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Abstract

In this paper, we propose Domain Agnostic Meta Score-

based Learning (DAMSL), a novel, versatile and highly ef-

fective solution that delivers significant out-performance

over state-of-the-art methods for cross-domain few-shot

learning. We identify key problems in previous meta-

learning methods over-fitting to the source domain, and pre-

vious transfer-learning methods under-utilizing the struc-

ture of the support set. The core idea behind our method

is that instead of directly using the scores from a fine-tuned

feature encoder, we use these scores to create input coor-

dinates for a domain agnostic metric space. A graph neu-

ral network is applied to learn an embedding and relation

function over these coordinates to process all information

contained in the score distribution of the support set. We

test our model on both established CD-FSL benchmarks

and new domains and show that our method overcomes the

limitations of previous meta-learning and transfer-learning

methods to deliver substantial improvements in accuracy

across both smaller and larger domain shifts.

1. Introduction

Few-shot learning methods promise to solve one of the

most challenging issues in deep learning: the reliance on

copious amounts of labelled examples to achieve high accu-

racies. By doingg so, we can achieve cost savings and ac-

curately classify rare classes of images (e.g. plane crashes)

where labelled examples are limited. The problem, how-

ever, is that few-shot learning methods fail to perform well

when there is a domain-shift. Hence, the practical applica-

tions of few-shot learning are severely limited as the few-

shot models trained on well-labelled and well-structured re-

search datasets cannot be applied to domains in industry.

The above problem is exacerbated under sharp domain

shifts, as shown in the Broader Study of Cross-Domain

Few-Shot Learning (BSCD-FSL) [7]. The study found

that many few-shot learning methods significantly under-

performed compared to transfer-learning as few-shot learn-

ing overfitted to the source domain. While transfer-learning

methods did perform better, they omitted distributional in-

formation contained in the each episode’s support set is

omitted. This is clearly sub-optimal given the need to max-

imally use information in the sparse setting [20] [17].

To solve the above issues, we propose Domain Agnos-

tic Meta Score-based Learning (DAMSL). The fundamental

idea behind our method is to apply transfer-learning to pre-

vent over-fitting to the source domain, while using metric-

learning to exploit the information in each episode’s sup-

port samples. Furthermore, as metric-learners built on im-

age features are shown to suffer greatly from overfitting to

the source domain, we make our metric-learner domain-

agnostic by fitting to pre-softmax classification scores from

fine-tuned feature encoders.

In our work, we use the BSCD-FSL benchmark [7] and

augment it with 4 more test domains for further compar-

isons. We demonstrate the superiority of our method over

existing methods across these 8 distinct test domains, and

show a new research direction for score-based boosting in

the few-shot classification setting.

2. Relevant Work

Metric-based methods, such as prototypical networks

[16], aim to learn a metric function φm that can be used

to classify query images based on their relations to the im-

ages in the support set. The key metric-based method that

we use is Graph Neural Network (GNN) as graph-based

convolutions can create more flexible representations [1].

Transfer learning involves reusing features learned from

base classes [14], typically by fine-tuning a pre-trained

model. A simple extension of fine-tuning would be to learn

to fine-tune. Methods such as MAML [4] learn an internal

representation that can be fine-tuned in a few gradient steps.
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Figure 1. Episodic training on miniImagenet (source domain) for our Proposed DAMSL Model.

3. Methodology

The training process during each episode for our model

is shown in Figure 1. On test domains, the same fine-tuning

process occurs over the labelled support set, but with gradi-

ent updates only within episodes and not between episodes.

3.1. Score­based Metric Learning

Given only a sparse support set from the test domain, it

is difficult to precisely fit the feature encoder in a way that

neither overfits nor underfits [12]. Creating a hold-out vali-

dation set is also prohibitively costly under such conditions.

We begin by fine-tuning a feature vector to obtain

φ̃f (Xs) ∈ R
512. Then, we take the linear classifier φ̃c

to produce a pre-softmax score vector φ̃c(φ̃f (Xi)) ∈ R
5,

which corresponds to our 5-way classification problem. A

typical transfer-learning approach would directly use the

score vector for prediction Ŷq = argmax(φ̃c(φ̃f (Xq))

Instead, we post-process the score vector by using a

metric-learning network φm. Formally, this gives us: Ŷq =

argmax(φm(Ys, φ̃c(φ̃f (Xq)), φ̃c(φ̃f (Xs)))) Thus, we ex-

plicitly incorporate information contained in the predictions

we can make on the support sets Xs and how these predic-

tions correspond to the labels Ys. Any biases found in the

feature encoder φ̃f and linear classifier φ̃c can be corrected

by inferring a distribution from the support set scores, and

using that distribution to match the scores of our query sam-

ples. This reduces the reliance on the initial fine-tuning

process as our decision boundaries from the initial feature

encoder are replaced by a metric-based decision boundary

constructed from the proximity of the query sample to the

support classes. Moreover, the scores form a domain ag-

nostic basis for metric learning because the way that scores

relate should not differ significantly across domains.

3.2. Graph Neural Network

The meta-learning module we use is the Graph Neural

Network (GNN). We follow the formulation of the GNN

for the few-shot problem in [15]. In brief, a GNN acts on

local operators of a graph G = (V,E), which for the few-

shot learning case is fully connected. A graph convolution

layer GC(.) [15] is performed with linear operations on lo-

cal signals. Formally, we have:

GC(Sk) = f

(

∑

B∈A

BSkθkB,q

)

, q = d1, ..., dk+1 (1)

In the few-shot learning formulation, we can learn the

edfe features using the current hidden vertex [15]. We apply

a Multi-layer Perceptron (MLP) that takes in the absolute

difference between the the output vectors of vertices in the

graph [9] [5]. Formally, we have:

Ãk
i,j = γ(Sk

i , S
k
j ) = MLP (|Sk

i − Sk
j |) (2)

These learned edge features are used to propagate informa-

tion in the graph through the graph convolution in equation

1. Initial vertex features are constructed by taking the score

projections and one-hot encoding of labels for the support

set or a uniform distribution for the query samples.

3.3. Backbone Variants

We experiment with two variants of the DAMSL model

with different feature backbones. In DAMSL v1, we have

a ResNet10 pre-trained using supervised learning and first-

order MAML [13] In DAMSL v2, we have two ResNet10

pre-trained using supervised learning but with different op-

timization strategies - one trained using Adam while other

trained using SGD with momentum.
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Methods EuroSAT CropDisease

5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

ProtoNet� 73.29% ± 0.71% 82.27% ± 0.57% 80.48% ± 0.57% 79.72% ± 0.67% 88.15% ± 0.51% 90.81% ± 0.43%

TransFT� 81.76% ± 0.48% 87.97% ± 0.42% 92.00% ± 0.56% 90.64% ± 0.54% 95.91% ± 0.72% 97.48% ± 0.56%

L-Ensem v1 74.64% ± 0.67% 85.52% ± 0.53% 90.38% ± 0.35% 84.65% ± 0.60% 94.40% ± 0.36% 96.89% ± 0.24%

DAMSL v1 85.93% ± 0.68% 95.18% ± 0.35% 97.73% ± 0.25% 95.03% ± 0.42% 99.19% ± 0.14% 99.75% ± 0.08%

L-Ensem v2 81.02% ± 0.62% 90.01% ± 0.37% 93.28% ± 0.30% 90.68% ± 0.51% 97.20% ± 0.26% 98.89% ± 0.16%

DAMSL v2 90.84% ± 0.54% 96.13% ± 0.29% 98.15% ± 0.18% 97.30% ± 0.32% 99.36% ± 0.14% 99.73% ± 0.09%

TransFT (Aug) 82.80% ± 0.60% 90.38% ± 0.67% 93.48% ± 0.57% 92.51% ± 0.84% 97.33% ± 0.43% 98.40% ± 0.41%

L-Ensem v1 (Aug) 77.98% ± 0.66% 89.43% ± 0.39% 93.56% ± 0.31% 88.84% ± 0.54% 97.11% ± 0.23% 98.83% ± 0.18%

FT-GNN v1 (Aug) 82.29% ± 0.63% 92.73% ± 0.63% 93.78% ± 0.63% 94.09% ± 0.46% 98.31% ± 0.35% 98.95% ± 0.25%

S-Proto v1 (Aug) 80.32% ± 0.58% 89.52% ± 0.40% 93.39% ± 0.27% 91.43% ± 0.47% 97.53% ± 0.37% 98.79% ± 0.26%

DAMSL v1 (Aug) 87.30% ± 0.68% 96.53% ± 0.28% 98.37% ± 0.18% 96.01% ± 0.40% 99.61% ± 0.09% 99.85% ± 0.06%

L-Ensem v2 (Aug) 83.68% ± 0.54% 91.61% ± 0.34% 94.75% ± 0.25% 92.66% ± 0.45% 98.08% ± 0.20% 99.14% ± 0.11%

DAMSL v2 (Aug) 91.59% ± 0.49% 96.99% ± 0.24% 98.60% ± 0.15% 97.43% ± 0.31% 99.61% ± 0.10% 99.87% ± 0.05%

Methods ChestX ISIC

5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

ProtoNet� 24.05% ± 1.01% 28.21% ± 1.15% 29.32% ± 1.12% 39.57% ± 0.57% 49.50% ± 0.55% 51.99% ± 0.52%

TransFT� 26.09% ± 0.96% 31.01% ± 0.59% 36.79% ± 0.53% 49.68% ± 0.36% 61.09% ± 0.44% 67.20% ± 0.59%

L-Ensem v1 25.20% ± 0.43% 30.62% ± 0.45% 35.82% ± 0.47% 46.55% ± 0.61% 59.14% ± 0.61% 65.35% ± 0.59%

DAMSL v1 25.99% ± 0.50% 33.47% ± 0.54% 38.37% ± 0.56% 50.68% ± 0.76% 68.58% ± 0.70% 75.55% ± 0.58%

L-Ensem v2 26.38% ± 0.45% 33.46% ± 0.51% 39.81% ± 0.53% 51.93% ± 0.62% 64.21% ± 0.60% 70.28% ± 0.57%

DAMSL v2 27.22% ± 0.49% 35.41% ± 0.56% 42.74% ± 0.62% 57.35% ± 0.78% 70.32% ± 0.70% 77.40% ± 0.65%

TransFT (Aug) 29.23% ± 0.46% 36.25% ± 0.55% 40.69% ± 0.56% 51.54% ± 0.64% 62.72% ± 0.62% 69.68% ± 0.59%

L-Ensem v1 (Aug) 26.84% ± 0.44% 34.62% ± 0.48% 40.23% ± 0.56% 48.97% ± 0.65% 62.99% ± 0.60% 70.32% ± 0.57%

FT-GNN v1 (Aug) 26.79% ± 0.50% 35.39% ± 0.60% 35.34% ± 0.54% 52.13% ± 0.84% 65.37% ± 0.73% 62.68% ± 0.65%

S-Proto v1 (Aug) 27.55% ± 0.44% 35.37% ± 0.57% 41.56% ± 0.56% 50.98% ± 0.65% 63.58% ± 0.61% 71.47% ± 0.54%

DAMSL v1 (Aug) 28.08% ± 0.50% 37.70% ± 0.57% 43.04% ± 0.66% 53.50% ± 0.79% 70.31% ± 0.72% 78.41% ± 0.66%

L-Ensem v2 (Aug) 28.26% ± 0.46% 35.91% ± 0.52% 41.00% ± 0.57% 52.76% ± 0.62% 64.99% ± 0.59% 71.92% ± 0.55%

DAMSL v2 (Aug) 28.86% ± 0.52% 37.04% ± 0.61% 42.87% ± 0.65% 57.15% ± 0.76% 70.87% ± 0.72% 78.98% ± 0.62%

�- as reported in [7]. Aug - with data augmentation during fine-tuning. Bold - Best performing in category.

Table 1. Results on BSCD-FSL Benchmark. Includes ablation studies and results from prior work.

4. Results and Discussion

4.1. Experimental Setup

First, we test our model on the BSCD-FSL benchmark.

We train on miniImagenet and test on CropDisease [11],

EuroSAT [8], ISIC [18] [3] and ChestX [19] (in order of

decreasing similarity). CropDisease covers plant disease,

EuroSAT covers satellite images, ISIC covers dermoscopic

skin lesion images and ChestX covers chest X-ray images.

4 other new datasets are also included: Places [21], De-

scribable Textures Dataset (DTD) [2], CIFAR-100 [10] and

Caltech256 [6]. While the images in these other datasets

are all natural images, they contain very different types of

classification tasks from miniImagenet. DTD is the most

distinct, as it requires the model to recognize textures found

in many different contexts [2].

4.2. Results on the BS­CDFSL Benchmark

From Table 1, DAMSL with both feature backbones out-

perform previous methods, even without using data aug-

mentation. We see that DAMSL v1 achieves an average

accuracy of 72.13% while DAMSL v2 achieves an aver-

age accuracy of 74.34%. With data augmentation, DAMSL

v1 (Aug) achieves an average accuracy of 74.06% while

DAMSL v2 (Aug) achieves an average accuracy of 74.99%.

We focus on DAMSL v2 in our comparison with other

methods as it has the highest performance. DAMSL v2

(Aug) outperforms TransFT by 6.86% and ProtoNet by

15.21%. From Table 1, we see that DAMSL (Aug) v2 still

significantly outperforms TransFT (Aug), with the excep-

tion of 5-way 5-shot Chest-X. In terms of average accuracy,

DAMSL v2 (Aug) outperforms TransFT (Aug) by 3.84%.

Our method is competitive with typical supervised learn-

ing on domains closer to the source domain. Typical super-

vised learning models for EuroSAT and CropDisease have

achieved 98.57% and 99.35% respectively [8] [11]. At our

50-shot results for DAMSL v2 (Aug), we achieve 98.60%

and 99.87% respectively on EuroSAT and CropDisease.

4.3. Ablation Studies on BSCD­FSL

To investigate the effect of each component of separately,

we include a Linear Ensemble (L-Ensem), a Fine-Tuned en-
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Methods DTD CIFAR-100

5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

TransFT (Aug) 62.17% ± 0.74% 73.49% ± 0.61% 79.25% ± 0.55% 65.89% ± 0.77% 77.60% ± 0.64% 83.64% ± 0.54%

L-Ensem v1 (Aug) 55.80% ± 0.73% 69.20% ± 0.69% 76.39% ± 0.59% 62.07% ± 0.77% 77.85% ± 0.61% 84.17% ± 0.51%

DAMSL v1 (Aug) 58.29% ± 0.89% 77.72% ± 0.71% 85.44% ± 0.58% 67.64% ± 0.93% 86.68% ± 0.64% 93.06% ± 0.42%

L-Ensem v2 (Aug) 60.01% ± 0.74% 73.73% ± 0.65% 79.99% ± 0.55% 66.01% ± 0.42% 80.67% ± 0.59% 86.23% ± 0.46%

DAMSL v2 (Aug) 68.39% ± 0.89% 81.64% ± 0.68% 87.14% ± 0.68% 76.56% ± 0.85% 88.47% ± 0.57% 93.92% ± 0.39%

Methods Places Caltech256

5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

TransFT (Aug) 67.50% ± 0.75% 76.17% ± 0.67% 80.98% ± 0.57% 75.32% ± 0.70% 84.15% ± 0.58% 88.37% ± 0.47%

L-Ensem v1 (Aug) 70.78% ± 0.92% 74.45% ± 0.65% 79.85% ± 0.57% 70.32% ± 0.72% 83.20% ± 0.55% 87.59% ± 0.48%

DAMSL v1 (Aug) 71.34% ± 0.85% 84.30% ± 0.67% 89.50% ± 0.55% 76.63% ± 0.87% 91.44% ± 0.49% 95.06% ± 0.37%

L-Ensem v2 (Aug) 75.45% ± 0.80% 75.87% ± 0.65% 82.13% ± 0.53% 76.31% ± 0.68% 87.59% ± 0.44% 90.93% ± 0.35%

DAMSL v2 (Aug) 75.42% ± 0.80% 84.74% ± 0.60% 90.43% ± 0.51% 87.44% ± 0.70% 94.53% ± 0.36% 96.89% ± 0.24%

Aug - with data augmentation during fine-tuning. Bold - Best performing in category.

Table 2. Results on Additional Test Domains

coder + GNN (FT-GNN), and Score-based ProtoNets (S-

Proto) in Table 1. The L-Ensem is a simple addition of

the post-softmax scores from the two fine-tuned feature en-

coders, to see the performance from a simple fine-tuned en-

semble. FT-GNN is directly fitted to a feature vector that

has been fine-tuned on the support set, to demonstrate the

performance boost from score-based learning. The Score-

based ProtoNets replaces the GNN module with an embed-

ding MLP and a nearest centroid classifier, to demonstrate

the additional gains from a GNN module.

Furthermore, we see that the score-based metric deliv-

ers an improvement when used in conjunction with a sim-

ple ProtoNets. On all tasks, the S-Proto delivers a better

performance compared to L-Ensem. However, it still does

not match up to the performance of our proposed DASML

model. We attribute this to the GNN’s more flexible repre-

sentations, and the fact that it exploits the full distribution

of scores rather than just the mean value of scores. We also

demonstrate the value of score-based metric learning as FT-

GNN performs substantially worse than DAMSL. This is in

line with the expectation that the GNN is trained to interpret

domain-specific features, and thus fails on distant domains.

Looking at average accuracy using v1, we observe that

L-Ensem yields 69.23%, FT-GNN yields 69.82%, S-Proto

yields 70.12%, DAMSL v1 yields 74.06%. This shows that

both parts of DAMSL are most useful when jointly applied.

4.4. Results on other Test Domains

From Table 2, we clearly see that DAMSL v2 delivers

out-performance over the previous baselines across almost

all settings and all shots, with the only exception of 5-shot

setting for Places. In terms of average accuracy, DAMSL

v1 achieves 81.48% while DAMSL v2 achieves 85.46% .

These values are considerably higher (> 5%) than the lin-

ear ensembles, which yields 74.31% and 77.91% respec-

Figure 2. Summary of performance on BSCD-FSL

tively. The results clearly validate our method as DAMSL

performs better than previous methods on data-sets other

than those in the BSCD-FSL benchmark.

5. Conclusion

We propose Domain Agnostic Meta Score-based Learn-

ing (DAMSL) to address the Cross-Domain Few-Shot

Learning problem. On BSCD-FSL, DAMSL v2 achieves

74.99% accuracy, which significantly outperforms previous

best-performing meta-learning and transfer-learning meth-

ods by 15.21% and 6.86% respectively. From Figure 2,

we also see that the performance gains from our method

are substantially greater than gains from including data aug-

mentation or adding another feature encoder. Moreover, on

the 4 other test domains beyond BSCD-FSL, our method

continues to consistently outperform strong baselines.

Ultimately, we not only decisively address the CD-FSL

problem, but we also outline a new strand of classification

boosting modules that can be attached to any existing model

to self-correct initial classification scores by utilizing the

distributional information of scores from labelled samples.
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