
Learning from Incomplete Features by Simultaneous Training

of Neural Networks and Sparse Coding

Cesar F. Caiafa∗

IAR - CONICET, ARGENTINA

Tensor Learning Team - RIKEN AIP, JAPAN

ccaiafa@gmail.com

Ziyao Wang

School of Automation - SEU, CHINA

Tensor Learning Team - RIKEN AIP, JAPAN

zy_wang@seu.edu.cn

Jordi Solé-Casals

University of Vic (UVic-UCC), SPAIN

jordi.sole@uvic.cat

Qibin Zhao

Tensor Learning Team - RIKEN AIP, JAPAN

qibin.zhao@riken.jp

Abstract

In this paper, the problem of training a classifier on a

dataset with incomplete features is addressed. We assume

that different subsets of features (random or structured) are

available at each data instance. This situation typically

occurs in the applications when not all the features are

collected for every data sample. A new supervised learn-

ing method is developed to train a general classifier, such

as a logistic regression or a deep neural network, using

only a subset of features per sample, while assuming sparse

representations of data vectors on an unknown dictionary.

Sufficient conditions are identified, such that, if it is possi-

ble to train a classifier on incomplete observations so that

their reconstructions are well separated by a hyperplane,

then the same classifier also correctly separates the origi-

nal (unobserved) data samples. Extensive simulation results

on synthetic and well-known datasets are presented that

validate our theoretical findings and demonstrate the effec-

tiveness of the proposed method compared to traditional data

imputation approaches and one state-of-the-art algorithm.

1. Introduction

Learning methods from limited or imperfect data has at-

tracted great attention in the literature recently. Datasets

with limited, weak, noisy labels or incomplete features rep-

resent an important and still open problem. In this paper,

we address the problem of training a classifier on a dataset

with incomplete features, which arises in many machine

learning applications where sometimes the measurements

are incomplete, noisy or affected by artifacts. Examples of

this situation include: recommendation systems built upon

∗Corresponding author

the information gathered by different users where not all

the users have fully completed their forms; medical datasets

where typically not all tests can be performed on every pa-

tient; or a self-driving vehicle or robot where objects in the

view field can be partially occluded.

Handling correctly the incomplete-features problem is a

classical challenge in machine learning. Skipping missing

features by setting them to zero values damages the clas-

sification accuracy [4]. Most previous studies addressed

this problem by using an imputation approach, which con-

sists of performing data completion followed by training

the classifier with those reconstructions (referred here as the

sequential method). However, this strategy cannot ensure the

statistical consistence of the classifier, as data completion is

usually fully unsupervised or label information is partially

or inefficiently exploited.

In this work, a new supervised learning method is devel-

oped to train a general classifier, such as a logistic regression

or a deep neural network, using only a subset of features

per sample, while assuming sparse representations of data

vectors on an unknown dictionary. The proposed method

simultaneously learns the classifier, the dictionary and the

corresponding sparse representation of each input data sam-

ple. In this way, we combine the approximation power and

simplicity of sparse coding with the extraordinary ability of

neural networks (NNs) to model complex decision functions

(classifiers) with the goal to successfully train a classifier

based on incomplete features.

We analyze the limitations of the sequential approach

(section 1.3), i.e. imputation followed by training, and intro-

duce the simultaneous classification and coding approach

in section 2. Our method consists of incorporating a sparse

data representation model into a single cost function that is

optimized for training the classifier and, at the same time,

finding the best representation of the observed data. A learn-

ing algorithm is presented in section 2.1 to train a classifier

on incomplete features and sufficient conditions under which

such a classifier performs as good as the ideal classifier, i.e.

the one that can be obtained from complete observations,

is identified (section 2.2). Extensive experimental results

are presented in section 3, using synthetic and well known

benchmark datasets that validate our theoretical findings and

illustrate the effectiveness of the proposed method.

1.1. Related work

Practical sequential methods based on statistical imputa-

tion, such as computing the “mean”, “regression” and “mul-

tiple” imputation techniques are common practice [27]. Re-

markably, it was shown that imputing with a constant, e.g.

the mean, is Bayes-risk consistent only when missing fea-

tures are not informative [20]. More elaborated completion

methods were also explored, such as K-nearest neighbor

estimators, multilayer or recurrent NNs and others, see [8]

and references therein.

However, sequential methods do not fully exploit label

information. Data labels can provide valuable information

about missing features that could potentially improve the

classifier learning process. Recent advances on probabilis-

tic generative models have allowed for a formulation of

supervised learning with incomplete features as a statisti-

cal inference problem arriving at algorithms that signifi-

cantly outperformed sequential methods. In the seminal

work [9], a framework for maximum likelihood density es-

timation based on mixtures models was proposed and suc-

cessfully applied to small incomplete-features problems. In

particular, a Gaussian Mixture Model (GMM) was fitted

to incomplete-data through an Expectation-Maximization

(EM) algorithm. Building upon this generative model strat-

egy, some approaches have considered integrating out the

missing values based on a simple logistic regression func-

tion [40, 2]. Other versions of this approach proposed an

explicit simultaneous learning of the model and the deci-

sion function [25, 7]. While probabilistic generative models

provided a nice and elegant approach to the incomplete-

features problem showing good results on small datasets,

they are not suitable for many modern machine learning ap-

plications because: (1) despite some acceleration techniques

were explored, e.g. [26, 6], those algorithms are compu-

tationally expensive becoming prohibitive for moderate to

large datasets; (2) GMM is impractical for modeling high-

dimensional datasets because the number of parameters to

achieve good approximations becomes unmanageable; and

(3) they do not consider complex classification functions as

the ones provided by deep NN architectures.

Recently, some approaches based on the low-rank prop-

erty of the features data matrix were investigated and algo-

rithms for data completion were proposed incorporating the

label information [10, 14, 17]. Since the rank estimation of

a matrix is a computationally expensive task, usually based

on the Singular Value Decomposition (SVD), the obtained

algorithms are prohibitive to solve modern machine learn-

ing problems with large datasets. Additionally, as in the

case of the probabilistic generative models, none of these

methods considered complex classification functions. To

overcome this drawback, more recently, a framework based

on various NN architectures such as autoencoders, multilayer

perceptrons and Radial Basis Function Networks (RBFNs),

was proposed for handling missing input data by setting a

probabilistic model, e.g. a GMM, for every missing feature,

which is trained together with the NN weights [35]. This

method combined the great capability of NNs to approxi-

mate complex decision functions with the nice formulation

of the GMM to model missing data. However, it inherited

the drawbacks of GMMs, i.e. they are not well suited to

higher-dimensional datasets.

On the other hand, during the last few years in the signal

processing community, there has been a rapid development

of theory and algorithms for sparse coding approximations

which, by exploiting the redundancy of natural signals, are

able to provide simple and accurate models of complex data

distributions, see [24, 28, 11, 30, 5] and references therein.

Sparse coding is nearly ubiquitous in Nature, for example, it

is found in the way that neurons encode sensory information

[32, 31]. Sparse representations of data showed to be useful

also in classification problems. In [16], a Linear Discrimi-

nant Analysis (LDA) classifier was trained on corrupted data

providing a robust classification method. In [29], algorithms

for learning discriminative sparse models, instead of purely

reconstructive ones, were proposed based on simple linear

and bilinear classifiers. Similar methods were also studied

by either using class-specific dictionaries [33, 36] or using

a single one for all classes [37]. However, these proposed

methods neither were applied to the incomplete-features

problem nor considered deep NN classifiers.

1.2. Problem formulation

We assume a supervised learning scenario with vector

samples and labels {xi, yi}, i = 1, 2, . . . , I , xi ∈ R
N and

yi ∈ {0, 1, . . . , C − 1} (C classes). However, we are con-

strained to observe only subsets of features and their labels:

{xo
i , yi}, x

o
i ∈ R

Mi with Mi < N . Unobserved (missing)

features are denoted by x
m
i ∈ R

N−Mi . We consider arbi-

trary patterns of missing features, which are allowed to be

different for each data instance i. The set of indices of miss-

ing features at sample i is denoted byMi, i.e. xm
i = xi(Mi)

and x
o
i = xi

(
Mi

)
.

We define the set of all K-sparse vectors ΣP
K = {s ∈

R
P s.t. ‖s‖0 ≤ K} (containing at most K non-zero entries)

and assume that data vectors xi admit K-sparse representa-

tions over an unknown dictionary D ∈ RN×P (P ≥ N):

xi = Dsi, with si ∈ ΣP
K . (1)

The columns of a dictionary are called “atoms” because

every data vector can be written as a linear combination of

at most K elementary components. Sometimes dictionaries

are orthogonal such as the ones derived from the Discrete

Cosine or Wavelet [30] transforms. However, overcomplete

(P ≥ N) nonorthogonal dictionaries have demonstrated to

play an important role in image processing tasks such as

denoising, inpainting, etc [28, 19].

By partitioning D according to the pattern of missing

features at sample i, we obtain D
o
i = D

(
Mi, :

)
∈ RMi×P

and D
m
i = D(Mi, :) ∈ R

(N−Mi)×P , which according to

equation (1) implies:

x
o
i = D

o
i si, and x

m
i = D

m
i si. (2)

Let us assume that a perfect classifier, e.g. a logistic re-

gression or deep NN, that assigns probability pΘ(ŷ|x) to

predicted label ŷ given data x can be trained on the complete

dataset {xi, yi}, such that, in a two-classes scenario (C = 2),

pΘ(ŷ = yi|xi) > pΘ(ŷ 6= yi|xi), ∀i = 1, 2, . . . , I , where

Θ is the set of trained parameters. Our goal is to develop a

method to obtain an estimate Θ̂ of parameters using only the

incomplete dataset {xo
i , yi} and to identify conditions under

which such a classifier is compatible with the ideal one.

1.3. Why training after imputation is difficult?

If the K-sparse representations of the observations x
o
i

were unique, then xi can be perfectly reconstructed from the

incomplete observations and the classifier can be success-

fully trained using these reconstructions. In the particular

case where the dictionary is known in advance, there exist

conditions on the sampling patterns based on the coherence,

spark or RIP (Restricted Isometry Property) of matrix D
o
i

that can guarantee uniqueness [5]. However, these conditions

are difficult to meet in practice and determining RIP/Spark

properties are NP-hard in general [39]. Moreover, in the gen-

eral case where the dictionary D is unknown and needs to be

learned from data, it is even more difficult to obtain well sep-

arated reconstructions which certainly leads to suboptimal

or wrong classifiers.

Next, we provide some intuition about the limitation of

the sequential approach through a toy example. Let us con-

sider the classification of hand-written digit images belong-

ing to two classes: “3s” and “8s” and assume that they

admit 2-sparse representations over a dictionary. Fig. 1 (a-b)

shows the representations of two example vectors xi and

xj belonging to classes “3” and “8”, respectively. If only

the right halves of the images are observed and no label

information is provided, we are clearly faced with a problem

because our observed samples from two different classes

are identical, i.e. xo
i = x

o
j . It is obvious that at least two

possible 2-sparse representations for the observed data exist

as illustrated in Fig. 1(c). When the sparse solution is not

unique, we may end up reconstructing wrong vectors that

could not be even well separated as illustrated in Fig. 1

(d-e). In general, sequential methods using only the infor-

mation of observed features are prone to fail because the

non-uniqueness of solutions can make the training of a good

classifier an impossible task. However, we could solve this

problem by incorporating the labelling information from the

very beginning as it is proposed in the following section.

2. Simultaneous learning and coding approach

We propose to train the classifier and find the proper

representation, not only as sparse as possible but also pro-

viding the best separation of classes. We want to combine

the training of the classifier together with the learning of a

dictionary and optimal sparse representations such that the

reconstructed data vectors are compatible with observations

and well separated. To do that we propose to minimize the

following global cost function:

J(Θ,D, si) =

1

I

I∑

i=1

{
J0(Θ, x̂i, yi) + λ1J1(D, si)

}

︸ ︷︷ ︸

F (Θ,D,si)

+
1

I

I∑

i=1

{
λ2J2(si)

}

︸ ︷︷ ︸

G(si)

,

(3)

with respect to Θ, D and si (i = 1, 2, . . . , I), where Θ
contains the classifier parameters, i.e. the vector of weights

in a deep NN classifier architecture; D ∈ RN×P (P ≥ N) is

a dictionary and si ∈ ΣP
K are the representation coefficients

such that the reconstructed data vectors are x̂i = Dsi.

J0(Θ, x̂i, yi) is a measure of the classification er-

ror for the reconstructed sample vector x̂i. Typically,

we use the crossentropy measure, i.e. J0(Θ, x̂i, yi) =
− log[pΘ(yi|x̂i)], where pΘ(yi|x̂i) is the probability as-

signed by the classifier to sample x̂i as belonging to class yi.

J1(D, si) is a measure of the approximation error of the re-

construction when it is restricted to observed features, which

is defined as follows: J1(D, si) =
Mi

N
‖mi ⊙ (xi −Dsi)‖

2,

where ⊙ stands for the entry-wise product, mi ∈ R
N is the

observation mask for sample i, i.e. mi(n) = 0 (1) if data

entry xi(n) is missing (available); and J2(si) =
1
N
‖si‖1 is

proportional to the ℓ1-norm whose minimization promotes

the sparsity of the representation since ℓ1-norm is a conve-

nient proxy for ℓ0-norm [3]. Finally, the hyper-parameters λ1

and λ2 allow us to give more or less importance to the repre-

sentation accuracy and its sparsity, with respect to the classi-

fication error. Intuitively, minimizing equation (2) favors so-

lutions that not only have sparse representations compatible

with observed features, but also providing reconstructions

that are best separated in the given classes.

(a)

(c)

(b)

= +

Unavailable entries

= +

= +

(d) (e)

incomplete observations of class B

incomplete observations of class A

class A

class B

Figure 1. Toy example: (a) 4 out P dictionary elements di (atoms). (b)

Digits “3” and “8” can be represented by combining only two atoms in the

dictionary (2-sparse representations). (c) A left-half occluded digit “3” or

“8” admits more than one 2-sparse representation (sum of do
1 and d

o
2, or

d
o
3 and d

o
4). (d) Linearly separable samples from two classes (A and B)

having two features: x = [x1, x2] ∈ R2 where incomplete observations

are taken by observing only one feature. Note that xA and xB belong to

different classes but their observations are identical. (e) Without using label

information, the sequential method could lead to wrong reconstructions of

data vectors, i.e. x̂A 6= xA and x̂B 6= xB making the set of reconstructed

vectors not linearly separable.

2.1. A sparsity­promoting sub­gradient optimiza­
tion algorithm

To minimize the cost function in equation (2) we pro-

pose to alternate between the optimization over si (i =
1, 2, . . . , I) and {Θ,D} using the training dataset (incom-

plete).

For fixed {Θ,D}, the optimization with respect to si is

a non-smooth separable minimization sub-problem, which

was extensively studied in the literature [38, 12]. In this

sub-problem, the objective function is written as the sum of

F (Θ,D, si) and a non-smooth separable function G(si), for

which highly specialized, efficient and provable convergent

solvers, namely the Coordinate Gradient Descent (CGD),

already exists. However, the following key differences in our

setting makes it not suitable for the CGD approach: first, our

function F (Θ,D, si) involves evaluation of a multi-layer

NN classifier, which can be non-smooth due to involved ac-

tivation functions like ReLU or others; second, and more im-

portantly, the computation of its second derivatives (Hessian)

becomes prohibitive. Therefore, we choose a simpler and

standard first order (stochastic sub-gradient based) search

of local minima with back-propagation. We take the strat-

egy similar to the heuristics used in [34]. To update si, we

need to subtract σs
∂J
∂si

(j) from each coordinate j provided

that we do not cross zero in the process in order to avoid

escaping from a region where G(si) is differentiable. In

such a case, we let the new value of si(j) be exactly zero.

More specifically, we define ∆i(j) = −σs
∂J
∂si

(j) and, if

si(j)[si(j) + ∆i(j)] < 0 (zero crossing condition), we re-

define ∆i(j) = −si(j); finally we update si ← si + ∆i.

It is noted that, once a coefficient si(j) reaches zero at a

coordinate j, it becomes fixed, in other words, sparsity of

solution si is monotonically increasing with iterations.

When si is fixed, our problem is reduced to minimize

F (Θ,D, si) with respect to Θ and D, which is easily done

by standard first order (stochastic gradient based) search of

local minima. The algorithm proposed for the training phase

is presented as Algorithm 1.

In addition, for the testing phase, if the test dataset is

incomplete, we need to find first the sparsest representation

for the given observations, compute the reconstructions x̂i =
Dsi and then apply the previously learned classifier to them

as presented in Supp. material, Algorithm 2.

Algorithm 1 : Simultaneous classification and coding

Require: {xo
i , yi}, i = 1, 2, . . . , I , hyper-parameters λ1 and λ2,

Niter and update rates σΘ, σD and σs

Ensure: Weights Θ and reconstructions x̂i = Dsi, ∀i
1: Randomly initialize Θ,D, si, ∀i
2: for n ≤ Niter do

3: Fix si, update Θ andD:

4: Θ = Θ− σΘ
∂J
∂Θ

5: D = D− σD
∂J
∂D

6: Normalize columns of matrixD

7: Fix Θ and D, update si, ∀i:
8: ∆i = −σs

∂J
∂si

, ∀i

9: if si(j)[si(j) + ∆i(j)] < 0 then

10: ∆i(j) = −si(j), ∀(i, j);
11: end if

12: si = si +∆i, ∀i
13: end for

14: return Θ,D, si, x̂i = Dsi, ∀i

2.2. Theoretical analysis

Here, we investigate about conditions under which a per-

fect classifier of the complete data can be obtained from

incomplete data samples.

2.2.1 Logistic regression

Let us first consider a logistic regression classifier [13] where

the set of parameters Θ = {w, b} are a vector w ∈ RN and

a scalar b (bias). A perfect classifier exists if there is a hyper-

plane that separates both classes, i.e., for each data vector

xi: f(xi) = 〈w,xi〉 + b > 0 if yi = 1, and f(xi) ≤ 0 if

yi = 0. We consider data samples admitting a K-sparse rep-

resentations xi = Dsi with dictionary D ∈ RN×P having

unit-norm columns. We also assume an arbitrary pattern of

missing featuresMi such that, data samples and dictionary

are partitioned as {xm
i ,xo

i } and {Dm
i ,Do

i }, respectively.

The following lemma identifies a sufficient condition under

which, if we are able to train a classifier on incomplete ob-

servations such that the reconstructed data points are well

separated by a hyperplane, then the same classifier correctly

separates the original (unobserved) data vectors.

Lemma 2.1 (Sufficient condition type I). Suppose that we

have obtained an alternative dictionary D
′ 6= D ∈ RN×P

such that, for the incomplete observations xo
i ∈ R

Mi , the K-

sparse representation solutions are non-unique, i.e. ∃si, s
′

i ∈
ΣP

K such that xo
i = D

o
i si = D

′o
i s

′

i, where si ∈ R
P are

the vectors of coefficients of the true data and s
′

i provides

reconstructions x̂i = D
′
s
′

i. If a perfect classifier {w, b} of

the reconstructions x̂i exists s.t. |f(x̂i)| > ǫi > 0 and

ǫi > |〈w
m
i , emi 〉| (4)

with e
m
i = x

m
i − x̂

m
i , then the full data vectors xi are

also perfectly separated with this classifier, in other words:

f(xi) = 〈wi,xi〉+ b > 0 (≤ 0) if yi = 1 (yi = 0).

Proof. By using the missing/observed partition and omitting

the sample index i, we can write: f(x) = 〈w,x〉 + b =
〈wo,xo〉+ 〈wm,xm〉+ b. If we add and subtract the term

〈wm, x̂m〉 on the right left hand, arrange terms and use the

fact that x̂o = D
′o
s
′ = x

o, we get:

f(x) = f(x̂) + 〈wm, em〉. (5)

Since we assumed that f(x̂) > ǫ > 0 (for yi = 1) and

|〈wm, em〉| < ǫ, it implies that f(x) > 0.

Basically, condition (4) means requiring that reconstruc-

tion vector x̂ has a distance ǫ to the separating hyperplane

larger than the absolute dot product between w and the

residual e = x − x̂, which of course is true when the re-

construction is accurate, i.e. x ≈ x̂. However, in practice,

reconstructions are not accurate so we are interested in con-

ditions under which Lemma 2.1 can still holds. Below, we

derive a more restrictive but useful sufficient condition:

Proposition 2.1 (Sufficient condition type II). Under the

same hypothesis of Lemma 2.1, the following condition is

enough to guarantee a proper classifier trained on incom-

plete data:

ǫ > |〈wm,xm〉|+ |〈wm, x̂m〉|. (6)

Proof. By using the fact that |〈wm, em〉| = |〈wm,xm −
x̂
m〉| ≤ |〈wm,xm〉| + |〈wm, x̂m〉|, and applying Lemma

2.1 the proof is completed.

We highlight that, in our experiments, we were able to

verify that Sufficient Condition type II is met in practice (see

section 3, Fig. 3).

In Supp. material section 2, we derive an additional suf-

ficient condition based on the Restricted Isometry Property

(RIP) of the dictionary D and sparsity level K, showing that

sufficient condition (6) is easier to hold for datasets admit-

ting highly sparse representations on dictionaries as close to

orthogonal ones as possible.

2.2.2 Multilayer-perceptron

Lemma 2.1 can be straightforwardly generalized to

multilayer-perceptron NNs where, if a softmax function

is used at the output of the last layer then, as before, the

prediction is based on the sign of the linear function:

f(x) = 〈w,x
(L)〉+ b, with x

(l) = h
(

W
T
l x

(l−1) +Bl

)

, (7)

l = 1, 2, . . . , L, where L + 1 is the total number of layers,

Nl is the number of neurons in layer l, w ∈ RNL+1 contains

the weights in the last layer, h(·) is an activation function,

e.g. ReLU, Wl ∈ R
Nl−1×Nl and Bl ∈ R

N
l contain the

weights and biases associated to neurons at layer l; and

x
(0) = x is the input data vector. In this case, the first layer

matrix W1 ∈ R
N×N1 can be partitioned into submatrices

W
o
1i ∈ R

M×N1 and W
m
1i ∈ R

(N−M)×N1 according to the

observed and missing input features, respectively.

Proposition 2.2. Under the same conditions of Lemma

2.1, if a NN-classifier {Wl,Bl(l = 1, 2, . . . L),w, b, h =
ReLU} of the reconstruction x̂i exists such that

ǫi > Amax
j
|〈Wm

1i(:, j), e
m
i 〉|, (8)

where A = ‖w‖
∏L

l=2 ‖Wl‖2 and e
m
i = x

m
i − x̂

m
i , then

the full data vector xi is also perfectly separated, in other

words: f(xi) > 0 (< 0) if yi = 1 (yi = 0).

In the proof of Lemma 2.1, we were interested in finding

a bound of the output error when the input x of a classifier

is perturbed, i.e. we found conditions such that |f(x) −
f(x+ δ)| < ǫ. By generalizing the classifier to the case of a

multilayer perceptron we can derive the proof as follows:

Proof. Given a perturbation δ(l−1) ∈ RNl at the input of

layer l− 1, i.e. x̂(l−1) = x
(l−1) + δ(l−1), it is propagated to

the output of layer l. By writing the error at the output we

obtain:

δ(l)=h(WT

l
x
(l−1)+Bl+W

T

l
δ(l−1))−h(WT

l
x
(l−1)+Bl), (9)

and, by using the sub-additivity of ReLU function h(·), i.e.

h(a+ b) ≤ h(a) + h(b), we derive the following entry-wise

inequality:

δ
(l) ≤ h

(

W
T
l δ

(l−1)
)

, (10)

and, by considering the property of ReLU activation function

‖h(x)‖ ≤ ‖x‖, it turns out:

‖δ(l)‖ ≤ ‖WT
l δ

(l−1)‖, (11)

Since the last layer of the NN is a linear classifier as in

the case of Lemma 2.1, we can ask that 〈w, δ(L)〉 < ǫ. Thus,
by recursively using equation (11), we write

〈w, δ(L)〉 ≤ ‖w‖‖δ(L)‖ ≤ ‖w‖‖WL‖2‖Wl−1‖2 · · · ‖W2‖2‖δ
(1)‖.
(12)

By defining A = ‖w‖
∏L

l=2 ‖Wl‖2, evaluating equation

(11) with l = 1 and taking into account that perturbation at

the input of first layer is δ(0) = e with e
o = 0, we arrive at:

〈w, δ
(L)〉 ≤ A‖WmT

1 e
m‖ ≤ Amax

j
|〈Wm

1 (:, j), em〉| < ǫ,

(13)

which completes the proof.

It is interesting to note that A = 1 is attained when unit-

norm filters (columns of Wl) are orthogonal, which can be

imposed by using orthogonality regularization [1].

3. Experimental results

We implemented all the algorithms in Pytorch 1.0.0 on a

single GPU. Implementation details are reported in Supple-

mental material, sections 3.1 and 3.2. The code is available

at 1.

Synthetic datasets: We synthetically generated I =
11, 000 (10, 000 training + 1, 000 test) K-sparse data vec-

tors xi ∈ R
100 using a dictionary D ∈ R100×200 obtained

from a Gaussian distribution with normalized atoms, i.e.

‖D(:, j)‖ = 1, ∀j. A random hyperplane {w, b} with

w ∈ RN , b ∈ R was randomly chosen dividing data vec-

tors into two classes according to the sign of the expression

〈w,xi〉+ b, which defined the label yi. We also controlled

the degree of separation between classes by discarding all

data vectors with distances to the hyperplane lower than a

pre-specified threshold, i.e. |〈w,xi〉 + b| < d. We used

n = 10 repetitions of each experiment with different masks

and input data in order to compute statistics.

We applied our simultaneous method (Simult.) with hy-

perparameters λ1 and λ2 in the cost function (2) tuned via

cross-validation to train a logistic regression classifier on

incomplete datasets with randomly distributed missing fea-

tures. Then, we computed the classification accuracy on the

complete test dataset and compared the results against the

following standard sequential methods:

Sequential Sparsity based (Seq. Sp.): reconstructions are

obtained by finding the sparsest representation compatible

with the observations solving a LASSO problem. We used

Algorithm 3 as shown in the Supp. material;

Zero Fill (ZF): missing features are filled with zeros, which

1https://github.com/ccaiafa/SimultCodClass

Missing entries (%) Missing entries (%)

Te
st

 a
cc

u
ra

cy

K=4, d=0.0

K=32, d=0.2

Simult. Seq. Sp. ZF MU MS

KNN-10 KNN-20 KNN-50 KNN-100

* * *

K=32, d=0.0

* * * *

K=4, d=0.2

* *

* * * *

p < 0.05*

Te
st

 a
cc

u
ra

cy

Figure 2. Experimental results on synthetic dataset with random masks

using our algorithm (red) and compared to various sequential methods.

Test accuracy (mean ± s.e.m with n = 10) is shown as a function of the

percentage of missing features for separation of classes d = 0.0, 0.2 and

levels of sparsity K = 4, 32. Statistical significance for the difference

between Simult. and MS is shown (p < 0.05).

is equivalent to ignore unknown values;

Mean Unsupervised (MU): missing features are filled with

the mean computed on the available values;

Mean Supervised (MS): as in the previous case but the

mean is computed on the same class vectors only;

K-Nearest Neighbor (KNN): as in the previous case but the

mean is computed on the K-nearest neighbors of the same

class vectors only.

To compare the performance of classifiers, we computed

the mean accuracy ± standard error of the mean (s.e.m.),

with n = 10, on complete test datasets using all the methods

for two levels of separation between classes (d = 0.0, 0.2),

two levels of sparsity (K = 4, 32) and missing features in

the training dataset ranging from 25% to 95% as shown in

Fig. 2. Our results show that the simultaneous algorithm

clearly outperforms all the sequential methods. A t-test

was performed to evaluate the statistical significance with

p < 0.05 of the difference between our algorithm and MS.

It is interesting to note that, when classes has some degree

of separation (d = 0.2), using the simple MS method, can

give good results but not better than our algorithm.

In the second experiment, we generated I = 10, 000
K-sparse data vectors xi ∈ R

100 using D ∈ R100×100

and we evaluated the sufficient condition of equation (6)

on n = 10 repetitions of the experiment with 95% missing

features and separation d = 0.0. Fig. 3 clearly shows that

the sufficient condition is mostly met in practice, especially

for highly sparse representations of input data (small K).

0

2.0

1.0

0 1.0 2.0 0 1.0 2.0

K=2 K=4

K=8 K=16

0

2.0

1.0

Figure 3. Verification of the sufficient condition (6) for various levels of

sparsity K: 2D-histogram of ǫ versus g = |〈wm,xm〉| + |〈wm, x̂m〉|.
Mean + s.e.m (n = 10) percentage of correctly classified data samples are

shown for ǫ > g and ǫ < g.

This means that in practice it is not necessary to accurately

reconstruct the input vectors, it is enough to capture the

intrinsic characteristics of the classes such that the distances

of reconstructions to the separating hyperplane satisfy the

sufficient condition (3).

Benchmark datasets: We also considered three popular

computer vision datasets: MNIST [22] and Fashion [41]

consisting of 70,000 images (60,000 train + 10,000 test) each;

and CIFAR10 [21] having 60,000 images (50,000 train +

10,000 test). MNIST/Fashion datasets contains 28× 28 gray

scale images while CIFAR10 dataset is built upon 32×32×3
color images of different objects. The corresponding data

sample size is N = 28× 28 = 784 for MNIST/Fashion and

N = 32× 32× 3 = 3, 072 for CIFAR10. We considered a

dictionary of size 784× 784 (MNIST/Fashion) and 1, 024×
1, 024 (CIFAR10) and applied our simultaneous algorithm to

learn the classifier on incomplete data using uniform random

missing masks with several levels of missing data (25%,

50% and 75%) and 50% for random partial occlusions with

MNIST/Fashion.

We used a logistic regression classifier (single layer NN)

and a 4-layer convolutional neural network [23] (CNN4)

for the MNIST/Fashion dataset using batch normalization

(BN) [18] in the Fashion dataset. For CIFAR10 dataset, an

18-layer residual neural network, Resnet-18 [15] was im-

plemented. We did not use any data augmentation strategy.

The hyper-parameters λ1 and λ2 in cost function (2) were

adjusted by cross-validation through a grid-search, as shown

in Supp. material (Table S2 and Fig. S1). We compared our

proposed algorithm with the following standard sequential

methods: ZF, MS, KNN-10, KNN-20, KNN-50 and KNN-

100; and against the recently proposed method from [35],

referred here as NN-GMM, which uses the same NN classi-

fier as in our method and models missing features through

GMM2. We trained the classifiers on incomplete data with

random masks and tested them on complete data for MNIST

and CIFAR10 datasets. The obtained mean Test Accuracy ±
s.e.m (n = 10) are reported in Table 1. It is noted that NN-

GMM provided good results with MNIST dataset compared

to sequential methods, however, our simultaneous method

outperformed all the methods. Interestingly, NN-GMM per-

formed worst than any other method with CIFAR10 dataset.

It seems that NN-GMM is not robust to large amount of

missing data because, when we reduced the missing entries

to 10%, the test accuracy sensibly increased to 52.57%. Ad-

ditionally, our method showed to have little variability (small

s.e.m) compared to the second best method (NN-GMM for

MNIST and ZF for CIFAR10).

In Table 2, test accuracies obtained when the learned

model is applied to incomplete and complete test data, are

shown. The right-most column shows the baseline results

obtained by training the model on complete datasets using

a CNN4 [23] and a Resnet-18 [15], whose implementations

can be found at 3 and 4. It is interesting to note that for the

logistic regression classifier, we obtained better results when

training with incomplete data rather than using complete data.

Also, it is highlighted that training on incomplete data with

50% or fewer random missing features, provides similar test

accuracy as training on complete data for MNIST dataset.

This could be explained by noting two facts: (1) random

missing features is similar to applying dropout, with the

exception that missing data do not change during training;

and (2) our model has more parameters (Dictionary + sparse

coefficients + Linear layer) compared to the baseline logistic

regression classifier. To provide a deeper understanding of

this effect, we ran the baseline with Dropout at the input and

we obtained: 91.95%, 91.97% and 92.01% for p = 0.0, 0.1
and 0.25, respectively, which shows that the improvement we

obtained with our method is not solely caused by a dropout

alike behavior.

In Fig. 4, we present some randomly selected visual ex-

amples comparing the original images in the MNIST/Fashion

test dataset, their observations using random masks and par-

tial occlusions, and the reconstructions using the dictionary

learned from the incomplete training data. It is clear that,

despite the reconstructions may be not very similar to the

original images (see “5” digit example), they clearly own the

properties of the class to which they belong to. Additional

examples are provided in Supp. material (Figs. S2 and S3).

4. Discussion

It is well known that sparse coding has the ability to accu-

rately model complex distributions of data, such as natural

2https://github.com/lstruski/Processing-of-missing-data-by-neural-networks
3https://github.com/pytorch/examples/tree/master/mnist
4https://github.com/kuangliu/pytorch-cifar

Table 1. Test accuracy (mean ± s.e.m with n = 10) of various methods trained on incomplete data and tested on complete ones for MNIST and CIFAR10.
MNIST (CNN4)

Miss. ZF MS KNN10 KNN20 KNN50 KNN100 NN-GMM Simult.

75% 84.86± 0.02 83.79± 0.01 88.16± 0.01 87.94± 0.01 87.03± 0.002 86.52± 0.01 96.36± 0.12 98.09± 0.04

50% 90.13± 0.06 88.55± 0.01 91.36± 0.02 91.11± 0.02 90.87± 0.01 90.82± 0.01 97.57± 0.37 98.23± 0.10

CIFAR10 (Resnet18)

Miss. ZF MS KNN10 KNN20 KNN50 KNN100 NN-GMM Simult.

75% 32.22 ± 2.09 21.30 ± 0.40 22.84 ± 0.87 25.67 ± 0.80 26.52 ± 0.70 26.01 ± 0.52 12.10± 0.61 54.81± 0.47

50% 46.37 ± 1.93 17.90 ± 0.94 30.94 ± 0.54 29.68 ± 0.46 30.01 ± 0.51 26.23 ± 1.01 14.02± 0.75 62.50± 0.95

Table 2. Test Accuracies obtained with our method on MNIST, Fashion and CIFAR10 datasets training with incomplete data and testing on incom-

plete/complete data. Baseline results obtained by training the models on complete data are shown for reference in the right-most column.

Dataset Classifier

Random missing features Occlusion Baseline

%Train / %Test %Train / %Test %Train / %Test

75/75 50/50 25/25 75/0 50/0 25/0 50/50 50/0 0/0

MNIST
Log. Reg. 90.45 93.68 94.14 91.94 93.44 94.43 - - 91.95

CNN4 94.62 98.34 98.94 98.09 98.23 98.95 88.55 91.37 98.95
Fashion CNN4+BN 83.71 86.09 86.38 86.39 87.11 87.04 81.73 82.47 90.76

CIFAR10 Resnet18 53.82 61.08 63.73 54.81 62.50 63.87 - - 80.13

Figure 4. Original (top), observed (middle) and reconstructed (bottom)

MNIST and Fashion test images.

signals (images, audio, EEG, etc). In this work, we demon-

strated that assuming a sparse representation for input data

allows for the successful training of a general NN when in-

complete data is given outperforming traditional sequential

approaches and other start-of-the-art methods. It is high-

lighted that our method can be used with potentially any

deep NN architecture, thus relying on their extraordinary

capability to accommodate complex decision boundaries as

usually needed in modern machine learning.

Our method overcomes well known issues of previous

approaches: (1) compared to imputation methods, our algo-

rithm successfully incorporates the labelling information into

the modeling of missing features; (2) sparse coding allows

for a simple way to train dictionaries through linear methods

such as stochastic gradient descent with back-propagation

compared to the very expensive EM estimators for GMM

used in probabilistic generative models, or SVD based algo-

rithms for matrix rank minimization in matrix completion;

(3) sparse coding can be more accurate modeling missing val-

ues in natural signals compared to GMM, especially for high

dimensional data where GMM may require a huge number

of parameters making it computationally prohibitive.

We analyzed the limitations of the classical imputation ap-

proach and demonstrated through experiments with synthetic

and real-world datasets that our simultaneous algorithm al-

ways outperforms them for various cases such as LASSO,

zero-filling, supervised/unsupervised mean and KNN based

methods as well as the state-of-the-art method based on NNs

and GGM recently proposed in [35]. Nevertheless, our exper-

imental results on synthetic and real-world dataset showed

that, even though we only constrained dictionaries to have

unit-norm columns but not enforcing any other kind of con-

straint like maximum coherence, the obtained results seem

to be satisfactory enough. However, further analysis on the

required properties of dictionaries could provide deeper in-

sights and alternative ways to improve the algorithm, which

we aim to address in a future work.

While current simple sub-gradient based optimization ap-

proach provided satisfactory results in terms of performance,

it is remarked that observed convergence is slow requiring

a thousand of iterations sometimes. We believe, it could be

improved by trying to incorporate some second-order deriva-

tives information for computing the updates. Although, full

Hessian computation becomes prohibitive with multi-layer

NNs a diagonal approximation approach could be explored.

Also, a rigorous convergence analysis in the line of the anal-

ysis in [38, 12] and taking special properties of multi-layer

NN classifier functions can be conducted in a future work.

Finally, we provided theoretical insights of the problem

by providing sufficient conditions under which, if it is pos-

sible to train a classifier on incomplete observations so that

its reconstructions are well separated by a hyperplane, then

the same classifier also correctly separates the original (un-

observed) data samples.

Acknowledgments: We are thankful for the RAIDEN

computing system and its support team at RIKEN AIP,

Tokyo. This work was supported by the JSPS KAKENHI

(Grant No. 20H04249, 20H04208).

References

[1] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can We

Gain More from Orthogonality Regularizations in Training

Deep CNNs? In NeurIPS, 2018.

[2] Chiranjib Bhattacharyya, Pannagadatta K Shivaswamy, and

Alexander J Smola. A Second Order Cone programming

Formulation for Classifying Missing Data. In NIPS, 2004.

[3] Emmanuel J. Candès and Terrence Tao. Decoding by Linear

Programming. IEEE Transactions on Information Theory,

51(12):4203–4215, 2005.

[4] Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel, and

Daphne Koller. Max-margin Classification of Data with Ab-

sent Features. Journal of Machine Learning Research (JMLR),

9:1–21, 2008.

[5] M Davenport, Marco F Duarte, Yonina C Eldar, and G Ku-

tyniok. Introduction to compressed sensing. Theory and

Applications. Cambridge University Press, Cambridge, 2012.

[6] Olivier Delalleau, Aaron C Courville, and Yoshua Bengio.

Efficient EM Training of Gaussian Mixtures with Missing

Data. arXiv, cs.LG:1209.0521, 2012.

[7] Uwe Dick, Peter Haider, and Tobias Scheffer. Learning from

incomplete data with infinite imputations. In ICML, 2008.

[8] Pedro J García-Laencina, José-Luis Sancho-Gómez, and

Aníbal R Figueiras-Vidal. Pattern classification with miss-

ing data: a review. Neural Computing and Applications,

19(2):263–282, 2009.

[9] Zoubin Ghahramani and Michael I Jordan. Supervised learn-

ing from incomplete data via an EM approach. In NIPS,

1993.

[10] Andrew B Goldberg, Xiaojin Zhu, Ben Recht, Jun-Ming Xu,

and Robert D Nowak. Transduction with Matrix Completion

- Three Birds with One Stone. In NIPS, 2010.

[11] Karol Gregor and Yann LeCun. Learning Fast Approxima-

tions of Sparse Coding. In ICML, 2010.

[12] Elaine T Hale, Wotao Yin, and Yin Zhang. Fixed-Point Con-

tinuation for ℓ1-Minimization: Methodology and Conver-

gence. SIAM J. OPTIM., 19(3):1107–1130, 2008.

[13] Trevor Hastie, Robert Tibshirani, and Jerome H Friedman.

The elements of statistical learning - data mining, inference,

and prediction, 2nd Edition. Springer Series in Statistics.

Springer New York, New York, NY, 2009.

[14] Elad Hazan, Roi Livni, and Yishay Mansour. Classification

with Low Rank and Missing Data. In ICML, 2015.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep Residual Learning for Image Recognition. In 2016

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR, pages 770–778. IEEE, 2016.

[16] Ke Huang and Selin Aviyente. Sparse Representation for

Signal Classification. In NIPS, 2006.

[17] Sheng-Jun Huang, Miao Xu, Ming-Kun Xie, Masashi

Sugiyama, Gang Niu, and Songcan Chen. Active Feature

Acquisition with Supervised Matrix Completion. arXiv,

cs.LG:1802.05380, 2018.

[18] Sergey Ioffe and Christian Szegedy. Batch Normalization -

Accelerating Deep Network Training by Reducing Internal

Covariate Shift. In ICML, 2015.

[19] Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, and

Francis R Bach. Proximal Methods for Sparse Hierarchical

Dictionary Learning. In ICML, 2010.

[20] Julie Josse, Nicolas Prost, Erwan Scornet, and Gaël Varo-

quaux. On the consistency of supervised learning with miss-

ing values. arXiv.org, page arXiv:1902.06931, Feb. 2019.

[21] A Krizhevsky. Learning multiple layers of features from tiny

images. PhD thesis, Toronto University, Toronto, 2009.

[22] Yann LeCun, Bernhard E Boser, John S Denker, Donnie

Henderson, Richard E Howard, Wayne E Hubbard, and

Lawrence D Jackel. Handwritten Digit Recognition with

a Back-Propagation Network. In NIPS, 1989.

[23] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Ben-

gio. Object Recognition with Gradient-Based Learning. In

Shape, Contour and Grouping in Computer Vision, 1999.

[24] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y Ng.

Efficient sparse coding algorithms. In NIPS, 2006.

[25] Xuejun Liao, Hui Li, and Lawrence Carin. Quadratically

gated mixture of experts for incomplete data classification. In

ICML, 2007.

[26] Tsung I Lin, Jack C Lee, and Hsiu J Ho. On fast supervised

learning for normal mixture models with missing information.

Pattern Recognition, 39(6):1177–1187, 2006.

[27] Roderick J A Little and Donald B Rubin. Statistical Analysis

with Missing Data. John Wiley & Sons, Aug. 2014.

[28] Julien Mairal, Francis R Bach, Jean Ponce, and Guillermo

Sapiro. Online dictionary learning for sparse coding. In

ICML, 2009.

[29] J Mairal, J Ponce, G Sapiro, A Zisserman Advances in neural,

and 2009. Supervised dictionary learning. In NIPS, 2008.

[30] SG Mallat. A Wavelet Tour of Signal Processing. The Sparse

Way. Academic Press, 2009.

[31] BA Olshausen and DJ Field. Sparse coding with an overcom-

plete basis set: A strategy employed by V1? Vision research,

37(23):3311–3325, 1997.

[32] B A Olshausen and D J Field. Emergence of simple-cell

receptive field properties by learning a sparse code for natural

images. Nature, 381(6583):607–609, 1996.

[33] Ignacio Ramirez, Pablo Sprechmann, and Guillermo Sapiro.

Classification and clustering via dictionary learning with

structured incoherence and shared features. In CVPR, 2010.

[34] Shai Shalev-Shwartz and Ambuj Tewari. Stochastic Methods

for l1-regularized Loss Minimization. Journal of Machine

Learning Research (JMLR), 2011.

[35] Marek Smieja, Lukasz Struski, Jacek Tabor, Bartosz Zielinski,

and Przemyslaw Spurek. Processing of missing data by neural

networks. In NeurIPS, 2018.

[36] Pablo Sprechmann and Guillermo Sapiro. Dictionary learning

and sparse coding for unsupervised clustering. In ICASSP,

2010.

[37] Ivana Tosic and Pascal Frossard. Dictionary Learning. IEEE

Signal Processing Magazine, 28(2):27–38, 2011.

[38] Paul Tseng and Sangwoon Yun. A coordinate gradient descent

method for nonsmooth separable minimization. Mathematical

Programming, 117(1-2):387–423, 2007.

[39] Jonathan Weed. Approximately Certifying the Restricted

Isometry Property is Hard. IEEE Transactions on Information

Theory, 64(8):5488–5497, 2017.

[40] David Williams, Xuejun Liao, Ya Xue, and Lawrence

Carin. Incomplete-data classification using logistic regression.

ICML, 2005.

[41] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-

MNIST: a Novel Image Dataset for Benchmarking Machine

Learning Algorithms. arXiv, cs.LG:arXiv:1708.07747, 2017.

