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Abstract

Deep generative frameworks including GANs and nor-
malizing flow models have proven successful at filling in
missing values in partially observed data samples by ef-
fectively learning —either explicitly or implicitly— complex,
high-dimensional statistical distributions. In tasks where
the data available for learning is only partially observed,
however, their performance decays monotonically as a
function of the data missingness rate. In high missing data
rate regimes (e.g., 60% and above), it has been observed
that state-of-the-art models tend to break down and pro-
duce unrealistic and/or semantically inaccurate data. We
propose a novel framework to facilitate the learning of data
distributions in high paucity scenarios that is inspired by
traditional formulations of solutions to ill-posed problems.
The proposed framework naturally stems from posing the
process of learning from incomplete data as a joint opti-
mization task of the parameters of the model being learned
and the missing data values. The method involves enforc-
ing a prior regularization term that seamlessly integrates
with objectives used to train explicit and tractable deep
generative frameworks such as deep normalizing flow mod-
els. We demonstrate via extensive experimental validation
that the proposed framework outperforms competing tech-
niques, particularly as the rate of data paucity approaches
unity.

1. Introduction

Deep generative models (DGMs) have enjoyed success
in tasks involving the estimation of statistical properties of
data. Applications of DGMs involve generation of high-
resolution and realistic synthetic data [2, 13, 35, 38, 39],
exact [0, 21] and approximate [22, 40] likelihood estima-
tion, clustering [53], representation learning [, 54], and
unsupervised anomaly detection [23]. Fundamentally, gen-
erative models perform explicit and/or implicit data density
estimation [14]. Given the complexity of most signals of
interest to the learning community (e.g., audio, language,
imagery and video), reliably learning the statistical prop-

erties of a given population of data samples often requires
immense amounts of training data. Recent work has em-
pirically shown that, in order to continue pushing the state-
of-the-art in high-fidelity synthetic data generation, scalable
models able to ingest ever-growing data sources may be re-
quired [2].

Some of the data requirements imposed by current deep
generative models may limit their applicability in real-life
scenarios, where available data may not be plentiful, and
additionally, may be noisy, or only partially observable.
The nature of real-world data poses challenges to existing
models, and mechanisms to overcome those challenges are
needed in order to further the penetration of the technology.
In this paper, we focus on enabling the learning of DMGs
in scenarios of high data missingness rates (e.g., 60% of en-
tries missing per data sample and above), where the miss-
ingness affects both the training and the test sets. We specif-
ically focus on the task of image imputation, which consists
in filling in missing or unobserved values without access to
fully observed images during training. Previous work on
data imputation leveraging various forms of DMGs has ex-
plicitly addressed image imputation [29, 30, 41, 55]. While
the results are reasonable in low- and mid-data missingness
regimes, empirical results indicate that, as large fractions of
the data become unobserved, either the perceived quality of
the recovered data suffers [41], the original semantic con-
tent in the image is lost [55] or both [29]. These undesired
consequences are likely caused by the ill-posedness of the
problem of attempting to estimate certain statistical proper-
ties from partially observed data, an issue which becomes
more extreme as the rate of unobserved data approaches
totality. Of note, most existing work fails to consider the
semantic content preservation aspect of the task altogether,
and focuses solely on measuring the performance of the al-
gorithms based on the realism of the recovered data samples
[29, 30, 55].

Inspired by these observations, we propose to constrain
the complexity of the solution space where the recon-
structed image lies via regularization techniques, a tech-
nique initially exploited in traditional ill-posed inverse



problem formulations [49] and more recently adapted to
statistical learning scenarios [51]. The proposed regulariza-
tion term enforces a prior distribution on the gradient map
of the reconstructed images [24] in the form of a shallow,
hand-engineered constraint, and stands in contrast with re-
cent trends which rely on the high expressivity and capacity
of deep models to effectively construct data-driven priors,
but which break down in scenarios where data scarcity is an
issue. We seamlessly couple the regularizing priors with ex-
plicit likelihood estimates of reconstructed samples yielded
by normalizing flows in a novel framework we dub PRFlow,
which stands for Prior-Regularized Normalizing Flow. The
contributions of this paper are as follows:

e a framework combining traditional explicit and
tractable deep generative models with shallow, hand-
engineered priors in the form of regularization terms to
constrain the complexity of the solution space in high
data paucity regimes;

e a formal derivation of the framework stemming from
the formulation of the learning task with incomplete
data as a joint optimization task of the network param-
eters and missing data values;

e a comprehensive testing framework —including a new
metric that captures the semantic consistency between
the original and the recovered data samples— which
evaluates all aspects of performance that are relevant
when learning from partially observed data; and

e empirical validation of the effectiveness of the pro-
posed framework on the imputation of three stan-
dard image datasets and benchmarking against current
state-of-the-art imputation models under the proposed
testing framework.

2. Related Work

Deep learning frameworks have proven successful at a
wide range of applications such as speech recognition, im-
age and video understanding, and game playing, but are
often criticized for their data-hungry nature [33]. Some
scholars go as far as to say that the future of deep learning
depends on data efficiency, and have attempted to achieve
it in various ways, for example, by leveraging common
sense [48], mimicking human reasoning [12] or incorpo-
rating domain knowledge into the learning process [36].
The ability to learn from incomplete, partially observed and
noisy data will be fundamental to advance the adoption of
deep learning frameworks in real-life applications. In re-
cent years, a body of research on deep frameworks that
can learn from partially observed data has emerged. Ini-
tial work focused on extensions of generative models such
as Variational Auto Encoders (VAEs) [22] and Generative
Adversarial Networks (GANs) [13], including Partial VAEs
[32], the Missing Data Importance-Weighted Autoencoder

(MIWAE) [34], the Generative Adversarial Imputation Net-
work (GAIN) [55] and the GAN for Missing Data (MIS-
GAN) [29]. More recently, the state-of-the-art benchmark
on learning from incomplete data has been pushed by bidi-
rectional generative frameworks which leverage the ability
to map back and forth between the data space and the la-
tent space. Two such examples include the Monte-Carlo
Flow model (MCFlow) [41] which relies on explicit nor-
malizing flow models [5, 6, 21], and the Partial Bidirec-
tional GAN (PBiGAN) [30] which extends the bidirectional
GAN framework [7, 8].

While the results achieved by recent work are impres-
sive in their own right, these methods share a common
thread: they all break down, in one way or another, as
the missingness rate in the data approaches unity. This
phenomenon can be intuitively understood if we think of
a generative model as a probability density estimator (ei-
ther explicit or implicit) [14], which is, at its core, an ill-
posed inverse problem [4, 43]. From this standpoint, the
ill-posedness becomes more extreme as the rate of occur-
rence of unobserved data increases. Historically, regular-
ization techniques [9, 49] have been widely used to precon-
dition estimators and avoid undesired behaviors of solutions
by restricting the feasible space [10, 51]. While regulariza-
tion in deep learning is commonplace (e.g., weight decay
and weight sharing [37], dropout [45], batch normalization
[19]), it is usually implemented to constrain the plausible
space of network parameters and avoid overfitting in dis-
criminative scenarios. Models that implement regulariza-
tion on the output space tend to be of the generative type.
For instance, image priors have been leveraged to address
the inherently ill-posed single-image super resolution prob-
lem [20, 28, 46, 52, 56]. The proposed framework can
be seen as an attempt to incorporate domain knowledge in
learning scenarios in order to guide, facilitate or expedite
the learning [ 11, 17, 18].

3. Proposed Framework

Parallels between ill-posed inverse problems and learn-
ing tasks have been established in the literature [42, 51].
To informally illustrate how the degree of ill-posedness of
a learning task from partial observation grows with the rate
of data missingness, consider the task of image imputation.
Let b denote the bit depth used to encode each pixel value
(i.e., pixels can take on values g, where 0 < g < 20 — 1)
and N the number of pixels of the images in question. The
total number of possible images that can be represented
with this scheme is (2°)". For the sake of discussion,
let us ignore the fact that natural images actually lie on a
lower-dimensional manifold within that image space. Let
0 < p < 1 denote the data missingness rate. This means
that when we partially observe an image, we are only ex-
posed to (1 — p) - N of its pixel values. The task of image



imputation involves estimating the remaining p - N pixel
values, which means that for every partially observed in-
put image, there are (2°)PY possible imputed solutions. It
is apparent that the dimensionality of the feasible solution
space grows exponentially as the missingness rate grows
linearly. The practical implication of this observation is
that, in order to maintain a certain level of reconstruction
performance, the number of partially observed data samples
needs to grow exponentially as the missingness rate grows
linearly. This is an example of an ill-posed problem where
the observed data itself is not sufficient to find unique solu-
tions.

When an imputation task is tackled with a learning
framework (i.e., a deep generative network), the inductive
bias that arises from the choice of network inherently con-
straints the solution space. This restriction is not only con-
venient but also necessary for learning [3], as illustrated by
recent work which shows that the structure of a network
captures natural image statistics prior to any training [50].
We will demonstrate empirically that inductive bias alone
is not sufficiently effective at restricting the solution space
in cases where data is missing at high rates. Experimental
results conclusively show that augmenting the constraining
properties of the inductive bias with shallow priors imple-
mented in the form of regularizers is a simple an effective
strategy in boosting the performance of deep models in sce-
narios of high data paucity.

3.1. Framework Description

Normalizing flow models are explicit generative models
which perform tractable density estimation of the observed
data. The density estimate is constructed by learning a cas-
cade of invertible transformations which perform a mapping
between the data space and a latent space. A simple, con-
tinuous prior is assumed on the latent variables, for exam-
ple a spherical Gaussian density. Exact log-likelihood com-
putation is achieved using the change of variable formula
[5, 6, 21]. In this work, we introduce a principled frame-
work that leverages the explicit and tractable likelihood ca-
pabilities of normalizing flow models to impose structured
constraints on the constructed probabilistic models.

Although the proposed framework is generic enough to
support a wide range of prior constraints, this study lever-
ages the Hyper-Laplacian prior [24], which has been proven
effective at modelling the heavy-tailed nature of the distri-
bution of gradients in natural scenes. This distribution takes
on the form p,(z) oc e ¥I*I* (or equivalently, log p,(z)
—k|z|*), where 0 < « < 1 determines the heaviness of
the tails in the distribution, and z is the gradient map of im-
age z, which can be obtained by convolving x with a fam-
ily of kernels f;. Subscript p is used to denote the nature
of the distribution (i.e., to contrast with data-driven priors).
We use the notation z = x * f; to denote the convolution

between image = and kernel f;. When multiple filters are
used, it is common to assume independence of the different
edge maps so that log p,(z) o« — Zle |z = f;|*, where T
is the total number of filters.

In scenarios where training data is only partially ob-
served, training a normalizing flow model can be formu-
lated as a joint optimization task where two sets of parame-
ters are learned concurrently, namely the missing entries in
the data and the parameters of the normalizing flow model
itself. Let ... denote the reconstructed samples and Gy the
normalizing flow network parameterized by 6. The objec-
tive of the learning task can be written as

(Tpee,07) = argmax {p(z, )} (1)

x,

Note that, as per the above objective, missing data val-
ues are treated as parameters to optimize. Throughout the
remainder of the paper, we will refer to these values inter-
changeably as data parameters or missing data values.

Estimating the joint density from Eq. | is difficult. One
way to circumvent this obstacle is to alternately optimize
over the conditional distributions of each of the parameters
interest, in a manner similar to the way sampling-based op-
timization frameworks such as Gibbs Sampling and MCMC
[47] operate. Following this principle, the joint optimiza-
tion task can be broken down into two conditional optimiza-
tion tasks of likelihood functions. On the one hand, learning
the parameters 6 of normalizing flow network Gy can be
achieved in the traditional manner, that is, by maximizing
the log-likelihood of the observed data:

0" = argmax {p(0|Zrec) } (2)
0

A set of parameters ¢ defines an invertible network Gy
that maps images to a tractable latent space and vice-versa.
Specifically, in order to perform log-likelihood estimation,
a data sample x; is mapped to its latent representation y; by
passing it through Gy, namely y; = G (x;). Since the like-
lihood for y; is known (e.g., from a normality assumption),
p(z;) (i.e., the likelihood of z;) can be computed exactly via
the variable change rule. The ability to estimate the likeli-
hood of a data sample enables the resolution of the second
conditional optimization task, which aims at finding the op-
timal entries for the missing values in the partially observed
data by maximizing the likelihood of the reconstructed sam-
ple conditioned on the current model parameters:

Lrec = argmax {p(l’w*)} (3)

where the search space is constrained to images x whose
entries match the observed entries of x,55. Solving the opti-
mization task from Eq. 3 effectively fills in unobserved data
values, that is, performs data imputation. Training the over-
all imputation model involves alternately solving Egs. 2 and

3, which yields a sequence of parameter pairs (xﬁ’;B, 9*(")).



Convergence is achieved when little change is observed in
the updated parameters. The description of the framework
around Eqgs. 2 and 3 follows closely the formulation in [41],
although in that work, the training of the model was not
framed as a joint optimization task.

As stated, solving Eq. 2 involves training a traditional
normalizing flow model with the current estimate of the data
parameters, i.e., the current values of the imputed data. In
contrast, the optimization task in Eq. 3 is a highly ill-posed
problem when the data missing rate in x5 is high. PRFlow
leverages the key insight that regularization of the task with
prior knowledge on the solution space leads to improved,
more stable solutions to Eq. 3. In order to incorporate this
prior knowledge, first observe that, as per the Bayes rule:

p(x]6%) o< p(0*|x)pp(x) “4)

where p,(z) is the prior introduced at the beginning of
Sec. 3.1, and it has been assumed that model parameters 6*
are fixed. This is the case since at this stage in the training
alternation, the optimization is over the missing data entries
with the goal of performing data imputation. Combining
Egs. 3 and 4 and applying log yields

Zree = argmax {log p(0*|x) + Alog p,(z)} (5)

where )\ is a parameter that controls the desired degree of
regularization. In summary, training PRFlow involves alter-
nately optimizing the objectives in Egs. 2 and 5. It is worth-
while noting that the objective from Eq. 2 and the first term
in the objective from Eq. 5 involve optimizing the same like-
lihood function relative to two different sets of parameters,
namely the model parameters and the missing data values,
respectively.

3.2. Framework Implementation

PRFlow is largely based on the architecture introduced
in [41], which includes a normalizing flow network G that
enables likelihood estimation, and a network H performing
a non-linear mapping in the latent flow space and fills in
missing values in the partially observed data samples. As
in [41], network G is an instantiation of RealNVP [6]. The
mapping to the latent space via G is performed because like-
lihood computation is tractable in that space, and the impu-
tation task is being formulated as the solution of a max-
imum likelihood conditional objective (as per Eq. 3). At
a high level, the imputation process comprises receiving a
partially observed sample x,5s, computing its latent repre-
sentation y,ps = Go(Zops), mapping this latent representa-
tion to Yrec = Hy(Yobs) With maximum likelihood, and re-
covering the corresponding maximum likelihood data sam-
ple Zpee = Gy ! (Yrec) which matches the observed entries
of x,ps. This process is illustrated in Fig. 1.

As described in Sec. 3.1, learning this framework in-
volves optimizing two different objectives: training network

Gy and H involves optimizing the objectives from Eqgs. 2
and 5 respectively, with the optimization being carried out
in an alternating way until convergence is achieved. The
objectives used to learn these networks, as described below,
are denoted 7 (6) and 7 (¢). In the context of the proposed
framework, the data parameters are not optimized directly;
instead, network H is learned according to J (¢), a proxy
objective to that in Eq. 5. We now describe how the two
networks are learned.

Learning the optimal parameters 8* of normalizing flow
network Gy is achieved by maximizing the log-likelihood
of the training data, or equivalently, minimizing the cost

function: (n)
J(0) == logps(x;") 6)

where the sum is Computedz across training data samples,
and the superscript (n) denotes samples which have been
imputed with the most recent (i.e., the n-th) imputation
model. Throughout this optimization stage, the training
data remains unchanged. At initialization, where no im-
putation model is available, shallow imputation techniques
(e.g., nearest neighbor or bilinear interpolation) are used.
Minimizing this loss corresponds to solving the optimiza-
tion task from Egs. 2.

Learning the optimal parameters ¢* of the imputation
model, which operates in the latent space of the normaliz-
ing flow network, is achieved by minimizing a three-term
loss. Updating parameters ¢ results in an updated imputer
network H 4, which is used to obtain an updated training set
x("). Throughout this stage, normalizing flow network Gy
remains fixed. The first element of the loss involves max-
imizing the likelihood of the reconstructed samples as per
the likelihood estimate provided by the normalizing flow
model, or equivalently, minimizing the cost function:

Ji(¢) = — Zlogpe(ﬂfﬁ-"))

@)
=— Zlogpg [Ga_l oHyo G@(zgn_l))}

where the o operator denotes functional composition and
the expression for J:Z(-”) has been expanded to emphasize
its dependence on the parameters being optimized, namely
¢. Minimizing this loss is equivalent to optimizing the first
term of the objective from Eq. 5. As stated before (see last
paragraph in Sec. 3.1), this loss is equivalent to the loss from
Eq. 6; the difference lies in the set of parameters that are be-
ing modified to achieve the objective. This term encourages
the imputer to output recovered samples that are more likely
to occur.

The second element involves minimizing the discrep-
ancy between the recovered data and the known entries of
the observed data:

Jo(6) = 3 MSE (4,00, G5 ' 0 Hy 0 Go(ai" ™)) (g,



Yobs

y rec

obs

W Observed entries
B Missing entries

'xrec

W Observed entries
B Imputed entries

Figure 1: High-level view of the imputation process.

where the MSE is computed across the known entries of
the observed data only. Note that these entries remain un-
changed throughout both stages of the optimization process,
thus no superscript is needed. This term encourages the im-
puter to output recovered samples that match the known en-
tries at the observed positions.

The last term penalizes reconstructions that deviate from
the expected behavior as dictated by the regularizing prior:

T3(0) = =3 logpp(ai™) = =3 |2l x £
7 7 7

== 1Gy o Hyo Golaf™ )+ £yl
g
)

where the summations indexed by ¢ and j are performed
across data samples and gradient kernels, respectively, and
we have incorporated the expression for the prior introduced
in Sec. 3.1. Minimizing this loss is equivalent to optimizing
the second term in the objective from Eq. 5. In our imple-
mentation, and for the sake of computational efficiency and
simplicity, we use two first-order derivative filters, namely
[1,1] and [1, 1]T. Note that higher-order or learnable filters
can be used instead, which would likely result in improved
performance.

In summary, training PRFlow involves joint optimization
of objectives {J(0), J1 (), J2(¢), J3(¢)} across 0 and ¢,
where 6 denotes the parameters of the normalizing flow net-
work and ¢ denotes the imputer network parameters, i.e.,
the parameters that ultimately determine how the missing
data values are filled in.

4. Experimental Results

Datasets and Procedure. The efficacy of PRFlow
was evaluated on three different standard image datasets,
MNIST [27], CIFAR-10 [25] and CelebA [31]. Four differ-
ent rates of data missingness were tested, from 60% to 90%
in steps of 10%. The training procedure follows the prin-
ciples of recent work proposing models that support and
rely purely on partially observed data during the learning

phase [29, 30, 41, 55] by training with the dataset result-
ing from randomly dropping the corresponding percentage
of pixels from the images in the standard training set from
the respective dataset of interest according to a Bernoulli
distribution. In MNIST, the training set comprises 60,000
28 x 28-pixel grayscale images, whereas in CIFAR it in-
cludes 50,000 32 x 32-pixel RGB images. Since no standard
partition exists for CelebA, we use the first 100,000 images
for training and the remaining for testing. We pre-process
CelebA images by performing 108 x 108 pixel center crop-
ping and resizing to 32 x 32 pixels. For testing, we adhere
to the experimental principle drawn out in [4 1], where per-
formance is measured on the standard test set of the relevant
dataset after having randomly dropped the appropriate frac-
tion of pixel values.

Metrics. We measure the performance of the algorithms
relative to three different metrics, which we believe cap-
ture all relevant attributes of data recovered by an algorithm
attempting to reconstruct partially observed data: (i) root
mean squared error (RMSE), which measures differences
between the reconstructed image and the ground truth at the
pixel level; (ii) the Fréchet Inception Distance (FID), first
proposed to measure the quality of data produced by gener-
ative models [16] and which captures population-level sim-
ilarities; and (iii) the ratio of the classification accuracy of
a classifier pre-trained on fully observed training data on
the reconstructed data to the accuracy of the same classi-
fier on the fully observed test set. This metric, which we
denote the Semantic Consistency Criterion (SCC), aims at
measuring the amount of semantic information preserved by
the missing data recovery process. Formally, let acc;yy,;, be
the performance of the benchmark classifier on an imputed
test set and accy the performance of the same classifier on
the original test set. Then SCC = min{1, accimp/acco},
where the clipping is introduced to handle the unlikely case
when acc;p,, > accy. Normalization by the baseline clas-
sifier performance is done to minimize the impact of the
choice of classifier. This overarching experimental frame-
work contrasts with most previous work on generative mod-
elling of incomplete data ([41] excepted), which doesn’t



consider the preservation of semantic content as a metric of
performance, and tends to make more emphasis on the real-
ism of the recovered samples than on the pixel-level accu-
racy [29, 30]. In this work, we consider all three metrics to
be equally important, and posit that one of the most salient
strengths of the proposed method is that it minimizes the
impact of the trade-off between the metrics relative to com-
peting methods. Of note, RMSE is measured between the
recovered values and the ground truth values at the unob-
served pixel locations in the test set. This means that not
only the pixels but also the full images used to measure the
performance of the method are completely unseen by the
framework during training, unlike approaches which mea-
sure performance on unobserved values within the training
set [29, 30]. Similarly, FID is measured between the recov-
ered test set and the ground truth test set, and SCC perfor-
mance is measured on the recovered test set imagery.

Competing Methods. We benchmark the performance
of PRFlow against three methods, namely MisGAN [29],
PBiGAN [30] and MCFlow [4 1], which together comprise
the state-of-the-art landscape in image imputation tasks
across the considered metrics. We used the publicly avail-
able code for all three competing methods from their offi-
cial repositories; we used the code as published for MNIST
and made extensions to the code to enable support of CI-
FAR (no CIFAR versions were publicly available). We use
LeNet [26], ResNet18 [15] to compute both SCC and FID
on MNIST and CIFAR, respectively. Since CelebA has no
classes, we use FaceNet [44] to compute FID only.

Experimental Setup. Throughout the experiments, we
use &« = 1/3, a learning rate of 1 x 10~%, and a batch size
of 64. We train until little change is observed in the loss
from Eq. 8, as opposed to competing methods which pre-
scribe a set number of epochs to train. Gy is a RealNVP
[6] network with six affine coupling layers. We implement
H as a 3-hidden layer, fully connected network with 784
and 1024 neurons per layer for MNIST and CIFAR/CelebA,
respectively, with input and output layers having the same
number of neurons as the dimensionality of the images (i.e.,
28 x 28 = 784 for MNIST, and 32 x 32 x 3 = 3072 for
CIFAR and CelebA). Although performance is somewhat
robust to the choice of A\, we noticed it did affect conver-
gence speed: too large a value would lead to oscillations
and too small a value would lead to slow convergence. As
a rule of thumb, we found that a value of A that approxi-
mately equalizes the value of J1(¢) (Eq. 7) and the value
of AJ5(¢) (Eq. 9) worked well.

Results. Table 1 includes the RMSE results for all com-
peting methods across both datasets and considered data
missingness rates. MCFlow and PRFlow perform similarly,
while PBiGAN performs the worst, with the gaps in per-
formance being significantly larger for CIFAR. These re-
sults are reasonable since neither MisGAN nor PBiGAN

enforce an MSE loss explicitly. Table 2 includes the FID
results laid out in a similar fashion. In this case, PRFlow
again outperforms all competing methods, trailed closely
by PBiGAN on MNIST, with performance being more even
across the field on CIFAR and CelebA. These results high-
light the efficacy of the regularizing prior at shaping the sta-
tistical behavior of the recovered imagery. Lastly, Table 3
includes SCC results. In the MNIST case, MCFlow, PBi-
GAN and PRFlow perform similarly, with MisGAN trailing
by a somewhat significant margin, and with the margin in-
creasing as the missing rate increases. In the CIFAR case,
PRFlow outperforms the competition more handily.

Table 1: RMSE between recovered data and ground truth
test set, unobserved pixels only (lower is better)

Missing Rate
Dataset | Method 0.6 0.7 0.8 0.9
MisGAN | 0.1329 | 0.1561 | 0.1958 | 0.2484
MNIST PBiGAN | 0.3155 | 0.3121 | 0.3045 | 0.2844
MCFlow | 0.1126 | 0.1300 | 0.1581 | 0.2080
PRFlow | 0.1093 | 0.1243 | 0.1490 | 0.2059
MisGAN | 0.2568 | 0.2814 | 0.3081 | 0.3461
CIFAR PBiGAN | 0.3380 | 0.3443 | 0.3623 | 0.4448
MCFlow | 0.0921 | 0.1059 | 0.1187 | 0.1460
PRFlow | 0.0802 | 0.0919 | 0.1102 | 0.1299
MisGAN | 0.2232 | 0.2273 | 0.2404 | 0.2777
CelebA PBiGAN | 0.2894 | 0.3356 | 0.3733 | 0.4230
MCFlow | 0.0793 | 0.0828 | 0.0927 | 0.1189
PRFlow | 0.0738 | 0.0813 | 0.0924 | 0.1135

Table 2: FID between recovered data and ground truth test

sets (lower is better) Missing Rate

Dataset | Method 0.6 0.7 0.8 0.9
MisGAN | 0.8300 | 1.5373 | 3.0956 | 7.9071

MNIST PBiGAN | 0.1356 | 0.3082 | 0.9927 | 4.2000
MCFlow | 0.7840 | 1.3382 | 3.0663 | 8.5047
PRFlow | 0.0959 | 0.2888 | 0.8795 | 3.8759
MisGAN | 0.7299 | 0.8464 | 09136 | 0.9477

CIFAR PBiGAN | 0.8743 | 0.9794 | 1.1229 | 1.1308
MCFlow | 0.4145 | 0.6564 | 0.8777 | 1.0808
PRFlow | 0.2928 | 0.5111 | 0.6825 | 0.8437
MisGAN | 0.3085 | 0.3486 | 0.4024 | 0.5693

CelebA PBiGAN | 0.7547 | 0.7861 | 0.8931 | 0.9415
MCFlow | 0.1225 | 0.1672 | 0.3333 | 0.7587
PRFlow | 0.0887 | 0.1481 | 0.2359 | 0.5213

Figs. 2 through 5 include sample reconstruction results
which are intended to qualitatively showcase the perfor-
mance of the competing methods. The results in Figs. 2
and 3 are arranged in groups of two rows of images, each
group corresponding to reconstructions from the observed
image (top row) and ground truth (bottom row) in the left-
most column of each image group. The remaining images
in the top row of each group correspond to reconstructions
by MisGAN, PBiGAN, MCFlow and PRFlow, respectively,



Table 3: SCC of recovered test set (higher is better)

Missing Rate
Dataset | Method 0.6 0.7 0.8 0.9
MisGAN | 0.9423 | 0.8763 | 0.6964 | 0.3489
MNIST PBiGAN | 0.9807 | 0.9619 | 0.9183 | 0.7602
MCFlow | 0.9872 | 0.9705 | 0.9279 | 0.7487
PRFlow | 0.9842 | 0.9693 | 0.9276 | 0.7471
MisGAN | 0.4588 | 0.3828 | 0.3364 | 0.2737
CIFAR PBiGAN | 0.3717 | 0.3020 | 0.2396 | 0.1757
MCFlow | 0.6606 | 0.5194 | 0.3893 | 0.3218
PRFlow | 0.7225 | 0.5939 | 0.4719 | 0.3559
MisGAN PBiGAN MCFlow PRFlow
Observed Recovered
0.8
Ground truth MSE Map
Observed Recovered
0.9
Ground truth MSE Map

Figure 2: Sample results on MNIST for 80 and 90% missing
rates (top to bottom image groups).

from left to right. The bottom row in each group includes
the mean squared error maps between the reconstruction
by each method and the ground truth. Fig. 2 includes re-
sults across different rates of missing data. It can be ob-
served that, as the results from Table 1 indicate, GAN-
based methods tend to produce higher MSE reconstructions.
Further, the reconstructions produced by PRFlow showcase
human-like handwriting across all levels, with strokes that
are mostly continuous and largely uninterrupted. Lastly,
the images recovered by PRFlow almost always resemble
a readable digit, which is not the case with the competing
methods, particularly for missing rates of 80% and above.
Fig. 3 focuses on the 90% missing data case and pro-
vides four additional examples. As before, all of the im-
ages restored by PRFlow resemble human-like handwritten
digits. Failure to recover the original semantic content of
the images happens mostly in cases where the original im-
ages themselves are ambiguous. Figs. 4 and 5 include re-
construction results on CIFAR-10 and CelebA. From left to
right, the images include: ground truth, observed, and re-
constructions by MNIST, PBiGAN, MCFlow and PRFlow.
It can be seen that the Flow-based methods outperform the
GAN-based methods, with PBiGAN lagging significantly
behind. PRFlow has the overall edge in image quality
with sharper edges, smoother backgrounds and more real-
istic reconstructions. Specifically, the edges of the plane
and mountains against the sky are sharp in PRFlow recon-

MisGAN PBiGAN MCFlow PRFlow

Observed Recovered

Ground truth MSE Map

Observed Recovered

Ground truth MSE Map

Observed Recovered

Ground truth MSE Map

Observed Recovered

Ground truth MSE Map

Figure 3: Sample results on MNIST for 90% missing data.

structions; the edges of sunglasses against skin are better
defined; skin textures are more realistic and facial features
(e.g., mouth, nose, hair strands) are rendered more natu-
rally. While there are similarities between the MCFlow and
PRFlow renditions, there are edge sharpness and texture dif-
ferences (e.g., ringing and blockiness artifacts being more
pronounced in the MCFlow images) that likely lead to the
measurable gap in performance showcased in Tables 1-3.
Lastly, the bottommost row in Fig. 5 illustrates a subtle but
semantically significant reconstruction artifact where com-
peting methods hallucinate a person with open eyes, while
PRFlow accurately reconstructs a squinting face. We invite
readers to attempt to fill in missing values themselves from
the partially observed versions of the images. It can be a
challenging task, in particular for high rates of missing data.
We should note that humans have an advantage in that they
know from experience what a number, an animal, or a face
look like, whereas the algorithms competing herein were
never exposed to a single fully observed image, and thus
have to infer what the different objects look like by piecing
together fractional observations from multiple images in the
complete absence of labels.

S. Discussion

Traditionally, learning from incomplete or partially ob-
served data has meant that trade-offs between various im-
age quality aspects had to be incurred. Specifically, prior
methods on image imputation suffered at one or more of
the following image quality attributes: (i) realism, (ii) pixel-
level quality, and (iii) semantic consistency between the re-



Figure 4: Sample results on CIFAR-10. From left to right: ground truth, observed, and MisGAN, PBiGAN, MCFlow and

PRFlow reconstructions.

Figure 5: Sample results on CelebA. From left to right: ground truth, observed, and MisGAN, PBiGAN, MCFlow and

PRFlow reconstructions.

covered and the partially observed image. These trade-offs
became more significant as the degree of data paucity grew
and approached unity. We hypothesize that this undesirable
trend was due to the increasing level of ill-posedness of the
recovery process and proposed a regularization approach
that proved effective at addressing the three-pronged image
quality trade-off. Extensive experimental results demon-

strate that the proposed algorithm consistently matches or
outperforms the performance of competing state-of-the-art
approaches across all quality metrics in question. The seam-
less incorporation of domain knowledge in the form of a
prior regularizer was made possible by the formulation of
the learning task as a joint optimization objective.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

Panos Achlioptas, Olga Diamanti, loannis Mitliagkas, and
Leonidas Guibas. Learning representations and genera-
tive models for 3D point clouds. In Jennifer Dy and An-
dreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pages 40—49, Stock-
holmsmissan, Stockholm Sweden, 10-15 Jul 2018. PMLR.
1

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthe-
sis. In International Conference on Learning Representa-
tions, 2019. 1

Nadav Cohen and Amnon Shashua. Inductive bias of deep
convolutional networks through pooling geometry. In 5th In-
ternational Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. 3

A. K. Dey and F. H. Ruymgaart. Direct density estimation
as an ill-posed inverse estimation problem. Statistica Neer-
landica, 53(3):309-326, 1999. 2

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:
Non-linear independent components estimation. CoRR,
abs/1410.8516, 2014. 2, 3

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using real NVP.  In 5th Interna-
tional Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net, 2017. 1,2, 3,4, 6

Jeff Donahue, Philipp Krihenbiihl, and Trevor Darrell. Ad-
versarial feature learning. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017. 2

Vincent Dumoulin, Mohamed Ishmael Diwan Belghazi, Ben
Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro,
and Aaron Courville. Adversarially learned inference. 2017.
2

H.W. Engl, M. Hanke, and A. Neubauer. Regularization
of Inverse Problems. Mathematics and Its Applications.
Springer Netherlands, 1996. 2

T. Evgeniou, M. Pontil, and T. Poggio. Regularization net-
works and support vector machines. Advances in Computa-
tional Mathematics, 13(1), 2000. 2

Kuzman Ganchev, Jodo Graga, Jennifer Gillenwater, and Ben
Taskar. Posterior regularization for structured latent variable
models. J. Mach. Learn. Res., 11:2001-2049, Aug. 2010. 2
Dileep George, Wolfgang Lehrach, Ken Kansky, Miguel
Lazaro-Gredilla, Christopher Laan, Bhaskara Marthi,
Xinghua Lou, Zhaoshi Meng, Yi Liu, Huayan Wang, Alex
Lavin, and D. Scott Phoenix. A generative vision model
that trains with high data efficiency and breaks text-based
captchas. Science, 358(6368), 2017. 2

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.

[14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 27, pages 2672-2680. Curran Associates,
Inc., 2014. 1,2

Ian J. Goodfellow. NIPS 2016 tutorial: Generative adversar-
ial networks. CoRR, abs/1701.00160, 2017. 1,2

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 770-778, 2016. 6

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANSs trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Advances in neural information processing systems,
pages 6626-6637, 2017. 5

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and
Eric Xing. Harnessing deep neural networks with logic rules.
In Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers),
pages 2410-2420, Berlin, Germany, Aug. 2016. Association
for Computational Linguistics. 2

Zhiting Hu, Zichao Yang, Russ R Salakhutdinov, Lianhui
Qin, Xiaodan Liang, Haoye Dong, and Eric P Xing. Deep
generative models with learnable knowledge constraints. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems 31, pages 10501-10512. Curran
Associates, Inc., 2018. 2

Sergey loffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. volume 37 of Proceedings of Machine Learn-
ing Research, pages 448456, Lille, France, 07-09 Jul 2015.
PMLR. 2

Jian Sun, Zongben Xu, and Heung-Yeung Shum. Image
super-resolution using gradient profile prior. In 2008 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1-8, 2008. 2

Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R.
Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 10215-10224. Curran Associates, Inc.,
2018.1,2,3

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes, 2013. cite arxiv:1312.6114. 1,2

B. Kiran, Dilip Thomas, and Ranjith Parakkal. An overview
of deep learning based methods for unsupervised and semi-
supervised anomaly detection in videos. Journal of Imaging,
4(2):36, Feb 2018. 1

Dilip Krishnan and Rob Fergus. Fast image deconvolution
using hyper-laplacian priors. In Y. Bengio, D. Schuurmans,
J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, Ad-
vances in Neural Information Processing Systems 22, pages
1033-1041. Curran Associates, Inc., 2009. 2, 3

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. Technical report, Cite-
seer, 2009. 5



[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. In Proceedings of the IEEE, pages 2278-2324, 1998.
6

Yann LeCun and Corinna Cortes. MNIST handwritten digit
database. 2010. 5

C. Ledig, L. Theis, F. Huszdr, J. Caballero, A. Cunningham,
A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W.
Shi. Photo-realistic single image super-resolution using a
generative adversarial network. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
105-114, 2017. 2

Steven Cheng-Xian Li, Bo Jiang, and Benjamin Marlin. Mis-
GAN: learning from incomplete data with generative adver-
sarial networks. In International Conference on Learning
Representations, 2019. 1,2,5,6

Steven Cheng-Xian Li and Benjamin Marlin. Learning from
irregularly-sampled time series: A missing data perspec-
tive. In Proceedings of Machine Learning and Systems 2020,
pages 5756-5765. 2020. 1,2, 5,6

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), De-
cember 2015. 5

C. Ma, Wenbo Gong, José Miguel Hernandez-Lobato, Noam
Koenigstein, Sebastian Nowozin, and C. Zhang. Partial vae
for hybrid recommender system. 2018. 2

Gary Marcus. Deep learning: A critical appraisal. CoRR,
abs/1801.00631, 2018. 2

Pierre-Alexandre Mattei and Jes Frellsen. MIWAE: Deep
generative modelling and imputation of incomplete data
sets. In Kamalika Chaudhuri and Ruslan Salakhutdinov, ed-
itors, Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 4413-4423, Long Beach, Califor-
nia, USA, 09-15 Jun 2019. PMLR. 2

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In International Conference on Learning
Representations, 2018. 1

N. Muralidhar, M. R. Islam, M. Marwah, A. Karpatne, and
N. Ramakrishnan. Incorporating prior domain knowledge
into deep neural networks. In 2018 IEEE International Con-
ference on Big Data (Big Data), pages 36-45, 2018. 2
Steven J. Nowlan and Geoffrey E. Hinton. Simplifying
neural networks by soft weight-sharing. Neural Comput.,
4(4):473-493, July 1992. 2

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen
Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew Senior, and Koray Kavukcuoglu. Wavenet: A gen-
erative model for raw audio, 2016. cite arxiv:1609.03499.
1

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Gener-
ating diverse high-fidelity images with vq-vae-2. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc., 2019.
1

(40]

[41]

[42]

(43]

[44]

[45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-
stra. Stochastic backpropagation and approximate inference
in deep generative models. In Eric P. Xing and Tony Jebara,
editors, Proceedings of the 31st International Conference on
Machine Learning, volume 32 of Proceedings of Machine
Learning Research, pages 1278—1286, Bejing, China, 22-24
Jun 2014. PMLR. 1

Trevor W. Richardson, Wencheng Wu, Lei Lin, Beilei Xu,
and Edgar A. Bernal. MCFlow: Monte carlo flow models for
data imputation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2020. 1, 2,4,5,6

Lorenzo Rosasco, Andrea Caponnetto, Ernesto D. Vito,
Francesca Odone, and Umberto D. Giovannini. Learning,
regularization and ill-posed inverse problems. In L. K. Saul,
Y. Weiss, and L. Bottou, editors, Advances in Neural In-
formation Processing Systems 17, pages 1145-1152. MIT
Press, 2005. 2

Murray Rosenblatt. Remarks on some nonparametric esti-
mates of a density function. Ann. Math. Statist., 27(3):832—
837,09 1956. 2

Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In CVPR, pages 815-823. IEEE Computer Society,
2015. 6

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. J. Mach.
Learn. Res., 15(1):1929-1958, Jan. 2014. 2

Y. Tai, S. Liu, M. S. Brown, and S. Lin. Super resolution
using edge prior and single image detail synthesis. In 2010
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 2400-2407, 2010. 2

M. Takahashi. Statistical inference in missing data by mcmc
and non-mcmc multiple imputation algorithms: Assessing
the effects of between-imputation iterations. Data Science
Journal, 16(37):1-17, 2017. 3

Niket Tandon, Aparna S. Varde, and Gerard de Melo. Com-
monsense knowledge in machine intelligence. SIGMOD
Rec., 46(4):49-52, Feb. 2018. 2

A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed
problems. W.H. Winston, 1977. 2

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Deep image prior. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2018. 3

Vladimir N. Vapnik. Statistical Learning Theory. Wiley-
Interscience, 1998. 2

Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep net-
works for image super-resolution with sparse prior. In 2015
IEEE International Conference on Computer Vision (ICCV),
pages 370-378, 2015. 2

Tao Yang, Georgios Arvanitidis, Dongmei Fu, Xiaogang Li,
and Sgren Hauberg. Geodesic clustering in deep generative
models. CoRR, abs/1809.04747, 2018. 1

Xitong Yang, Palghat Ramesh, Radha Chitta, Sriganesh
Madhvanath, Edgar A Bernal, and Jiebo Luo. Deep mul-



[55]

[56]

timodal representation learning from temporal data. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5447-5455, 2017. 1

Jinsung Yoon, James Jordon, and Mihaela van der Schaar.
GAIN: Missing data imputation using generative adversar-
ial nets. In Jennifer Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning
Research, pages 5689-5698, Stockholmsmaissan, Stockholm
Sweden, 10-15 Jul 2018. PMLR. 1,2, 5

Yuxin Zhang, Zuquan Zheng, and Roland Hu. Super reso-
lution using segmentation-prior self-attention generative ad-
versarial network, 2020. 2



