconstruction. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 11867–

11876, 2019. 3

[37] Harold W Kuhn. The hungarian method for the assignment

problem. Naval research logistics quarterly, 2(1-2):83–97,

1955. 6

[38] Abhijit Kundu, Yin Li, and James M Rehg. 3d-rcnn:

Instance-level 3d object reconstruction via render-and-

compare. In Proceedings of the IEEE conference on comput-

er vision and pattern recognition, pages 3559–3568, 2018.

3

[39] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders

for object detection from point clouds. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 12697–12705, 2019. 3

[40] Hei Law and Jia Deng. Cornernet: Detecting objects as

paired keypoints. In 15th European Conference on Com-

puter Vision, ECCV 2018, pages 765–781. Springer Verlag,

2018. 1, 2

[41] Bo Li, Tianlei Zhang, and Tian Xia. Vehicle detection from

3d lidar using fully convolutional network. arXiv preprint

arXiv:1608.07916, 2016. 3

[42] Peiliang Li, Xiaozhi Chen, and Shaojie Shen. Stereo r-cnn

based 3d object detection for autonomous driving. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 7644–7652, 2019. 3

[43] Peiliang Li, Tong Qin, et al. Stereo vision-based semantic

3d object and ego-motion tracking for autonomous driving.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 646–661, 2018. 4

[44] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urta-

sun. Multi-task multi-sensor fusion for 3d object detection.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 7345–7353, 2019. 3

[45] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun.

Deep continuous fusion for multi-sensor 3d object detection.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 641–656, 2018. 3

[46] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 2980–2988, 2017. 2, 7

[47] Qiankun Liu, Qi Chu, Bin Liu, and Nenghai Yu. Gsm: Graph

similarity model for multi-object tracking. 3

[48] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.

Berg. Ssd: Single shot multibox detector. ECCV, 2016. 1

[49] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei

Jiang. Bag of tricks and a strong baseline for deep per-

son re-identification. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 0–0, 2019. 7

[50] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furi-

ous: Real time end-to-end 3d detection, tracking and motion

forecasting with a single convolutional net. In Proceedings of

the IEEE conference on Computer Vision and Pattern Recog-

nition, pages 3569–3577, 2018. 4

[51] Liqian Ma, Siyu Tang, Michael J Black, and Luc Van Gool.

Customized multi-person tracker. In Asian Conference on

Computer Vision, pages 612–628. Springer, 2018. 2

[52] Xinzhu Ma, Zhihui Wang, Haojie Li, Pengbo Zhang, Wanli

Ouyang, and Xin Fan. Accurate monocular 3d object detec-

tion via color-embedded 3d reconstruction for autonomous

driving. In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, pages 6851–6860, 2019. 3

[53] Zhiheng Ma, Xing Wei, Xiaopeng Hong, and Yihong Gong.

Bayesian loss for crowd count estimation with point supervi-

sion. In Proceedings of the IEEE International Conference

on Computer Vision, pages 6142–6151, 2019. 2

[54] Roberto Martı́n-Martı́n, Hamid Rezatofighi, Abhijeet

Shenoi, Mihir Patel, JunYoung Gwak, Nathan Dass, Alan Fe-

derman, Patrick Goebel, and Silvio Savarese. Jrdb: A dataset

and benchmark for visual perception for navigation in human

environments. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 2019. 2, 7

[55] James Munkres. Algorithms for the assignment and trans-

portation problems. Journal of the society for industrial and

applied mathematics, 5(1):32–38, 1957. 3

[56] Milind Naphade, Shuo Wang, David C Anastasiu, Zheng

Tang, Ming-Ching Chang, Xiaodong Yang, Liang Zheng,

10



Anuj Sharma, Rama Chellappa, and Pranamesh Chakraborty.

The 4th ai city challenge. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

Workshops, pages 626–627, 2020. 1
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