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Abstract

Deep generative frameworks including GANs and nor-

malizing flow models have proven successful at filling in

missing values in partially observed data samples by ef-

fectively learning –either explicitly or implicitly– complex,

high-dimensional statistical distributions. In tasks where

the data available for learning is only partially observed,

however, their performance decays monotonically as a

function of the data missingness rate. In high missing data

rate regimes (e.g., 60% and above), it has been observed

that state-of-the-art models tend to break down and pro-

duce unrealistic and/or semantically inaccurate data. We

propose a novel framework to facilitate the learning of data

distributions in high paucity scenarios that is inspired by

traditional formulations of solutions to ill-posed problems.

The proposed framework naturally stems from posing the

process of learning from incomplete data as a joint opti-

mization task of the parameters of the model being learned

and the missing data values. The method involves enforc-

ing a prior regularization term that seamlessly integrates

with objectives used to train explicit and tractable deep

generative frameworks such as deep normalizing flow mod-

els. We demonstrate via extensive experimental validation

that the proposed framework outperforms competing tech-

niques, particularly as the rate of data paucity approaches

unity.

1. Introduction

Deep generative models (DGMs) have enjoyed success

in tasks involving the estimation of statistical properties of

data. Applications of DGMs involve generation of high-

resolution and realistic synthetic data [2, 13, 35, 38, 39],

exact [6, 21] and approximate [22, 40] likelihood estima-

tion, clustering [53], representation learning [1, 54], and

unsupervised anomaly detection [23]. Fundamentally, gen-

erative models perform explicit and/or implicit data density

estimation [14]. Given the complexity of most signals of

interest to the learning community (e.g., audio, language,

imagery and video), reliably learning the statistical prop-

erties of a given population of data samples often requires

immense amounts of training data. Recent work has em-

pirically shown that, in order to continue pushing the state-

of-the-art in high-fidelity synthetic data generation, scalable

models able to ingest ever-growing data sources may be re-

quired [2].

Some of the data requirements imposed by current deep

generative models may limit their applicability in real-life

scenarios, where available data may not be plentiful, and

additionally, may be noisy, or only partially observable.

The nature of real-world data poses challenges to existing

models, and mechanisms to overcome those challenges are

needed in order to further the penetration of the technology.

In this paper, we focus on enabling the learning of DMGs

in scenarios of high data missingness rates (e.g., 60% of en-

tries missing per data sample and above), where the miss-

ingness affects both the training and the test sets. We specif-

ically focus on the task of image imputation, which consists

in filling in missing or unobserved values without access to

fully observed images during training. Previous work on

data imputation leveraging various forms of DMGs has ex-

plicitly addressed image imputation [29, 30, 41, 55]. While

the results are reasonable in low- and mid-data missingness

regimes, empirical results indicate that, as large fractions of

the data become unobserved, either the perceived quality of

the recovered data suffers [41], the original semantic con-

tent in the image is lost [55] or both [29]. These undesired

consequences are likely caused by the ill-posedness of the

problem of attempting to estimate certain statistical proper-

ties from partially observed data, an issue which becomes

more extreme as the rate of unobserved data approaches

totality. Of note, most existing work fails to consider the

semantic content preservation aspect of the task altogether,

and focuses solely on measuring the performance of the al-

gorithms based on the realism of the recovered data samples

[29, 30, 55].

Inspired by these observations, we propose to constrain

the complexity of the solution space where the recon-

structed image lies via regularization techniques, a tech-

nique initially exploited in traditional ill-posed inverse
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problem formulations [49] and more recently adapted to

statistical learning scenarios [51]. The proposed regulariza-

tion term enforces a prior distribution on the gradient map

of the reconstructed images [24] in the form of a shallow,

hand-engineered constraint, and stands in contrast with re-

cent trends which rely on the high expressivity and capacity

of deep models to effectively construct data-driven priors,

but which break down in scenarios where data scarcity is an

issue. We seamlessly couple the regularizing priors with ex-

plicit likelihood estimates of reconstructed samples yielded

by normalizing flows in a novel framework we dub PRFlow,

which stands for Prior-Regularized Normalizing Flow. The

contributions of this paper are as follows:

• a framework combining traditional explicit and

tractable deep generative models with shallow, hand-

engineered priors in the form of regularization terms to

constrain the complexity of the solution space in high

data paucity regimes;

• a formal derivation of the framework stemming from

the formulation of the learning task with incomplete

data as a joint optimization task of the network param-

eters and missing data values;

• a comprehensive testing framework –including a new

metric that captures the semantic consistency between

the original and the recovered data samples– which

evaluates all aspects of performance that are relevant

when learning from partially observed data; and

• empirical validation of the effectiveness of the pro-

posed framework on the imputation of three stan-

dard image datasets and benchmarking against current

state-of-the-art imputation models under the proposed

testing framework.

2. Related Work

Deep learning frameworks have proven successful at a

wide range of applications such as speech recognition, im-

age and video understanding, and game playing, but are

often criticized for their data-hungry nature [33]. Some

scholars go as far as to say that the future of deep learning

depends on data efficiency, and have attempted to achieve

it in various ways, for example, by leveraging common

sense [48], mimicking human reasoning [12] or incorpo-

rating domain knowledge into the learning process [36].

The ability to learn from incomplete, partially observed and

noisy data will be fundamental to advance the adoption of

deep learning frameworks in real-life applications. In re-

cent years, a body of research on deep frameworks that

can learn from partially observed data has emerged. Ini-

tial work focused on extensions of generative models such

as Variational Auto Encoders (VAEs) [22] and Generative

Adversarial Networks (GANs) [13], including Partial VAEs

[32], the Missing Data Importance-Weighted Autoencoder

(MIWAE) [34], the Generative Adversarial Imputation Net-

work (GAIN) [55] and the GAN for Missing Data (MIS-

GAN) [29]. More recently, the state-of-the-art benchmark

on learning from incomplete data has been pushed by bidi-

rectional generative frameworks which leverage the ability

to map back and forth between the data space and the la-

tent space. Two such examples include the Monte-Carlo

Flow model (MCFlow) [41] which relies on explicit nor-

malizing flow models [5, 6, 21], and the Partial Bidirec-

tional GAN (PBiGAN) [30] which extends the bidirectional

GAN framework [7, 8].

While the results achieved by recent work are impres-

sive in their own right, these methods share a common

thread: they all break down, in one way or another, as

the missingness rate in the data approaches unity. This

phenomenon can be intuitively understood if we think of

a generative model as a probability density estimator (ei-

ther explicit or implicit) [14], which is, at its core, an ill-

posed inverse problem [4, 43]. From this standpoint, the

ill-posedness becomes more extreme as the rate of occur-

rence of unobserved data increases. Historically, regular-

ization techniques [9, 49] have been widely used to precon-

dition estimators and avoid undesired behaviors of solutions

by restricting the feasible space [10, 51]. While regulariza-

tion in deep learning is commonplace (e.g., weight decay

and weight sharing [37], dropout [45], batch normalization

[19]), it is usually implemented to constrain the plausible

space of network parameters and avoid overfitting in dis-

criminative scenarios. Models that implement regulariza-

tion on the output space tend to be of the generative type.

For instance, image priors have been leveraged to address

the inherently ill-posed single-image super resolution prob-

lem [20, 28, 46, 52, 56]. The proposed framework can

be seen as an attempt to incorporate domain knowledge in

learning scenarios in order to guide, facilitate or expedite

the learning [11, 17, 18].

3. Proposed Framework

Parallels between ill-posed inverse problems and learn-

ing tasks have been established in the literature [42, 51].

To informally illustrate how the degree of ill-posedness of

a learning task from partial observation grows with the rate

of data missingness, consider the task of image imputation.

Let b denote the bit depth used to encode each pixel value

(i.e., pixels can take on values g, where 0 ≤ g ≤ 2b − 1)

and N the number of pixels of the images in question. The

total number of possible images that can be represented

with this scheme is (2b)N . For the sake of discussion,

let us ignore the fact that natural images actually lie on a

lower-dimensional manifold within that image space. Let

0 ≤ p ≤ 1 denote the data missingness rate. This means

that when we partially observe an image, we are only ex-

posed to (1 − p) · N of its pixel values. The task of image



imputation involves estimating the remaining p · N pixel

values, which means that for every partially observed in-

put image, there are (2b)pN possible imputed solutions. It

is apparent that the dimensionality of the feasible solution

space grows exponentially as the missingness rate grows

linearly. The practical implication of this observation is

that, in order to maintain a certain level of reconstruction

performance, the number of partially observed data samples

needs to grow exponentially as the missingness rate grows

linearly. This is an example of an ill-posed problem where

the observed data itself is not sufficient to find unique solu-

tions.

When an imputation task is tackled with a learning

framework (i.e., a deep generative network), the inductive

bias that arises from the choice of network inherently con-

straints the solution space. This restriction is not only con-

venient but also necessary for learning [3], as illustrated by

recent work which shows that the structure of a network

captures natural image statistics prior to any training [50].

We will demonstrate empirically that inductive bias alone

is not sufficiently effective at restricting the solution space

in cases where data is missing at high rates. Experimental

results conclusively show that augmenting the constraining

properties of the inductive bias with shallow priors imple-

mented in the form of regularizers is a simple an effective

strategy in boosting the performance of deep models in sce-

narios of high data paucity.

3.1. Framework Description

Normalizing flow models are explicit generative models

which perform tractable density estimation of the observed

data. The density estimate is constructed by learning a cas-

cade of invertible transformations which perform a mapping

between the data space and a latent space. A simple, con-

tinuous prior is assumed on the latent variables, for exam-

ple a spherical Gaussian density. Exact log-likelihood com-

putation is achieved using the change of variable formula

[5, 6, 21]. In this work, we introduce a principled frame-

work that leverages the explicit and tractable likelihood ca-

pabilities of normalizing flow models to impose structured

constraints on the constructed probabilistic models.

Although the proposed framework is generic enough to

support a wide range of prior constraints, this study lever-

ages the Hyper-Laplacian prior [24], which has been proven

effective at modelling the heavy-tailed nature of the distri-

bution of gradients in natural scenes. This distribution takes

on the form pp(z) ∝ e−k|z|α (or equivalently, log pp(z) ∝
−k|z|α), where 0 < α ≤ 1 determines the heaviness of

the tails in the distribution, and z is the gradient map of im-

age x, which can be obtained by convolving x with a fam-

ily of kernels fi. Subscript p is used to denote the nature

of the distribution (i.e., to contrast with data-driven priors).

We use the notation z = x ∗ fi to denote the convolution

between image x and kernel fi. When multiple filters are

used, it is common to assume independence of the different

edge maps so that log pp(x) ∝ −
∑I

i=1 |x ∗ fi|
α, where I

is the total number of filters.

In scenarios where training data is only partially ob-

served, training a normalizing flow model can be formu-

lated as a joint optimization task where two sets of parame-

ters are learned concurrently, namely the missing entries in

the data and the parameters of the normalizing flow model

itself. Let xrec denote the reconstructed samples and Gθ the

normalizing flow network parameterized by θ. The objec-

tive of the learning task can be written as

(xrec, θ
∗) = argmax

x,θ

{p(x, θ)} (1)

Note that, as per the above objective, missing data val-

ues are treated as parameters to optimize. Throughout the

remainder of the paper, we will refer to these values inter-

changeably as data parameters or missing data values.

Estimating the joint density from Eq. 1 is difficult. One

way to circumvent this obstacle is to alternately optimize

over the conditional distributions of each of the parameters

interest, in a manner similar to the way sampling-based op-

timization frameworks such as Gibbs Sampling and MCMC

[47] operate. Following this principle, the joint optimiza-

tion task can be broken down into two conditional optimiza-

tion tasks of likelihood functions. On the one hand, learning

the parameters θ of normalizing flow network Gθ can be

achieved in the traditional manner, that is, by maximizing

the log-likelihood of the observed data:

θ∗ = argmax
θ

{p(θ|xrec)} (2)

A set of parameters θ defines an invertible network Gθ

that maps images to a tractable latent space and vice-versa.

Specifically, in order to perform log-likelihood estimation,

a data sample xi is mapped to its latent representation yi by

passing it through Gθ, namely yi = Gθ(xi). Since the like-

lihood for yi is known (e.g., from a normality assumption),

p(xi) (i.e., the likelihood of xi) can be computed exactly via

the variable change rule. The ability to estimate the likeli-

hood of a data sample enables the resolution of the second

conditional optimization task, which aims at finding the op-

timal entries for the missing values in the partially observed

data by maximizing the likelihood of the reconstructed sam-

ple conditioned on the current model parameters:

xrec = argmax
x

{p(x|θ∗)} (3)

where the search space is constrained to images x whose

entries match the observed entries of xobs. Solving the opti-

mization task from Eq. 3 effectively fills in unobserved data

values, that is, performs data imputation. Training the over-

all imputation model involves alternately solving Eqs. 2 and

3, which yields a sequence of parameter pairs (x
(n)
rec, θ∗(n)).



Convergence is achieved when little change is observed in

the updated parameters. The description of the framework

around Eqs. 2 and 3 follows closely the formulation in [41],

although in that work, the training of the model was not

framed as a joint optimization task.

As stated, solving Eq. 2 involves training a traditional

normalizing flow model with the current estimate of the data

parameters, i.e., the current values of the imputed data. In

contrast, the optimization task in Eq. 3 is a highly ill-posed

problem when the data missing rate in xobs is high. PRFlow

leverages the key insight that regularization of the task with

prior knowledge on the solution space leads to improved,

more stable solutions to Eq. 3. In order to incorporate this

prior knowledge, first observe that, as per the Bayes rule:

p(x|θ∗) ∝ p(θ∗|x)pp(x) (4)

where pp(x) is the prior introduced at the beginning of

Sec. 3.1, and it has been assumed that model parameters θ∗

are fixed. This is the case since at this stage in the training

alternation, the optimization is over the missing data entries

with the goal of performing data imputation. Combining

Eqs. 3 and 4 and applying log yields

xrec = argmax
x

{log p(θ∗|x) + λ log pp(x)} (5)

where λ is a parameter that controls the desired degree of

regularization. In summary, training PRFlow involves alter-

nately optimizing the objectives in Eqs. 2 and 5. It is worth-

while noting that the objective from Eq. 2 and the first term

in the objective from Eq. 5 involve optimizing the same like-

lihood function relative to two different sets of parameters,

namely the model parameters and the missing data values,

respectively.

3.2. Framework Implementation

PRFlow is largely based on the architecture introduced

in [41], which includes a normalizing flow network G that

enables likelihood estimation, and a network H performing

a non-linear mapping in the latent flow space and fills in

missing values in the partially observed data samples. As

in [41], network G is an instantiation of RealNVP [6]. The

mapping to the latent space via G is performed because like-

lihood computation is tractable in that space, and the impu-

tation task is being formulated as the solution of a max-

imum likelihood conditional objective (as per Eq. 3). At

a high level, the imputation process comprises receiving a

partially observed sample xobs, computing its latent repre-

sentation yobs = Gθ(xobs), mapping this latent representa-

tion to yrec = Hφ(yobs) with maximum likelihood, and re-

covering the corresponding maximum likelihood data sam-

ple xrec = G−1
θ (yrec) which matches the observed entries

of xobs. This process is illustrated in Fig. 1.

As described in Sec. 3.1, learning this framework in-

volves optimizing two different objectives: training network

Gθ and Hφ involves optimizing the objectives from Eqs. 2

and 5 respectively, with the optimization being carried out

in an alternating way until convergence is achieved. The

objectives used to learn these networks, as described below,

are denoted J (θ) and J (φ). In the context of the proposed

framework, the data parameters are not optimized directly;

instead, network Hφ is learned according to J (φ), a proxy

objective to that in Eq. 5. We now describe how the two

networks are learned.

Learning the optimal parameters θ∗ of normalizing flow

network Gθ is achieved by maximizing the log-likelihood

of the training data, or equivalently, minimizing the cost

function:
J (θ) = −

∑

i

log pθ(x
(n)
i ) (6)

where the sum is computed across training data samples,

and the superscript (n) denotes samples which have been

imputed with the most recent (i.e., the n-th) imputation

model. Throughout this optimization stage, the training

data remains unchanged. At initialization, where no im-

putation model is available, shallow imputation techniques

(e.g., nearest neighbor or bilinear interpolation) are used.

Minimizing this loss corresponds to solving the optimiza-

tion task from Eqs. 2.

Learning the optimal parameters φ∗ of the imputation

model, which operates in the latent space of the normaliz-

ing flow network, is achieved by minimizing a three-term

loss. Updating parameters φ results in an updated imputer

network Hφ, which is used to obtain an updated training set

x(n). Throughout this stage, normalizing flow network Gθ

remains fixed. The first element of the loss involves max-

imizing the likelihood of the reconstructed samples as per

the likelihood estimate provided by the normalizing flow

model, or equivalently, minimizing the cost function:

J1(φ) = −
∑

i

log pθ(x
(n)
i )

= −
∑

i

log pθ

[

G−1
θ ◦Hφ ◦Gθ(x

(n−1)
i )

] (7)

where the ◦ operator denotes functional composition and

the expression for x
(n)
i has been expanded to emphasize

its dependence on the parameters being optimized, namely

φ. Minimizing this loss is equivalent to optimizing the first

term of the objective from Eq. 5. As stated before (see last

paragraph in Sec. 3.1), this loss is equivalent to the loss from

Eq. 6; the difference lies in the set of parameters that are be-

ing modified to achieve the objective. This term encourages

the imputer to output recovered samples that are more likely

to occur.

The second element involves minimizing the discrep-

ancy between the recovered data and the known entries of

the observed data:

J2(φ) =
∑

i

MSE(xi,obs, G
−1
θ ◦Hφ ◦Gθ(x

(n−1)
i )) (8)



Figure 1: High-level view of the imputation process.

where the MSE is computed across the known entries of

the observed data only. Note that these entries remain un-

changed throughout both stages of the optimization process,

thus no superscript is needed. This term encourages the im-

puter to output recovered samples that match the known en-

tries at the observed positions.

The last term penalizes reconstructions that deviate from

the expected behavior as dictated by the regularizing prior:

J3(φ) = −
∑

i

log pp(x
(n)
i ) = −

∑

i

∑

j

|x
(n)
i ∗ fj |

α

= −
∑

i

∑

j

|G−1
θ ◦Hφ ◦Gθ(x

(n−1)
i ) ∗ fj |

α

(9)

where the summations indexed by i and j are performed

across data samples and gradient kernels, respectively, and

we have incorporated the expression for the prior introduced

in Sec. 3.1. Minimizing this loss is equivalent to optimizing

the second term in the objective from Eq. 5. In our imple-

mentation, and for the sake of computational efficiency and

simplicity, we use two first-order derivative filters, namely

[1, 1] and [1, 1]⊺. Note that higher-order or learnable filters

can be used instead, which would likely result in improved

performance.

In summary, training PRFlow involves joint optimization

of objectives {J (θ),J1(φ),J2(φ),J3(φ)} across θ and φ,

where θ denotes the parameters of the normalizing flow net-

work and φ denotes the imputer network parameters, i.e.,

the parameters that ultimately determine how the missing

data values are filled in.

4. Experimental Results

Datasets and Procedure. The efficacy of PRFlow

was evaluated on three different standard image datasets,

MNIST [27], CIFAR-10 [25] and CelebA [31]. Four differ-

ent rates of data missingness were tested, from 60% to 90%

in steps of 10%. The training procedure follows the prin-

ciples of recent work proposing models that support and

rely purely on partially observed data during the learning

phase [29, 30, 41, 55] by training with the dataset result-

ing from randomly dropping the corresponding percentage

of pixels from the images in the standard training set from

the respective dataset of interest according to a Bernoulli

distribution. In MNIST, the training set comprises 60,000

28 × 28-pixel grayscale images, whereas in CIFAR it in-

cludes 50,000 32×32-pixel RGB images. Since no standard

partition exists for CelebA, we use the first 100,000 images

for training and the remaining for testing. We pre-process

CelebA images by performing 108× 108 pixel center crop-

ping and resizing to 32 × 32 pixels. For testing, we adhere

to the experimental principle drawn out in [41], where per-

formance is measured on the standard test set of the relevant

dataset after having randomly dropped the appropriate frac-

tion of pixel values.

Metrics. We measure the performance of the algorithms

relative to three different metrics, which we believe cap-

ture all relevant attributes of data recovered by an algorithm

attempting to reconstruct partially observed data: (i) root

mean squared error (RMSE), which measures differences

between the reconstructed image and the ground truth at the

pixel level; (ii) the Fréchet Inception Distance (FID), first

proposed to measure the quality of data produced by gener-

ative models [16] and which captures population-level sim-

ilarities; and (iii) the ratio of the classification accuracy of

a classifier pre-trained on fully observed training data on

the reconstructed data to the accuracy of the same classi-

fier on the fully observed test set. This metric, which we

denote the Semantic Consistency Criterion (SCC), aims at

measuring the amount of semantic information preserved by

the missing data recovery process. Formally, let accimp be

the performance of the benchmark classifier on an imputed

test set and acc0 the performance of the same classifier on

the original test set. Then SCC = min{1, accimp/acc0},

where the clipping is introduced to handle the unlikely case

when accimp > acc0. Normalization by the baseline clas-

sifier performance is done to minimize the impact of the

choice of classifier. This overarching experimental frame-

work contrasts with most previous work on generative mod-

elling of incomplete data ([41] excepted), which doesn’t



consider the preservation of semantic content as a metric of

performance, and tends to make more emphasis on the real-

ism of the recovered samples than on the pixel-level accu-

racy [29, 30]. In this work, we consider all three metrics to

be equally important, and posit that one of the most salient

strengths of the proposed method is that it minimizes the

impact of the trade-off between the metrics relative to com-

peting methods. Of note, RMSE is measured between the

recovered values and the ground truth values at the unob-

served pixel locations in the test set. This means that not

only the pixels but also the full images used to measure the

performance of the method are completely unseen by the

framework during training, unlike approaches which mea-

sure performance on unobserved values within the training

set [29, 30]. Similarly, FID is measured between the recov-

ered test set and the ground truth test set, and SCC perfor-

mance is measured on the recovered test set imagery.

Competing Methods. We benchmark the performance

of PRFlow against three methods, namely MisGAN [29],

PBiGAN [30] and MCFlow [41], which together comprise

the state-of-the-art landscape in image imputation tasks

across the considered metrics. We used the publicly avail-

able code for all three competing methods from their offi-

cial repositories; we used the code as published for MNIST

and made extensions to the code to enable support of CI-

FAR (no CIFAR versions were publicly available). We use

LeNet [26], ResNet18 [15] to compute both SCC and FID

on MNIST and CIFAR, respectively. Since CelebA has no

classes, we use FaceNet [44] to compute FID only.

Experimental Setup. Throughout the experiments, we

use α = 1/3, a learning rate of 1 × 10−4, and a batch size

of 64. We train until little change is observed in the loss

from Eq. 8, as opposed to competing methods which pre-

scribe a set number of epochs to train. Gθ is a RealNVP

[6] network with six affine coupling layers. We implement

Hφ as a 3-hidden layer, fully connected network with 784
and 1024 neurons per layer for MNIST and CIFAR/CelebA,

respectively, with input and output layers having the same

number of neurons as the dimensionality of the images (i.e.,

28 × 28 = 784 for MNIST, and 32 × 32 × 3 = 3072 for

CIFAR and CelebA). Although performance is somewhat

robust to the choice of λ, we noticed it did affect conver-

gence speed: too large a value would lead to oscillations

and too small a value would lead to slow convergence. As

a rule of thumb, we found that a value of λ that approxi-

mately equalizes the value of J1(φ) (Eq. 7) and the value

of λJ3(φ) (Eq. 9) worked well.

Results. Table 1 includes the RMSE results for all com-

peting methods across both datasets and considered data

missingness rates. MCFlow and PRFlow perform similarly,

while PBiGAN performs the worst, with the gaps in per-

formance being significantly larger for CIFAR. These re-

sults are reasonable since neither MisGAN nor PBiGAN

enforce an MSE loss explicitly. Table 2 includes the FID

results laid out in a similar fashion. In this case, PRFlow

again outperforms all competing methods, trailed closely

by PBiGAN on MNIST, with performance being more even

across the field on CIFAR and CelebA. These results high-

light the efficacy of the regularizing prior at shaping the sta-

tistical behavior of the recovered imagery. Lastly, Table 3

includes SCC results. In the MNIST case, MCFlow, PBi-

GAN and PRFlow perform similarly, with MisGAN trailing

by a somewhat significant margin, and with the margin in-

creasing as the missing rate increases. In the CIFAR case,

PRFlow outperforms the competition more handily.

Table 1: RMSE between recovered data and ground truth

test set, unobserved pixels only (lower is better)

Missing Rate

Dataset Method 0.6 0.7 0.8 0.9

MNIST

MisGAN 0.1329 0.1561 0.1958 0.2484

PBiGAN 0.3155 0.3121 0.3045 0.2844

MCFlow 0.1126 0.1300 0.1581 0.2080

PRFlow 0.1093 0.1243 0.1490 0.2059

CIFAR

MisGAN 0.2568 0.2814 0.3081 0.3461

PBiGAN 0.3380 0.3443 0.3623 0.4448

MCFlow 0.0921 0.1059 0.1187 0.1460

PRFlow 0.0802 0.0919 0.1102 0.1299

CelebA

MisGAN 0.2232 0.2273 0.2404 0.2777

PBiGAN 0.2894 0.3356 0.3733 0.4230

MCFlow 0.0793 0.0828 0.0927 0.1189

PRFlow 0.0738 0.0813 0.0924 0.1135

Table 2: FID between recovered data and ground truth test

sets (lower is better) Missing Rate

Dataset Method 0.6 0.7 0.8 0.9

MNIST

MisGAN 0.8300 1.5373 3.0956 7.9071

PBiGAN 0.1356 0.3082 0.9927 4.2000

MCFlow 0.7840 1.3382 3.0663 8.5047

PRFlow 0.0959 0.2888 0.8795 3.8759

CIFAR

MisGAN 0.7299 0.8464 0.9136 0.9477

PBiGAN 0.8743 0.9794 1.1229 1.1308

MCFlow 0.4145 0.6564 0.8777 1.0808

PRFlow 0.2928 0.5111 0.6825 0.8437

CelebA

MisGAN 0.3085 0.3486 0.4024 0.5693

PBiGAN 0.7547 0.7861 0.8931 0.9415

MCFlow 0.1225 0.1672 0.3333 0.7587

PRFlow 0.0887 0.1481 0.2359 0.5213

Figs. 2 through 5 include sample reconstruction results

which are intended to qualitatively showcase the perfor-

mance of the competing methods. The results in Figs. 2

and 3 are arranged in groups of two rows of images, each

group corresponding to reconstructions from the observed

image (top row) and ground truth (bottom row) in the left-

most column of each image group. The remaining images

in the top row of each group correspond to reconstructions

by MisGAN, PBiGAN, MCFlow and PRFlow, respectively,



Table 3: SCC of recovered test set (higher is better)

Missing Rate

Dataset Method 0.6 0.7 0.8 0.9

MNIST

MisGAN 0.9423 0.8763 0.6964 0.3489

PBiGAN 0.9807 0.9619 0.9183 0.7602

MCFlow 0.9872 0.9705 0.9279 0.7487

PRFlow 0.9842 0.9693 0.9276 0.7471

CIFAR

MisGAN 0.4588 0.3828 0.3364 0.2737

PBiGAN 0.3717 0.3020 0.2396 0.1757

MCFlow 0.6606 0.5194 0.3893 0.3218

PRFlow 0.7225 0.5939 0.4719 0.3559

Figure 2: Sample results on MNIST for 80 and 90% missing

rates (top to bottom image groups).

from left to right. The bottom row in each group includes

the mean squared error maps between the reconstruction

by each method and the ground truth. Fig. 2 includes re-

sults across different rates of missing data. It can be ob-

served that, as the results from Table 1 indicate, GAN-

based methods tend to produce higher MSE reconstructions.

Further, the reconstructions produced by PRFlow showcase

human-like handwriting across all levels, with strokes that

are mostly continuous and largely uninterrupted. Lastly,

the images recovered by PRFlow almost always resemble

a readable digit, which is not the case with the competing

methods, particularly for missing rates of 80% and above.

Fig. 3 focuses on the 90% missing data case and pro-

vides four additional examples. As before, all of the im-

ages restored by PRFlow resemble human-like handwritten

digits. Failure to recover the original semantic content of

the images happens mostly in cases where the original im-

ages themselves are ambiguous. Figs. 4 and 5 include re-

construction results on CIFAR-10 and CelebA. From left to

right, the images include: ground truth, observed, and re-

constructions by MNIST, PBiGAN, MCFlow and PRFlow.

It can be seen that the Flow-based methods outperform the

GAN-based methods, with PBiGAN lagging significantly

behind. PRFlow has the overall edge in image quality

with sharper edges, smoother backgrounds and more real-

istic reconstructions. Specifically, the edges of the plane

and mountains against the sky are sharp in PRFlow recon-

Figure 3: Sample results on MNIST for 90% missing data.

structions; the edges of sunglasses against skin are better

defined; skin textures are more realistic and facial features

(e.g., mouth, nose, hair strands) are rendered more natu-

rally. While there are similarities between the MCFlow and

PRFlow renditions, there are edge sharpness and texture dif-

ferences (e.g., ringing and blockiness artifacts being more

pronounced in the MCFlow images) that likely lead to the

measurable gap in performance showcased in Tables 1-3.

Lastly, the bottommost row in Fig. 5 illustrates a subtle but

semantically significant reconstruction artifact where com-

peting methods hallucinate a person with open eyes, while

PRFlow accurately reconstructs a squinting face. We invite

readers to attempt to fill in missing values themselves from

the partially observed versions of the images. It can be a

challenging task, in particular for high rates of missing data.

We should note that humans have an advantage in that they

know from experience what a number, an animal, or a face

look like, whereas the algorithms competing herein were

never exposed to a single fully observed image, and thus

have to infer what the different objects look like by piecing

together fractional observations from multiple images in the

complete absence of labels.

5. Discussion

Traditionally, learning from incomplete or partially ob-

served data has meant that trade-offs between various im-

age quality aspects had to be incurred. Specifically, prior

methods on image imputation suffered at one or more of

the following image quality attributes: (i) realism, (ii) pixel-

level quality, and (iii) semantic consistency between the re-



Figure 4: Sample results on CIFAR-10. From left to right: ground truth, observed, and MisGAN, PBiGAN, MCFlow and

PRFlow reconstructions.

Figure 5: Sample results on CelebA. From left to right: ground truth, observed, and MisGAN, PBiGAN, MCFlow and

PRFlow reconstructions.

covered and the partially observed image. These trade-offs

became more significant as the degree of data paucity grew

and approached unity. We hypothesize that this undesirable

trend was due to the increasing level of ill-posedness of the

recovery process and proposed a regularization approach

that proved effective at addressing the three-pronged image

quality trade-off. Extensive experimental results demon-

strate that the proposed algorithm consistently matches or

outperforms the performance of competing state-of-the-art

approaches across all quality metrics in question. The seam-

less incorporation of domain knowledge in the form of a

prior regularizer was made possible by the formulation of

the learning task as a joint optimization objective.
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and R. Garnett, editors, Advances in Neural Information Pro-

cessing Systems, volume 32. Curran Associates, Inc., 2019.

1

[40] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-

stra. Stochastic backpropagation and approximate inference

in deep generative models. In Eric P. Xing and Tony Jebara,

editors, Proceedings of the 31st International Conference on

Machine Learning, volume 32 of Proceedings of Machine

Learning Research, pages 1278–1286, Bejing, China, 22–24

Jun 2014. PMLR. 1

[41] Trevor W. Richardson, Wencheng Wu, Lei Lin, Beilei Xu,

and Edgar A. Bernal. MCFlow: Monte carlo flow models for

data imputation. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2020. 1, 2, 4, 5, 6

[42] Lorenzo Rosasco, Andrea Caponnetto, Ernesto D. Vito,

Francesca Odone, and Umberto D. Giovannini. Learning,

regularization and ill-posed inverse problems. In L. K. Saul,

Y. Weiss, and L. Bottou, editors, Advances in Neural In-

formation Processing Systems 17, pages 1145–1152. MIT

Press, 2005. 2

[43] Murray Rosenblatt. Remarks on some nonparametric esti-

mates of a density function. Ann. Math. Statist., 27(3):832–

837, 09 1956. 2

[44] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clus-

tering. In CVPR, pages 815–823. IEEE Computer Society,

2015. 6

[45] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. J. Mach.

Learn. Res., 15(1):1929–1958, Jan. 2014. 2

[46] Y. Tai, S. Liu, M. S. Brown, and S. Lin. Super resolution

using edge prior and single image detail synthesis. In 2010

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pages 2400–2407, 2010. 2

[47] M. Takahashi. Statistical inference in missing data by mcmc

and non-mcmc multiple imputation algorithms: Assessing

the effects of between-imputation iterations. Data Science

Journal, 16(37):1–17, 2017. 3

[48] Niket Tandon, Aparna S. Varde, and Gerard de Melo. Com-

monsense knowledge in machine intelligence. SIGMOD

Rec., 46(4):49–52, Feb. 2018. 2

[49] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed

problems. W.H. Winston, 1977. 2

[50] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep image prior. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2018. 3

[51] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-

Interscience, 1998. 2

[52] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep net-

works for image super-resolution with sparse prior. In 2015

IEEE International Conference on Computer Vision (ICCV),

pages 370–378, 2015. 2

[53] Tao Yang, Georgios Arvanitidis, Dongmei Fu, Xiaogang Li,

and Søren Hauberg. Geodesic clustering in deep generative

models. CoRR, abs/1809.04747, 2018. 1

[54] Xitong Yang, Palghat Ramesh, Radha Chitta, Sriganesh

Madhvanath, Edgar A Bernal, and Jiebo Luo. Deep mul-



timodal representation learning from temporal data. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 5447–5455, 2017. 1

[55] Jinsung Yoon, James Jordon, and Mihaela van der Schaar.

GAIN: Missing data imputation using generative adversar-

ial nets. In Jennifer Dy and Andreas Krause, editors, Pro-

ceedings of the 35th International Conference on Machine

Learning, volume 80 of Proceedings of Machine Learning

Research, pages 5689–5698, Stockholmsmässan, Stockholm
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