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Abstract

Classification of new class entities requires collecting

and annotating hundreds or thousands of samples that is

often prohibitively costly. Few-shot learning suggests learn-

ing to classify new classes using just a few examples. Only

a small number of studies address the challenge of few-shot

learning on spatio-temporal patterns such as videos. In

this paper, we present the Temporal Aware Embedding Net-

work (TAEN) for few-shot action recognition, that learns to

represent actions, in a metric space as a trajectory, con-

veying both short term semantics and longer term connec-

tivity between action parts. We demonstrate the effective-

ness of TAEN on two few shot tasks, video classification

and temporal action detection and evaluate our method on

the Kinetics-400 and on ActivityNet 1.2 few-shot bench-

marks. With training of just a few fully connected layers we

reach comparable results to prior art on both few shot video

classification and temporal detection tasks, while reaching

state-of-the-art in certain scenarios.

1. Introduction

Action recognition is one of the fundamental problems

in computer vision, with applications such as event detec-

tion, clip classification and retrieval in multimedia storage.

In this domain, there are two typical tasks, classification

and temporal detection. Video classification aims to clas-

sify short video clips often trimmed from a longer footprint,

and usually a few seconds long. In temporal action detec-

tion setting, actions appear as short temporal sections within

a long untrimmed video that can last even for several min-

utes. Similar to object detection the goal is to detect the time

stamp (temporal location) at which a certain action class
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takes place.

Deep learning models have been successfully utilized for

action recognition [6, 10, 22, 25]. Although these mod-

els obtain remarkable results, they require large amounts of

labeled training data that often are prohibitively available.

The task of learning new categories from a small number

of labeled examples is known as few-shot learning (FSL).

Typical FSL methods are based on meta-learning [2, 23],

distance metric learning [19, 31] and synthesis methods

[5, 7]. While few-shot learning has been extensively stud-

ied in the context of visual recognition [8, 17, 27, 28], few

studies address the challenge of learning from a few in-

stances to detect spatio-temporal patterns. In particular,

only a few works have been proposed for few-shot learning

in action recognition and specifically for video classifica-

tion [1, 4, 11, 32, 37] and temporal action detection [35]. To

alleviate the annotation labour, weakly supervised strategies

[24, 25] are suggested, where tagging is conducted just over

the entire video. However, in cases where new classes may

appear on the fly or in rare class types, few-shot learning

methods has no alternative. In FSL one can learn new cat-

egories from just a few video examples, often one to five.

This is in contrast to transfer learning where tens or hun-

dreds of new labeled examples are needed to learn a new

class. In this paper, we address the task of few-shot learning

video classification and show also an extension for temporal

action detection.

Action recognition in videos has been greatly advanced

thanks to powerful features such as dense trajectories [30],

and deep features e.g. the Two-Stream networks [26], C3D

[29], and I3D [38]. Prior to deep features this was tack-

led by extracting spatio-temporal local descriptors from

space-time interest points [30] (iDTF) presenting trajecto-

ries in pixel-time space. The sparse patterns of trajectories

were then analyzed to distinguish between different actions.

However, these trajectories do not convey the semantic in-

formation gained in deep representations of two-stream net-
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Figure 1. Action representation as a trajectory in a metric space. We train an embedding space where actions are represented as

trajectories passing through sub-actions. Jointly learning the sub-action prototypes and the embedding function allows our representation

to be optimized for both short and long term action granularity. Using the trained embedding network, we embed n videos from different

classes (n-way, 1-shot scenario) and the query test video. The query is then classified based on distance between the associated trajectories

illustrated by the black arrows between red and blue trajectories.

works, I3D or C3D. Yet, common deep features often miss

the long term dependencies involved with complex actions,

by processing short video segments (usually 16 consecutive

frames).

In this work, we propose a novel approach based on Dis-

tance Metric Learning (DML) for few-shot action recogni-

tion, called Temporal Aware Embedding Network - TAEN,

as described schematically in Fig. 1. We start with decom-

position of the video into ordered temporal segments, called

sub-actions. In contrast to the whole action that can last

several seconds, sub-action is only part of the action in the

timeline. We consider each action as a consecutive set of

sub-actions and train an embedding function that can repre-

sent an action as a trajectory in a metric space, considering

also the long term sub-action dependencies. This represen-

tation preserves the temporal order of the sub-actions while

carrying the semantics encoded in deep features. Using a

trajectory distance enables our method to distinguish be-

tween even fine-grained actions, manifested as similar ac-

tions that differ only in some intermediate part (i.e a sub-

action).

We evaluate TAEN on Kinetics-400 data set [15]. For

extension of TAEN to temporal action detection we build

upon the BMN temporal region proposal [20] and evalu-

ate our method on a benchmark previously suggested by

[35] on ActivityNet 1.2 [9]. Our method is computation-

ally cheap and scalable, relying on training of only a few

fully connected layers for learning the embedding function

and the sub-action prototypes. TAEN allows classification

of new action categories fairly well, even with a single ex-

ample.

Our contributions are: (1), we suggest a new metric

learning method that encodes the long term sub-action con-

nectivity into an embedding space, eventually representing

the actions as trajectories in a metric space. (2), Our model

jointly optimizes for sub-action prototypes and the embed-

ding function. (3) We suggest a novel loss function that

allows an effective learning of class action trajectories. (4),

using the same model we present comparable results to prior

art in video classification and temporal action detection.

2. Related work

2.1. Sub­actions

Decomposing actions into characteristic sub-actions has

been studied before [10, 22]. A common practice in these

works consists of aggregating and pooling local features

from sub-action segments. While naive approaches use

mean or max pooling, recent studies extend the pooling

techniques by incorporating them into Deep Neural Net-

work (DNN), namely NetFV [18] and NetVLAD [6]. By

looking for correlations between a set of primitive ac-

tion representations, ActionVLAD [6] has shown state-of-

the-art performance in several action recognition bench-

marks. However, cluster-and-aggregate based methods such

as NetVLAD assign soft-clusters to every frame in the video

and therefore also use a too fine granularity, particularly for

complex actions. These methods further ignore the tempo-

ral ordering that might be crucial for recognizing an action

from a single example. Therefore, these methods are not

well suited for the few-shot action recognition settings.

Typically a few sub-actions are enough to represent sim-

ple actions, while others would need to be represented with

more parts. Based on this assumption, Hou et al. [10] sug-

gested a temporal action detection method, trying to opti-

mize the number of sub-actions for each action class. How-

ever, this method uses the hand crafted dense trajectory

features (iDTF) [30] and does not handle the few-shot set-

ting. In [22], the sub-action notion is used in the context of

weakly supervised temporal action detection.
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2.2. Few­shot video classification

Zhu and Yang [37] suggest a method based on memory

networks and meta-learning that require heavy computation

and space resources to learn new representations for each

episodic task. They further use a single embedding vector

to represent the entire video, that overlooks the temporal

structure of the action and focuses mainly on the most dis-

tinguishable segment of a video. The approach by Bishay

et al. [1] named TARN, addresses FSL on short video seg-

ments by calculating the relation between a query and sup-

port video with a similarity measure between aligned seg-

ments. Their model searches for relations between short-

length segments (16 frames) and therefore still relies on an

extremely fine action granularity, while in the relation pro-

cess the temporal order is further lost. Recently [11] showed

SOTA results in few shot video classification by action de-

composition and temporal alignment using Dynamic Time

Warping (DTW). We argue that our method is more efficient

by finding the optimal prototypes without the DTW align-

ment which is O(N2). Optimized prototypes yet suggest

robustness to slight miss-alignment in the video clips.

2.3. Few­shot temporal action detection

While metric learning approaches have found their way

to few-shot learning object detection tasks [13, 12], their

use in the few-shot temporal action detection task has been

overlooked. The recent attempt taken for this task by

Yang et al. [35] suggests a meta-learning method based

on Matching Networks and uses a Long-Short Term Mem-

ory (LSTM) video encoder. Their method is computation-

ally heavy as it requires optimization over many different

episodes. Moreover, to tackle action detection, they use a

“sliding window” approach for action proposals, which fur-

ther sets a high computational cost and a high imbalance

in the training set, resulting high false-positive rates and in-

flexible activity boundaries. Recent work shows that a more

effective and efficient way is using a temporal region pro-

posal method [3, 33, 36]. In fact, new temporal region pro-

posal methods such as [20, 21] are now suggested as part

of temporal action detection pipelines. [34] addresses the

problem of effective temporal region proposal for improved

detection accuracy.

In this paper we learn to present actions as ordered tem-

poral segments, namely sub-actions. In contrast to the

whole action that can last several seconds, sub-action is only

part of the action in the timeline. We consider each action

as a consecutive set of sub-actions using sub-actions seman-

tics as well as their long term dependencies for imoproved

action recognition. Our method builds on jointly learning

the prototypical sub-actions and the embedding function

keeping their temporal order, eventually describing actions

as a trajectory in a metric space. Actions are commonly

separated in the embedding space by the semantics of ob-

jects in the frame and the background. We define an action

trajectory as a parametrized curve in an embedding space,

discretized by sub-actions. Each action signature is then

obtained by a temporally ordered set of points (prototypes

of sub-actions) representing different parts of an action in

the embedding space. This type of representation allows to

better discriminate between similar actions even when they

take place in the same scene. The unique trajectory asso-

ciated with each action allows recognition of a new action

class from only a few examples. Our model requires train-

ing of just a few FC layers, making it efficient in both train-

ing and inference. Our suggested method called Tempo-

ral Aware Embedding Network - TAEN learns to represent

videos as trajectories in the feature space.

We evaluate TAEN on Kinetics-400 data set [15]. For

extension of TAEN to temporal action detection we build

upon the BMN temporal region proposal [20] and evaluate

our method on a benchmark previously suggested by [35]

on ActivityNet 1.2 [9].

3. TAEN

Fig. 2 presents our model architecture. We define the

trajectory in the DML space as a collection of sub-action

prototypes with temporal order. Actions are then repre-

sented in the metric space by a set of ordered prototypes.

In the few-shot video classification and temporal action de-

tection, our goal is to train a model that will be able to gen-

eralize to new unseen classes. To this end, we propose a

novel method that relies on two main steps:

1. Learn an embedding space where actions are repre-

sented by well-separated trajectories. Action trajec-

tories are represented by a ∈ N temporally ordered

centers, one for each sub-action.

2. Learn jointly the prototypes and the embedding func-

tion.

3. Classify new videos according to their trajectory sig-

nature.

3.1. Embedding architecture

Our network architecture is inspired by the RepMet ar-

chitecture [13] that enables the parallel training of the em-

bedding function and the prototypes. This architecture al-

lows joint learning of multiple prototypes per class, sub-

actions in our case, while training them with the embedding

to reach optimized embeddings and prototypes.

We design a novel loss function to allow discrimination

of trajectories in the embedding space. Our training is done

in batches but for simplicity we will describe a single video

flow through the architecture. The model architecture is de-

picted in Fig. 2.
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Figure 2. The TAEN model is designed to jointly train the DML-embedding (lower branch) along with the a sub-action prototypes (upper

branch).

The model input is a series of video features X ∈
R

T×dfeat computed using some pretrained backbone (e.g.

C3D or I3D architectures), where T is the number of video

segments, namely sub-actions and dfeat is the dimension of

the backbone output features. We divide the video into a
segments and calculate the representation for each segment

by average pooling: Xp ∈ R
a×dfeat . Here, a represents

the number of sub-actions. Next, we use Xp as an input to

the DML network, which consists of a few FC layers with

RELU activation functions. We denote the embedding net-

work output for certain class c as E ∈ R
a×e, where e is the

embedding space feature dimension. Typically, e ≤ dfeat.

3.2. Sub­action prototypes

In order to allow joint training of multiple sub-actions,

we build on an architecture that adds a secondary branch

as described in Fig. 2. This branch allows computing our

sub-action prototypes for each action class. One can initial-

ize the prototypes per-class by K-means clustering. Note

that at this point video segments are represented by pre-

computed deep features. However we choose to initialize

the sub-action prototypes by using a constant scalar as in-

put to a FC layer that yields C×a×e parameters, where C is

the number of action classes in the training set [13]. This is

equivalent to random seed clustering initialization. We re-

shape the fully connected network output into C segments

(one for each class) denoted by R
c ∈ R

a×e, ∀c = 1, ..., C.

We also denote R
c
i ∈ R

e as the representation of the i-th
sub-action of class c in the DML-embedding space. Note

that Rc
i is the ith dimension of tensor representation of Rc.

3.3. Loss function

From the two branches described above, we obtain the

video embedding in the DML-space E and the prototypes

for each class R
c. These representative centers denote the

learned sub-actions for our trajectories in the embedding

space. Using the video embedding and the computed pro-

totypes, we can calculate the distance associated with the

trajectories in the embedding space as:

d (E,Rc) =
1

a

a
∑

i=1

d (Ei,R
c
i ) , ∀c = 1, ..., C (1)

where Ei is the ith sub-action of E and d (·, ·) is some vec-

tor distance metric e.g., euclidean or cosine distance. As

the distance metric d we use the cosine distance over a hy-

persphere, i.e., unit normalized embedding vectors E, Rc

(see in Fig. 1). Using the prototype representations and

the trajectory distance metric, we can calculate the training

loss for our model. The loss consists of the following three

components:

1. Affiliation loss: For a given embedding video E, this

loss minimizes the distance of the embedding sub-

actions and their prototypes (jointly learned):

Laff =

a
∑

i=1

d (Ec
i ,R

c
i ) , (2)

where c is the true class index (extracted from labeled

data) and R
c
i denotes the representative center of the ith

sub-action of class c.

2. Motion loss: This loss measures the deviation in the tra-

jectory gradient, approximated by the vector of change

between consecutive sub-actions:

Lmot =

a−1
∑

i=1

−〈Ec
i+1 −E

c
i ,R

c
i+1 −R

c
i 〉, (3)

where 〈·, ·〉 denotes the inner product operator. Note

that this loss drives the embedding space to higher di-

versity between sub-actions due to dependency on the
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norm of vectors between sub-actions. It further drives

the space toward alignment between the model and test

motion vectors.

3. Diversity loss: This loss term aims to prevent the repre-

sentation of sub-action prototypes, from collapsing into

one point in the embedding space. Since short trajec-

tories determined by close points are less discrimina-

tive, we enforce the diversity loss on the corresponding

sub-actions. Semantically, this loss ensures that the sub-

action prototypes in each class, will be sufficiently apart

from each other. This is achieved by penalizing large

correlations between different sub-action prototypes:

Ldiv =

C
∑

c=1

a
∑

i=1

a
∑

j=1

j 6=i

1− d
(

R
c
i ,R

c
j

)

(4)

Finally, the total loss consists of the weighted sum of the

above three terms:

Ltotal = waff · Laff + wmot · Lmot + wdiv · Ldiv , (5)

where waff , wmot and wdiv are tuned as part of the hyper-

parameters tuning process. In the next section we provide

additional details on our method implementation for action

classification and for temporal action detection.

At test time we measure similarity between actions as

a weighted distance between discrete point-wise similarity

and motion:

dtest =

a
∑

i=1

waff d (Ei,R
c
i ) +wmot〈Ei+1 −Ei,R

c
i+1 −R

c
i 〉

(6)

4. Evaluation

In the few-shot scenario, our goal is to train a network

that generalizes well to new action classes. In this setup, we

are given a training set that consists of labeled videos from

different classes. This set is denoted as the ”base set” and is

only used during training. For testing, we are given a small

number of videos from new classes that were not available

in the base set. Our task is video classification in trimmed

videos or temporal action detection in untrimmed videos.

4.1. Training

For the classification task, we follow the experimental

set-up in previous works using the same backbone feature

extractor-C3D pretrained on Sports-1M [14]. Using the pre-

trained backbone on an external dataset is justified to allow

fair comparison to previous works [1, 37]. For the temporal

action detection experiments we pretrain our I3D backbone

only on the base set of ActivityNet 1.2 to avoid any chance

of feature ”contamination”. We follow the evaluation pro-

cess as in [35] detailed in section 5.

4.2. Testing

In the few-shot setting, tests are determined by episodes

of n-way, k-shot tasks, where at each test episode we sam-

ple k videos from n different classes (total of n× k videos)

to build the support set. In our model, each episode is rep-

resented by n trajectories (one representative trajectory per-

class). Representation over k-shots is computed by average

pooling over corresponding sub-actions.

For the video classification task, each trimmed video is

mapped to a trajectory in the embedding space and the class

is derived using the nearest trajectory (see Eq. (6)). For the

task of action detection, we build upon a temporal region

proposal network [20] and follow the same process with

the candidate proposals. We then filter out background seg-

ments by thresholding over the scores. The test pipeline is

described in Fig. 3.

TAEN based video classification: Using the trained

embedding network, we build the support set trajectories by

computing sub-action prototypes for the n classes. Next,

given a query video, belonging to one of the n classes,

we calculate the video embedding using the trained model.

Classification is then based on the nearest trajectory using

the trajectory distance metric in Eq. (6).

TAEN based temporal detection: Similarly to the clas-

sification task, the base and the support set are trimmed

videos that are defined by the ground truth annotations in

untrimmed videos. The trajectories for each support class

are calculated in the same way as in the classification task.

Yet in the detection task, the query is an untrimmed video.

We therefore decompose the video into temporal regions us-

ing a standard temporal action proposal method. Proposal

segments are then classified and scored according to trajec-

tory distance. The probability of an action proposal belong-

ing to certain action class i.e. one of the n-way classes is set

by:

pcm = exp

(

−
d2 (E,Rc)

2σ2

)

, (7)

where σ is an hyper-parameter that controls the standard

deviation of the probability measure. Then, using the prob-

abilities we associate the mth action proposal to one of the

classes ĉm and calculate the score:

ĉm = argmax
c

pcm, si = pĉmm (8)

where s is the score of the mth proposal. Eventually,

background segments are rejected based on low confidence

scores.

5. Experimental results

Implementation details: To train the proposed architec-

ture we use SGD. We set the batch size B = 30, learning

rate η = 5 · 10−4 and momentum m = 0.9 to minimize
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Figure 3. Test Model Architecture: Top branch: Using the same flow as in Fig. 2 and the trained DML, we obtain the embed-

ding for all support set videos and the corresponding sub-actions. Middle branch - classification: For the classification task, given a

query trimmed test video, the video is decomposed to a sub-actions and mapped into our DML space as a set of ordered points cre-

ating a trajectory. Classification is then performed based on the trajectory distance from the support classes using minimal distance.

Lower branch - Detection (Localization): For the temporal detection task we are given one untrimmed video. We use the BMN temporal

region proposal network to decompose the video into action proposals. Proposals are then treated as trimmed videos and classified in the

support set. We use the trajectory distances to compute a confidence score. Rejecting background segments with low confidence score and

Non-Maximal Suppression yields our final temporal temporal detection.

the loss defined in Eq. (5), in the video classification task.

We used α = 0.2 as the margin for the sub-action loss. In

the classification experiments we obtained the best results

with waff = 1, wmot = 0.5 and wdiv = 20. In the de-

tection experiments we used the same parameters except a

larger batch size of B = 50. In addition, we used σ = 0.5
as the probability standard deviation hyper-parameter. We

obtained best performance for a = 5, i.e. decomposing the

videos into 5 sub-actions.

5.1. Classification

We start by evaluating our architecture performance on

the classification task. In [37], the authors introduced a

dataset for few-shot classification which is a modification

of the original Kinetics-400 dataset [16], consisting of 400

categories and 306,245 videos, covering videos from a wide

range of actions and events, e.g., “dribbling basketball”,

“robot dancing”, “shaking hands” and “playing violin”. The

modified dataset contains videos from 100 categories out

of 400 available ones randomly selected from the origi-

nal Kinetics-400 dataset. Each class category contains 100

videos. In addition, the authors divided the dataset into 64,

12, and 24 non over-lapping classes for training, validation

and testing respectively. In our classification evaluation, we

use the same dataset and evaluation protocol as defined in

[37] and followed by [1].

Feature extraction We follow the feature extraction pro-

tocol of C3D trained on Sports-1M [14], as in [1, 37] to

perform a fair comparison to the previous works. Note

that the feature extraction network is trained on a different

dataset than Kinetics. Using the pre-trained C3D architec-

ture, the 4096D features are extracted from the the last FC

layer (i.e. FC7) of the network, corresponding to 16 con-

secutive frames, and then used as input for our architecture

as illustrated in Fig. 2. We divide the video into ”a” non-

overlapping segments and use average pooling to obtain the

representation for each segment. Note that each video seg-

ment represents a different sub-action in the original video.

Xp is used as an input to our embedding network. In these

experiments we used a network with two hidden layers and

RELU activation function to obtain the embedding network

output E ∈ R
a×e with e = 2048.

Evaluation protocol We compare our model with sev-

eral baselines and two previous methods. For each class, we

randomly choose k videos where k = 1, ..., 5 is the number

of shots. We use these n×k videos to calculate class trajec-

tories as described in Section 3. Then, we randomly draw

one additional test video belonging to one of the n classes,

and associate the video embedding to one of the n classes

based on the lowest trajectory distance (Eq. (6)). We repeat

this episode for 20,000 iterations and evaluate our perfor-

mance based on the average accuracy.

Results: Table 1 shows our results compared to previous

work on the Kinetics few-shot dataset and under the same

protocol, as well as a baseline and an ablation study. As

our baseline we use the C3D feature space without our em-

bedding, which represents the classification accuracy when

each video is represented by a single C3D feature using

max-pooling. Without our metric learning C3D shows infe-

rior results (see Table 1). Our model benefit is manifested

when actions are represented by their trajectories in the em-

bedding space. The gaps with respect to C3D of absolute

6.85 points for 1-shot and 4.22 points for 5-shots further

show the benefit of our method. Our model also outper-

forms previous methods of [1] and [37] while being infe-

rior with respect to temporal alignment based method of

[11]. The results from our method present a growing gap for

higher number of shots, with respect to previous methods of
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Figure 4. Kinetics 5-way Accuracy vs. number of sub actions. The

dashed cyan line indicates the results from [1] for 5-shots.
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Figure 5. Accuracy variation with number of shots and cate-

gories (n-ways) with comparison to baseline (without embedding).

Shaped points show the results from [1].

[1, 37] as adding more samples (shots) allows smoother and

more reliable trajectories. The ablation study shows the im-

pact of each term in our loss function, showing that the con-

tribution of diversity and motion terms is more significant

for higher shots. The break down with vanishing affiliation

weight is expected since it directly associates the actions

with their relevant class.

Next, we depict in Fig. 4 the variation of accuracy with

respect to sub-action granularity and number of shots. We

observe that 3-5 sub-actions are sufficient to capture the ac-

tion structure and enable improved recognition capability.

We further show for comparison the performance of [1] for

5-shots (dashed cyan) as reference. An interesting compar-

ison is to the raw C3D features, i.e. without using our em-

bedding network. Fig. 4 shows a large margin in 1-shot

compared to raw C3D features (see bold and dashed pur-

ple lines in Fig. 4). The gap between TAEN and raw C3D

1-shot results is maintained for any number of sub-actions,

emphasizing the contribution of our embedding model in

the 1-shot scenario.

For detailed analysis, we show in Fig. 5 the variation

in accuracy of our model, with respect to number of cate-

gories n (n-ways). As the number of categories grows, the

chance for error is raised, causing the decrease in accuracy.

In fact, this is a typical scenario in few-shot benchmarks.

The figure also shows the sharp decrease in accuracy with n
for low number of shots (1,2), while for higher shots (4,5)

there is a moderate degradation. This indicates the need for

over 4-5 samples to learn a more reliable trajectory for an

action class. The dashed purple line shows the lower bound

obtained from raw C3D features. Note again the higher im-

pact of our model especially in low shots.

5.2. Temporal Detection

In this section we illustrate an extension of our model

to the temporal few-shot action detection task. To this end,

we evaluate our model on the ActivityNet1.2 dataset [9].

This dataset contains roughly 10k untrimmed videos with

100 activity classes. The 100 activity classes are randomly

split into 80 classes (ActivityNet1.2-train-80) for training

and 20 classes (ActivityNet1.2-test-20) for testing. Our

few-shot action detection network is trained on videos con-

taining only the 80 classes in the training set, denoted by

ActivityNet-train-80, and is tested on the other 20 classes in

the validation set, denoted by ActivityNet-val-20, following

the protocol in [35].

Evaluation: In order to fit this task to our model

we use the Boundary Matching Network (BMN), a tem-

poral region proposal method [20]. We train the BMN on

ActivityNet1.2-train-80 for a class-agnostic temporal region

proposal. Note that our temporal region proposal is also

trained only on the base set to avoid any train-test contam-

ination. For each test video, BMN outputs 100 proposals

represented by the start and end time of the actions and

associated with a confidence score. We use this score for

eliminating some proposals with a score threshold below

0.2. The remaining regions are then processed by TAEN

in the same way as trimmed videos. We then reject back-

ground segments based on low TAEN confidence scores ob-

tained from (8), and use standard Non-maximum Suppres-

sion (NMS) for final temporal detection. We show results

on I3D trained only on the base set.

For evaluation we follow the typical protocol in few

shot object detection task [13]. Our benchmark contains

multiple random episodes (instances of the few-shot detec-

tion tasks). We randomly choose n = 5 test classes in

ActivityNet1.2-test-20. For each test class we randomly

sample k videos (number of shots). As standard procedure,

we extract the action segments from the ground truth an-

notations to build the support set. The rest of the videos

from these classes are used as query examples with this

episodic benchmark (namely, using the same support set).

To get reliable test results, we randomly sample 100 differ-

ent episodes, creating over 1500 query samples per class.

Then we compute multi-class average precision for each
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Benchmark Ablation

Method C3D1 CMN [37] TARN [1] TAM [11] TAEN waff = 0 wdiv=0 wmot = 0
1-shot 60.42 60.50 66.50 73.0 67.27 24.65 67.16 67.61

2-shot 70.10 70.00 74.56 - 74.87 25.30 74.15 74.19

3-shot 75.09 75.60 77.33 - 79.06 24.70 77.97 78.32

4-shot 77.80 77.30 78.89 - 81.78 24.52 80.01 80.55

5-shot 79.76 78.90 80.66 85.8 83.12 24.79 81.04 81.55

Table 1. Benchmark and ablation study: Video classification accuracy for different shots, compared to state of the art. Our method

outperforms the C3D baseline and the prior art of [1, 37]. Yet, it is inferior to [11], that performs alignment between action segments

and associated with O(N2) computational cost. C3D means directly using the backbone features in test, without using DML. Ablation:

(w. = 0) shows the impact for different parts of the loss function, with the affiliation loss as the main part. All of our tests were conducted

with the same random seed.

Method mAP@0.5 Avg. mAP

SMN@1 [35] 22.3 9.8

SMN@5 [35] 23.1 10

TAEN@1(I3D) 21.99 9.78

TAEN@5(I3D) 33.64 17.39
Table 2. Few-shot temporal action detection results on Activi-

tyNet1.2 (in percentage). mAP @ tIoU threshold=0.5 and average

mAP for the range [0.5, 0.95] are reported. @1 and @5 denote

“1-shot” and “5-shot” respectively.

episodic task, and average over all episodes. The detec-

tion performance is measured via the standard mean aver-

age precision (mAP). The evaluation of our approach and

SOTA are reported in Table 2. The results show that TAEN

can provide high results also for the temporal detection task.

While we achieve comparable results to the previous work

in [35] in 1-shot, we outperform [35] in 5-shots by a large

margin. This shows again the higher performance expected

when larger samples yield more reliable trajectories.

6. Summary and future directions

In this work, we suggest a novel idea of representing ac-

tions as trajectories in a learned feature space for few shot

action recognition. In this model, actions are encoded as

trajectories in a metric space (in opposed to pixel-space) by

a collection of temporally ordered sub-actions. The pro-

posed architecture and loss function learn the coarse sub-

action connectivity, by jointly learning the representation of

the sub-actions per-class and the embedding function. The

associated loss function optimizes for sub-action affiliation

and motion between consecutive sub-actions, in the deep

feature space. For effective few-shot class discrimination

we suggest a trajectory distance that combines the affilia-

tion and motion in the feature space. The proposed network

requires no additional resources or fine-tuning on the target.

We further extend our model to few-shot action detection in

untrimmed videos. A recent study of [11] shows that using

sub-action alignment improves the results. We argue that

our method is more efficient by finding the optimal proto-

types without the Dynamic Time Warping alignment with

O(N2) cost. Our method, requiring learning of only few

FC layers, runs in average at rate of 6.1 [msec/video] clas-

sification (excluding feature computation), on Tesla K-40,

12G.

Combining our proposed approach with fine-tuning on

the few support examples of the novel categories is a good

orthogonal direction that could be interesting to explore in

a follow up work.
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