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Abstract

Self-supervised learning solves pretext prediction tasks

that do not require annotations to learn feature represen-

tations. For vision tasks, pretext tasks such as predicting

rotation, solving jigsaw are solely created from the input

data. Yet, predicting this known information helps in learn-

ing representations useful for downstream tasks. However,

recent works have shown that wider and deeper models ben-

efit more from self-supervised learning than smaller mod-

els. To address the issue of self-supervised pre-training of

smaller models, we propose Distill-on-the-Go (DoGo), a

self-supervised learning paradigm using single-stage online

knowledge distillation to improve the representation qual-

ity of the smaller models. We employ deep mutual learn-

ing strategy in which two models collaboratively learn from

each other to improve one another. Specifically, each model

is trained using self-supervised learning along with distilla-

tion that aligns each model’s softmax probabilities of simi-

larity scores with that of the peer model. We conduct exten-

sive experiments on multiple benchmark datasets, learning

objectives, and architectures to demonstrate the potential of

our proposed method. Our results show significant perfor-

mance gain in the presence of noisy and limited labels, and

in generalization to out-of-distribution data.

1. Introduction

Self-supervised learning (SSL) has recently begun to ri-

val the performance of supervised learning on computer vi-

sion tasks [14, 5, 4]. SSL learns meaningful representa-

tions from data without requiring manually annotated la-

bels. To learn task-agnostic visual representations, SSL

solves pretext prediction tasks such as predicting relative

position [10] and/or rotation [13], solve jigsaw [24] and im-

age in-painting [34]. Predicting known information helps in

learning representations generalizable for downstream tasks

such as segmentation and object detection [28].

Recent works have empirically shown that deeper and

wider models benefit more from task agnostic use of unla-

beled data than their smaller counterparts i.e smaller models
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Figure 1. Tiny-ImageNet evaluation: comparison of state-of-

the-art self-supervised contrastive learning against our proposed

method Distill-on-the-go using linear evaluation. Self-supervised

models are trained using SimCLR while Distill-on-the-go models

are trained together with ResNet-50.

when trained using self-supervised learning fail to close in

the gap with respect to supervised training [11, 6]. For in-

stance level discrimination tasks such as contrastive learn-

ing, smaller models with fewer parameters are hard to op-

timize given large amounts of data. The limitation in the

representation quality lies in the difficulty of optimization

rather than the model size [2].

To address this issue and improve the representation

quality of smaller models, we leverage knowledge distil-

lation (KD) [20]. KD involves training a student model un-

der the supervision of a larger pre-trained teacher model in

an interactive manner, similar to how humans learn. Many

of the traditional KD methods formulate the student to

mimic the softened softmax output of the teacher. Thus,

these methods are not directly applicable to self-supervised

knowledge distillation in the absence of the labels. Also, of-

fline KD methods require longer training process and signif-

icantly large memory and computational resources to pre-

train large teacher models [26].

Online knowledge distillation offers a more attractive al-

ternative owing to its one stage training and bidirectional

knowledge distillation [47, 15, 26, 37]. These approaches
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treat all (typically two) participating models equally, en-

abling them to learn from each other. In this paper, we

propose a fully self-supervised online knowledge distilla-

tion framework, Distill-on-the-go (DoGo). In contrast to

offline knowledge distillation, our proposed method starts

with multiple untrained models which simultaneously learn

by solving a pretext task. Specifically, we train two models

collaboratively by applying different augmentation for each

model using our method. Each model generates two pro-

jections corresponding to two randomly augmented views.

We then align temperature scaled similarity scores across

these projections for KD in which the relative differences in

similarity between the reference sample and other samples

in a batch can provide additional useful information. The

additional supervision signal can assist the optimization of

the smaller model. Furthermore, the collaboration between

multiple models enables them to explore the feature space

more extensively and aids in converging to a more robust

(flatter) minima which leads to a better generalization to un-

seen data [47].

With extensive experiments on different datasets, we em-

pirically demonstrate that learning along with peers is bet-

ter than learning alone in a conventional self-supervised

learning setting. For example, on Tiny-ImageNet dataset

[27], our method improves top-1 accuracy(%) of ResNet-50

by 2.7% and ResNet-18 by 4.5% compared to contrastive

learning baselines (Figure 1). Our main contributions are as

follows:

• We propose a fully self-supervised online KD method

DoGo to improve the representation quality of the

smaller models. The method is completely self-

supervised, i.e. knowledge is distilled during the pre-

training stage in the absence of labels.

• With DoGo, we demonstrate a significant improve-

ment in performance for smaller models over con-

trastive learning baselines.

• We demonstrate the efficacy of DoGo on multiple SSL

algorithms, thereby showing that our method is inde-

pendent of the underlying SSL learning objective.

• We further show the effectiveness of DoGo in solving

more common challenges in the real-world problems

including learning with noisy and limited labels, and

generalization to out-of-distribution data.

2. Related Work

Self-supervised learning: SSL can be broadly catego-

rized into generative and contrastive methods [29]. Gener-

ative self-supervised models try to learn meaningful visual

representations by re-constructing either a part of an input

or a whole of it. For example, Auto-Regressive models use

observations from previous time step to predict the joint

distribution factorised as a product of conditionals. Pixel-

RNN [32] and PixelCNN [40] adapt this idea to model im-

age pixel by pixel.

Contrastive learning, on the other hand, learns to com-

pare through Noise Contrast Estimation [16]. Context-

instance contrast methods model belonging relationship be-

tween local feature of a sample and its global context.

Predict Relative Position (PRP) and Maximize Mutual In-

formation (MI) fall under this category. In PRP, self-

supervised methods focus on learning visual representations

by predicting relative position of local components. PRP

pretext tasks include predict relative position [10] and/or

rotation [13], solve jigsaw [24] etc. In MI, Deep InfoMax

[21] employs Mutual Information Neural Estimation [3] to

learn unsupervised representations by simultaneously max-

imizing and estimating mutual information between learned

high level representations and the input data.

Although MI based contrastive self-supervised methods

achieved quite a bit of success, some recent methods out-

perform them through context-context contrastive learning

[29]. These methods discard mutual information, instead

learn the relationship between the global representations of

different samples akin to metric learning. InstDisc [44] pro-

posed instance discrimination as a pretext task. CMC [38]

employed multi-view contrastive learning framework with

multiple different views of an image as positive samples and

take views of other images as the negatives. MoCo [17] fur-

ther developed the idea of instance discrimination by lever-

aging momentum contrast. MoCo addressed two critical

issues in dealing with the negative sampling: (i) Momen-

tum contrast prevents the fluctuation of loss convergence in

the earlier stages, (ii) MoCo maintains a queue to store neg-

ative samples from previous batches thereby significantly

improving the negative sample efficiency. However, MoCo

adopts too simple augmentations, thus making positive pair

far too easy to identify. Hard positive sample strategy plays

a key role in instance discrimination as outlined in SimCLR

[5]. Therefore, SimCLR relinquishes momentum contrast

overall but retains the siamese structure and introduces aug-

mentations of 10 forms with an end-to-end training frame-

work. SimCLRv2 [6] outlined that bigger models benefit

more from a task agnostic use of unlabeled data for visual

representation learning. Owing to larger modeling capac-

ity, bigger self-supervised models are far more label ef-

ficient and perform better than smaller models on down-

stream tasks.

Knowledge distillation: KD is an effective technique

for improving the performance of compact models either

using the supervision of larger pre-trained model or with a

cohort of smaller models trained collaboratively. In a typ-

ical “teacher-student" knowledge distillation, smaller stu-

dent model is trained under the supervision of a pre-trained
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Figure 2. Distill-on-the-go: The proposed method consists of a stochastic augmentation module, followed by shared encoder and a two-

layer MLP projection head. The participating models primarily learn visual representations by contrastive loss. 〈., .〉 represents cosine

similarity between two embeddings. The extra learning experience is provided by way of aligning softmax probabilities of temperature-

scaled similarity scores across augmentations of two peer models.

larger teacher model, producing a higher representation

quality compared to training student model from scratch.

In the original formulation, Hinton et al. [20] proposed a

representation distillation by way of mimicking softened

softmax output of the teacher. Better generalization can be

achieved by emulating the latent feature space in addition

to mimicking the output of the teacher [37, 39, 45, 36, 33].

To circumvent the associated computational costs of pre-

training a teacher, deep mutual learning (DML) [47] pro-

posed online knowledge distillation using Kullback–Leibler

(KL) divergence. Alongside a primary supervised cross-

entropy loss, DML involves training each participating

model using a distillation loss that aligns the class poste-

rior probabilities of the current model with that of the other

models in the cohort. Inspired by the recent progress made

by online knowledge distillation methods, we propose a

fully self-supervised online knowledge distillation method

to improve the representation quality of the smaller models.

To the best of our knowledge, we are the first to propose

an online knowledge distillation method in the absence of

labels.

3. Proposed Method

We begin with the core idea of unsupervised contrastive

representation learning. We wish to learn visual representa-

tions by contrasting semantically similar (positive) and dis-

similar (negative) pairs of data samples such that similar

pairs have the maximum agreement via a contrastive loss in

the latent space. Contrastive loss encourages the represen-

tations of similar pairs to be close, while those of dissimilar

pairs to be more orthogonal in the latent space [8]. Empir-

ically, similar pairs are obtained by randomly augmenting

the same sample using rotation, gaussian noise and color

jittering [5, 44, 17].

Inspired by the recent advancements in contrastive repre-

sentation learning, DoGo comprises of the following major

components: It consists of a stochastic augmentation mod-

ule resulting in two highly correlated views I ′ and I ′′ of

the same input sample I . The correlated views are then fed

into fθ(.), typically an encoder network such as ResNet-50

[18] and subsequently to gθ(.), a two-layer perceptron with

ReLU non-linearity. To learn the visual representations,

the network gθ(fθ(.)) should learn to maximize the simi-

larity between the positive embedding pair 〈z′, z′′〉 while

simultaneously pushing away the negative embedding pairs

〈z′, ki〉, where i = (1, ....,K) are the embeddings of aug-

mented views of other samples in a batch and K is the num-

ber of negative samples. Contrastive representation learning

can thus be cast as an instance level discrimination task. In-

stance level discrimination objective is typically formulated

using a softmax criterion. However, the cost of comput-

ing non-parametric softmax is prohibitively large especially
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when the number of instances are very large [44]. Popular

techniques to reduce computation include hierarchical soft-

max [31], noise contrast estimation [16] and negative sam-

pling [30]. Following [5, 6], We use noise contrast estima-

tion for a positive embedding pair 〈z′i, z
′′

i 〉 where i ∈ {1, 2}
indicates the two models as follows:

Lcl,i = −log
esim(z′

i,z
′′

i )/τc

esim(z′

i
,z′′

i
)/τc +

∑K
j=1 e

sim(z′

i
,kj)/τc

(1)

Lcl is a normalized temperature scaled cross entropy loss

[5]. Wang et al. [43] provided an in-depth understanding

of necessity of normalization when using dot product of

feature vectors in a cross entropy loss. Therefore, we use

cosine similarity (l2 normalized dot product) in the compu-

tation of the contrastive loss Lcl.

Smaller models find it hard to optimize and find right

set of parameters in instance level discrimination tasks, at-

tributing to difficulty of optimization rather than the model

size. We believe that the additional supervision in KD re-

garding the relative differences in similarity between the

reference sample and other sample pairs and the collabo-

ration between multiple models can assist the optimization

of the smaller model. Therefore to improve generalizability

of smaller model gθ1(fθ1(.)), we propose to utilize another

peer model gθ2(fθ2(.)). Given a new sample, each par-

ticipating peer model generates embeddings z′, z′′ of two

different augmented views. Let Z ′, Z ′′ ∈ RN×m be a

batch of z′, z′′ where N is batch size and m is the length

of the projection vector. Let P = σ(sim(Z ′

1, Z
′′

1 )/τ)
and Q = σ(sim(Z ′

2, Z
′′

2 )/τ) be softmax probabilities of

temperature-scaled similarity scores across augmentations

of two peer models. We employ KL divergence to distill the

knowledge across peers by aligning the distributions P and

Q. The distillation losses are defined as follows:

Lkd,1 = DKL(Q||P )

= σ

(

sim(Z ′

2, Z
′′

2 )

τkd

)

log
σ(sim(Z ′

2, Z
′′

2 )/τkd)

σ(sim(Z ′

1, Z
′′

1 )/τkd)
(2)

Lkd,2 = DKL(P ||Q)

= σ

(

sim(Z ′

1, Z
′′

1 )

τkd

)

log
σ(sim(Z ′

1, Z
′′

1 )/τkd)

σ(sim(Z ′

2, Z
′′

2 )/τkd)
(3)

The final learning objective for the two participating

models can be written as:

Lθ1 = Lcl,1 + λLkd,1 (4)

Lθ2 = Lcl,2 + λLkd,2 (5)

where λ is a regularization parameter for adjusting the mag-

nitude of the knowledge distillation loss. Our method can

also be extended to more than two peers by simply com-

puting distillation loss with all the peers. Another strategy

is to create an ensemble distribution from all participating

peers and use it as a single teacher for creating learning ex-

perience. We reserve training with more than two peers as

a possible future research direction.

4. Experimental Results

4.1. Implementation details

We use SimCLR [5] as our baseline network. It con-

sists of a feature extractor and an additional projector. The

projector is a two layer MLP with ReLU non-linearity gen-

erating embeddings of size 128. Since Tiny-ImageNet im-

ages are much smaller than ImageNet, we replace the first

7 × 7 Conv of stride 2 with a 3 × 3 Conv of stride 1 in

ResNet backbones. We also remove max pooling layer from

the first Conv block. Our stochastic augmentation module

employs random resized crop, random horizontal flip fol-

lowed by random color distortions. Since images are small

in size, we leave out the Gaussian blur so as not to risk over-

augmentation. We use Adam optimizer with a fixed learn-

ing rate of 3e−4 and weight decay of 1e−6 with a batch size

of 256 across all pre-training experiments. To make a fair

comparison, we use λ = 100 keeping other hyperparame-

ters intact in knowledge distillation experiments.

Datasets: We use Tiny-ImageNet [27] as our primary

dataset for self-supervised pre-training. It has 200 classes

and 500 samples per class each 64× 64 in size. The test set

contains 10,000 images. Tiny-ImageNet pre-trained models

are evaluated on six different out-of-distribution datasets in-

cluding CIFAR-10 [25], CIFAR-100 [25], STL-10 [9] and

three DomainNet [35] datasets. DomainNet is a domain

adaptation dataset with six domains and 0.6 million images

distributed across 345 categories. We have used ClipArt,

Sketch and QuickDraw domain datasets in this work.

4.2. Evaluation metrics

Linear Evaluation: To evaluate the learned represen-

tations, we follow the widely used linear evaluation metric

[5, 41] as our primary evaluation protocol. A linear layer is

trained on the labeled training set on top of frozen encoder

fθ(.). Top-1 test accuracy(%) is used as a quality measure

for learned representations. To reduce hyperparameter tun-

ing per experiment, we standardize the linear evaluation ex-

periments as follows: We use Adam optimizer with a fixed

learning rate of 3e−4 and weight decay of 1e−6 with a batch

size of 64. All linear evaluations are run for 100 epochs

except out-of-distribution experiments, which are evaluated

for 50 epochs.

Nearest Neighbor Evaluation: We also evaluate

learned representations using nearest neighbour classifica-

tion with an efficient similarity search library Faiss GPU
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Baseline ResNet-50 (53.46) ResNet-34 (48.26) ResNet-18 (47.58)

ResNet-50 (53.46) 55.49 \ 54.93 55.24 \ 51.59 54.93 \ 49.73

+3.8% +2.7% +3.3% +6.9% +2.7% +4.5%

ResNet-34 (48.26) 51.59 \ 55.24 50.86 \ 51.32 50.26 \ 49.10

+6.9% +3.3% +5.4% +6.3% +4.1% +3.1%

ResNet-18 (47.67) 49.73 \ 54.93 49.10 \ 50.26 48.77 \ 48.74

+4.5% +2.7 +3.1% +4.1% +2.3% +2.2%

Baseline WRN-28-2 (37.10) WRN-16-2 (34.28) WRN-10-2 (30.75)

WRN-28-2 (37.10) 38.16 \ 37.73 37.79 \ 36.30 36.49 \ 33.55

+2.9% +1.7% +1.9% +5.9% -1.7% +9.1%

WRN-16-2 (34.28) 36.30 \ 37.79 35.92 \ 35.68 34.69 \ 33.04

+5.9% +1.9% +4.8% +4.1% +1.2% +7.4%

WRN-10-2 (30.75) 33.55 \ 36.49 33.04 \ 34.69 32.53 \ 32.60

+9.1% -1.7% +7.4% +1.2% +5.8% +6.0%

Table 1. Tiny-ImageNet top-1 accuracy(%) under linear evaluation for various ResNet and Wide-ResNet models. Baseline measures the

linear evaluation accuracy when the models are pre-trained using contrastive learning alone. Each box contains DoGo results: left value

corresponds to model in the corresponding row, right value corresponds to model in the corresponding column. Percentage change in

accuracy between baseline and our method are highlighted in green.

Label(%) CL Baseline DoGo

1 15.00 15.46

5 29.49 29.64

10 34.23 36.07

20 40.23 42.43

50 49.81 50.46

100 54.76 55.57

Table 2. Tiny-ImageNet top-1 accuracy(%) for ResNet-18 with

varied available labels during fine-tuning. Labels are sampled in

a class balanced manner. CL baseline is trained using contrastive

loss while DoGo is jointly trained with ResNet-50. DoGo consis-

tently outperforms the contrastive learning baseline.

[22]. We extract the features from frozen encoder fθ(.) and

index features along with their labels. We report the aver-

age of nearest neighbour classification with k = 1, 2, 4, 8
neighbors. The results can be found in the supplementary

material.

4.3. Evaluation on in­distribution data

Table 1 compares the top-1 accuracy(%) of our proposed

method on Tiny-ImageNet dataset obtained by ResNet and

Wide-ResNet architectures. Following observations can be

made from the table: (i) All participating models under

ResNet family consistently see an improvement over the

contrastive learning baseline. (ii) Although ResNet-50 is

a much larger network compared to ResNet-18, ResNet-50

still sees a significant improvement. It is therefore clear

that all participating models can benefit from joint train-

ing unless there is a drastic difference in modeling capac-

ity. (iii) Wide-ResNets also display a similar trend with

an exception of WRN-28-2 owing to a large difference in

model capacity between WRN-10-2 and WRN-28-2. How-

ever, WRN-10-2 achieves a significant improvement of over

9%. (iv) Smaller models benefit more from joint training

than their larger counterparts. Given the difficulty of train-

ing smaller models under contrastive learning regime, joint

training under our proposed method can significantly im-

prove their performance. (v) Smaller models gain a con-

sistent improvement with the increase in modeling capacity

of their counterparts. For example, the performance gain

in ResNet-18 monotonically increases as we increase the

capacity of the peer model from ResNet-18 to ResNet-34

and ResNet-50. A similar trend can be seen for WRN-10-2,

WRN-16-2 and ResNet-34. (vi) Contrary to conventional

wisdom, even joint training of two models with exact same

architecture yields a discernible improvement over the base-

line.

4.4. Evaluation under varying label quantities

We sample 1%, 5%, 10%, 20%, 50% and 100% of the

Tiny-ImageNet in a class balanced manner and simply fine-

tune the whole encoder fθ(.) with a linear layer on top on

the labeled data. We use 15% of the training data as a val-

idation set and top-1 accuracy(%) are reported on full test
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CIFAR-10 CIFAR-100 STL-10 Clip Art Quick Draw Sketch

ResNet-50
CL Baseline 78.59 53.54 76.78 37.82 47.31 31.04

DoGo 80.26 56.36 77.93 42.20 51.88 33.62

ResNet-18
CL Baseline 72.50 45.98 72.90 29.10 39.97 23.68

DoGo 75.19 48.52 74.73 33.51 43.43 26.25

Table 3. Linear evaluation on out-of-distribution datasets. CL baseline is trained using contrastive loss while DoGo is a joint training of

ResNet-50 and ResNet-18.
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Figure 3. CIFAR-10 top-1 accuracy(%) for ResNet-18 under lin-

ear evaluation with simulated noisy labels. CL baseline is trained

using contrastive learning while DoGo is jointly trained with

ResNet-50. DoGo significantly outperforms the CL baseline

across all noise rates.

set. Table 2 shows the comparison of fine-tuning pre-trained

models on fewer labels against contrastive learning base-

line. It can be clearly seen that our method outperforms

the contrastive learning baseline across all limited label sce-

narios. The difference is more lucid when the available

labels are 10% or higher. The difference is higher in the

lower mid range (10%, 20%) and saturates thereafter. It is

therefore clear that online knowledge distillation brings dis-

cernible benefits when pre-trained models are fine-tuned on

the downstream task.

4.5. Generalization on out­of­distribution data

Self-supervised contrastive learning learns the visual

representations in a task agnostic manner. It is there-

fore essential that these learned representations general-

ize well across downstream tasks. To evaluate the mod-

els pre-trained on Tiny-ImageNet, we consider six differ-

ent out-of-distribution datasets. Table 3 compares the top-

1 test accuracy(%) under linear evaluation protocol of pre-

trained models with and without online knowledge distilla-

tion. ResNet-50 and ResNet-18 generalize well across all

datasets when trained together using our method compared

to the baseline. Results show that DoGo generalizes well

across datasets with drastically different distribution than

Tiny-ImageNet indicating DOGo learns better feature rep-

resentations.

4.6. Evaluation under noisy labels

The success of supervised learning often hinges on the

availability of huge amounts of high quality annotations.

Quite often, large datasets contain noisy labels due to dif-

ficulty of manual annotation. It is pertinent to have robust

training procedures to offset the impact of noisy labels as

studies have shown that deep neural networks can mem-

orize noisy labels [1]. Self-supervised learning decouples

representation learning and classifier, thus, is more robust to

noisy labels than supervised learning [19, 46]. We hypoth-

esize that learned representations in DoGo are more robust

to noisy labels. To test our hypothesis, we simulate label

corruption on CIFAR-10. With a given probability (noise

rate), we corrupt every true label by randomly sampling

from a uniform distribution over number of classes. Figure

3 presents the results of linear evaluation under noisy la-

bels. Our method consistently outperforms the contrastive

learning baseline across different noise rates.

Baseline
Contrastive loss Lcl SimSiam loss Lss

(47.67) (46.80)

Lcl 48.77 \ 48.74 48.61 \ 49.03

(47.67) +2.3% +2.2% +2.0% +4.8%

Lss 49.03 \ 48.61 48.95 \ 48.38

(46.80) +4.8% +2.0% +4.6% +3.4%

Table 4. Tiny-ImageNet top-1 accuracy(%) for ResNet-18 under

linear evaluation for different learning objectives. DoGo is jointly

trained with a ResNet-18 peer model. Each box contains DoGo

results: left value corresponds to model in the corresponding row,

right value corresponds to model in the corresponding column.

Percentage change in accuracy between baseline and our method

are highlighted in green. DoGo surpasses the baselines on all com-

binations of learning objectives.
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(a) ResNet-18
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(b) ResNet-50

Figure 4. Hyperparameter tuning of regularization parameter λ

4.7. Distillation across learning objectives

The experimental results shown thus far have had con-

trastive learning as their primary learning objective. In this

section, we explore whether it is possible to distill knowl-

edge across peers with different learning objective. In con-

trast to contrastive learning, SimSiam [7] is one such learn-

ing objective that can learn meaningful visual representa-

tions without negative sample pairs and large batches. Sim-

Siam can best be described as BYOL [14] without mo-

mentum encoder, SimCLR [5] without negative pairs and

Swav [4] without online clustering. Essentially, it covers

all leading self-supervised learning methods and makes an

ideal candidate for our research. In addition to encoder

fθ(.) and projection MLP gθ(.), SimSiam has a predic-

tion MLP hθ(.) that transforms the output of one view and

matches it to the other view. Denoting two output vectors

p′ = hθ(gθ(fθ(I
′))) and z′′ = gθ(fθ(I

′′)), the learning

objective is to minimize the negative cosine similarity,

Lss = D(p′, z′′) = −
p′

||p′||2
·

z′′

||z′′||2
(6)

To evaluate our method across learning objectives, we

train one model using contrastive loss (Eq. 1) and the

other by SimSiam loss (Eq. 6). Since SimSiam model has

both projections (∈ Rb×2048) and predictions (∈ Rb×2048),

we use predictions for creating learning experience during

joint training. Table 4 shows the generalizability of our

method beyond contrastive learning. Our method surpasses

the baseline across all combinations of learning objectives.

Results reinforce our earlier proposition that DoGo is inde-

pendent of underlying SSL objective.
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Figure 5. t-SNE plot of projections from checkpoints correspond-

ing to 3 different randomly initialized trajectories.

4.8. Visualizing function space similarity

In this section, we attempt to provide additional intuition

about why our method works. Motivated by [12], we plot

t-SNE [42] of projections of different checkpoints along the

individual training trajectories from multiple initializations

on Tiny-ImageNet trained with contrastive learning. Tra-

jectory_i in Figure 5 shows the variation in the function

space during the training of model i. We can see that a sin-

gle model only explores a limited function space whereas

models initialized differently explore considerably different

function spaces even though they provide similar perfor-

mance. Therefore, we believe that the collaborative learn-

ing between multiple models in DoGo enables the models to

collectively explore broader region of the function space re-

7



0.1 0.2 0.5 1.0
Temperature

44

46

48

50

52

54

56

Ti
ny

Im
ag

eN
et

 T
op

1 
Ac

cu
ra

cy
(%

)

ResNet50
ResNet18

(a) Temperature in Lcl

0.1 0.2 0.5 1.0
Temperature

44

46

48

50

52

54

56

Ti
ny

Im
ag

eN
et

 T
op

1 
Ac

cu
ra

cy
(%

)

ResNet50
ResNet18

(b) Temperature in Lkd

Figure 6. Hyperparameter tuning of scalar temperature parameters (a) τc in contrastive loss and (b) τkd in knowledge distillation loss

sulting in more generalizable feature representations. DoGo

enables the exchange of information across different fam-

ily of functions resulting in improved downstream perfor-

mance.

5. Effect of hyperparameters

We now explore the influence of λ and scalar tempera-

ture parameter τ on knowledge distillation.

Regularization parameter λλλ: Figure 4 summarizes the

effect of λ parameter when ResNet-18 and ResNet-50 are

trained together using our method. We draw several con-

clusions from the graph: (i) We see a clear performance im-

provement as the training progresses i.e. online knowledge

distillation reaps more benefits from longer training. This

is in line with similar empirical results on self-supervised

learning [5]. (ii) Smaller models benefit early in the training

while larger counterparts see a performance improvement in

the later stages of the training. The smaller model ResNet-

18, sees an improvement early in the training while ResNet-

50 is benefited only in the later stages. We attribute this

behaviour to large modeling capacity difference between

these two models. (iii) For both ResNet-18 and ResNet-50,

λ = 1 yields either comparable or slightly worse perfor-

mance. This is due to the difference in magnitudes of con-

trastive loss and distillation loss functions. To compensate,

we increase the weight λ for the distillation loss. We find

that λ = 100 yields optimum performance for both partic-

ipating models. Increasing λ further is detrimental for the

downstream performance.

Temperature parameters τcτcτc and τkdτkdτkd: Several prior

works have shown that an appropriately adjusted tem-

perature parameter benefits contrastive cross entropy loss

[5, 23, 44]. We can see from Eq. 1 that the range of simi-

larity can be scaled using an appropriate temperature value.

Since the gradients of Eq. 1 will be scaled by 1/τc, tun-

ing this parameter could effectively tune the hardness of the

negative samples and speed of learning [23]. In our im-

plementation, we use two decoupled scalar temperature pa-

rameters τc and τkd. Figure 6 shows the linear evaluation

of ResNet-18 and ResNet-50 trained together using online

knowledge distillation. We find that when training to con-

vergence, the optimal τc is 0.5 and τkd is 0.1. The optimal

value of τc = 0.5 is in accordance with the empirical results

in contrastive learning. We also find that decoupling of τc
and τkd yields a much better result in our experiments.

6. Conclusion and future work

We proposed Distill-on-the-Go, a self-supervised learn-

ing paradigm using single stage online knowledge distil-

lation to improve the representation quality of the smaller

models. Through extensive experiments across multiple

network architectures, SSL algorithms and datasets, we

demonstrated the efficacy of DoGo over self-supervised

learning baselines resulting in compact yet accurate models.

Performance of compact models can be boosted even fur-

ther by training them with much larger models. We further

demonstrated the additional benefits of using online distilla-

tion in SSL in enabling the models to learn efficiently under

varying degrees of label noise and different levels of anno-

tations data availability. DoGo also enables the models to

explore the function space more extensively and learn bet-

ter generalizable features. Joint training with more than two

peers, online knowledge distillation on bigger datasets such

as ImageNet, downstream performance on other tasks such

as object detection and segmentation are some of the useful

future research directions for this work.
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