
Cluster-driven Graph Federated Learning over Multiple Domains

Debora Caldarola*,1, Massimiliano Mancini2, Fabio Galasso3,

Marco Ciccone4, Emanuele Rodolà3, Barbara Caputo1,5

1
Politecnico di Torino,

2
University of Tübingen,

3
Sapienza University of Rome,

4
Politecnico di Milano,

5
Italian Institute of Technology

Abstract

Federated Learning (FL) deals with learning a central

model (i.e. the server) in privacy-constrained scenarios,

where data are stored on multiple devices (i.e. the clients).

The central model has no direct access to the data, but only

to the updates of the parameters computed locally by each

client. This raises a problem, known as statistical hetero-

geneity, because the clients may have different data distri-

butions (i.e. domains). This is only partly alleviated by clus-

tering the clients. Clustering may reduce heterogeneity by

identifying the domains, but it deprives each cluster model

of the data and supervision of others.

Here we propose a novel Cluster-driven Graph Feder-

ated Learning (FedCG). In FedCG, clustering serves to ad-

dress statistical heterogeneity, while Graph Convolutional

Networks (GCNs) enable sharing knowledge across them.

FedCG: i. identifies the domains via an FL-compliant clus-

tering and instantiates domain-specific modules (residual

branches) for each domain; ii. connects the domain-specific

modules through a GCN at training to learn the interactions

among domains and share knowledge; and iii. learns to

cluster unsupervised via teacher-student classifier-training

iterations and to address novel unseen test domains via their

domain soft-assignment scores. Thanks to the unique inter-

play of GCN over clusters, FedCG achieves the state-of-the-

art on multiple FL benchmarks.

1. Introduction

In Federated Learning (FL) [30], a central server model

is trained using data stored locally on multiple client de-

vices. Each client computes a local update of the model and

all the client updates are then aggregated server-side to build

the final model. Since no data ever leaves the client de-

vices, the central model has no direct access to the raw data

itself, a fundamental requirement for privacy-preserving ap-

plications (e.g. medical records, bank transactions, etc.). FL

usually relies upon the key assumption that a single central

model can work efficiently across several users [15, 22].

This may not hold in practice, since distinct clients might

*Corresponding author: debora.caldarola@polito.it

MM
MM

Test clientsTraining clients

M

domain specific
residual modules

shared modules

Figure 1. In a federated scenario, clients and server exchange the

parameters of the model M . Each client has access to its local

data, which can be non-i.i.d. and unbalanced. In the image, each

color identifies a different distribution, i.e. a domain, such as pic-

tures of skyscrapers or sea landscapes. Our model M is made of

domain-agnostic layers (in gray) and a GCN containing domain-

specific parameters, added as residual. According to the domains

of the input images, the corresponding nodes of the GCN are acti-

vated. At test time, new domains can be addressed as a soft com-

bination of the discovered ones, e.g. skyscrapers over the sea.

hold different input distributions, i.e. domains (e.g., people

speaking different languages, pictures taken at different lo-

cations), with their data possibly being not identically dis-

tributed and/or unbalanced. These issues (collectively re-

ferred to as statistical heterogeneity [41]) imply that all i.i.d.

assumptions made in distributed optimization or centralized

training are violated, and modeling the learning problem re-

quires taking into account this new complexity.

To the best of our knowledge, statistical heterogeneity

has been tackled so far with diverse approaches, but none

of them has modeled the direct share of knowledge be-

tween domains. In particular, meta-learning FL techniques

focused on the client-server relation [14, 17, 8, 5]; multi-

task FL methods specialized parts of the models to certain

clients [41, 7]; while clustering-based FL split the clients

and data, learning separate models for them [40, 44].

In this work, we introduce a novel Cluster-driven Graph

Federated Learning (FedCG). FedCG leverages clustering

and its potential to reduce statistical heterogeneity by iden-

tifying homogeneous1. Concurrently, FedCG is the first to

model the domain-domain interaction by means of a GCN,

which connects domain-specific model components. In the

GCN, each node consists of domain-specific model param-

eters, while the adjacency matrix is composed of the inverse

pairwise distances between the domain-specific parameters.

In this way, FedCG not only captures the specificity of each

domain but also allows each domain to benefit from the up-

dates of others, sharing knowledge at training.

Our clustering is based on unsupervised teacher-

student [10] classifier-training iterations and it generalizes

to unseen test-time domains. We cluster by pseudo-labels,

assigned by a teacher and learned by a student, in rounds

of refinements. This is accomplished within the FL train-

ing paradigm, respecting the client’s privacy. This allows to

estimate soft-assignments for unseen novel test domains.

We test our model extensively on several FL bench-

marks, demonstrating results above or competitive with the

state-of-the-art. Our main contributions are:

1. We present the first cluster-driven GCN-based ap-

proach to address statistical heterogeneity in the FL

scenario. Thanks to the interactions among domains

learned by the means of a GCN, knowledge is shared

across domains according to a similarity-based crite-

rion, reducing the risk of overfitting and helping the

less populated domains.

2. We introduce an iterative teacher-student clustering

algorithm designed for the federated learning sce-

nario, which allows adapting to new domains via soft-

assignments. This captures the diverse domain distri-

butions without violating the FL constraints. Each do-

main is assigned model-specific components, trained

via GCN interactions.

3. We evaluate our model on multiple FL benchmarks,

where we compare favorably or on par with respect to

the state-of-the-art.

1Homogeneous stands in this context for groupings that minimize intra-

cluster Vs inter-cluster variance.

2. Related Work

Although FL is a relatively new field of study, it has

aroused great interest in the research community because of

its wide applicability in privacy-constrained scenarios [22].

A simple but effective baseline for FL is the Federated Aver-

aging (FedAvg) algorithm [30], where the central model is

obtained as a weighted average of the models received from

each client after their local updates. FedAvg has been ex-

tensively studied and extended by changing either what is

averaged, or how the local models are considered in each

update. For instance, FedSGD [30] bases the update on

the model’s gradient instead of the weights, while in [19],

the updates are parametrized with fewer variables to re-

duce the uplink communication cost. Similarly, in [38] the

nodes only send a quantized version of their local informa-

tion for reducing the communication overhead. Mohri et

al. [32] propose Agnostic Federated Learning (AFL) in or-

der to reduce the bias towards specific clients. In [21], each

client designs its own local model and the local information

is shared by means of knowledge distillation. Our work

mainly relates to [30], but we explicitly revise the FedAvg

framework to account for statistical heterogeneity.

Statistical heterogeneity in FL Despite their effective-

ness, the previous methods ignore an important problem

of FL, i.e. statistical heterogeneity. Many works [23, 11,

24, 16] study this challenge in terms of convergence analy-

sis and effects of non-i.i.d. data distributions in the feder-

ated scenario. Others address this problem from the meta-

learning [33] and multitask [4] perspectives for building

specialized models. Specifically, Model-Agnostic Meta-

Learning [9] caught the interest of the FL community for

its compatibility with any ML model trained with gradi-

ent descent [14, 17, 8, 5]. On the other hand, in Federated

Multi-Task Learning (FMTL) [41, 7], each client is seen

as a different task. FMTL addresses underlying similari-

ties and structures common to some clients by learning a

separate model for each device of the network. In particu-

lar, [40] and [44] cluster clients according to their data dis-

tribution, assigning a specialized model to each cluster: [40]

uses the cosine similarity of the clients’ gradient update,

while [44] dynamically groups clients exploiting structural

similarities. Hsu et al. [12] develop FedIR and FedVC for

re-sampling and re-weighting the client pools.

As in the aforementioned algorithms, in this work, we

focus on addressing statistical heterogeneity in FL. Simi-

larly to [40, 44], we seek to learn specialized models ad-

dressing the different data distributions. However, differ-

ently from [40], our clusters are built and updated during

the federated communication rounds through a domain clas-

sifier, and not offline after the model convergence. This re-

moves the requirement that all client-specific models must

be stored server-side. Moreover, our method aims to iden-

tify and group distributions rather than the clients them-

selves, allowing us to model the realistic case where a

client’s data may belong to multiple distributions. In ad-

dition, while the applicability of [44] is constrained to the

clients seen during training, our domain model can be ap-

plied to unseen clients at test time thanks to the flexibility of

our domain classifier. Finally, we explore merging FL with

Graph Representation Learning to address statistical hetero-

geneity, using graphs to learn domain-specific parameters

and to model the interactions among them.

Graph Representation Learning Our work employs

Graph Convolutional Networks [18], using domain-specific

parameters as high-dimensional features at each node of the

graph. This is partly inspired from [28], where domain-

specific batch normalization [13] layers are connected

through a graph for addressing predictive domain adapta-

tion. However, here we focus on a completely different

problem (i.e. FL), requiring a different training paradigm,

and we build our graph on arbitrary layers of the network.

In the context of FL, to the best of our knowledge, the

only existing works adopting graphs as auxiliary represen-

tations are SGNN [31], ASFGNN [47] and GraphFL [43].

The first two employ graphs for a different purpose: they

use a similarity-based graph neural network for improving

node classification in network embeddings, while preserv-

ing user privacy. GraphFL, instead, is a semi-supervised

node classification method on graphs and uses the FL sce-

nario to solve real-world graph-based problems. Differently

from these works, we use the graph-based formulation not

to learn a single general model, but to capture the statistical

heterogeneity while taking into account the relations among

the different data distributions. Thanks to the graph, each

domain can be addressed with specific parameters while

still taking advantage of all local updates.

3. Cluster-driven Graph Federated Learning

In this section we present our approach addressing statis-

tical heterogeneity in FL by means of GCNs. Our method

is based on three ideas: i) identify the clusters of data

sharing the same distribution, ii) assign specific network

components to each cluster, and iii) let the components

interact within a GCN. We name our full model Cluster-

driven Graph Federated Learning (FedCG). Before describ-

ing FedCG, in the following we formalize the FL problem.

Problem Formulation. Our goal is to learn a function

fθ : X → Y , parametrized by θ, mapping samples from

an input space X to their corresponding semantic in an out-

put space Y . Specifically, we focus on a classification task,

where X contains images while Y is a probability simplex

defined over a set of labels Y .

In the FL setting, the server does not have direct access

to the data, but can communicate with a set C of clients,

where each client c ∈ C has access to a local dataset Tc =
{xi, yi}

nc

i=1 with x ∈ X and y ∈ Y . In this scenario, we

can learn fθ by querying clients and relying on their local

updates of the parameters θ. In particular, since |C| is large,

we can assume a synchronous update scheme proceeding

in communication rounds, where in each round a set K of

clients receives fθ, with |K| ≪ |C|. Each client k ∈ K

computes a local update of θ, i.e. θk, with its local dataset

Tk, by minimizing a given objective function. Since we

consider classification tasks, we update θk by minimizing

the standard cross-entropy loss over Tk:

θk = min
θ

−
1

nk

∑

(x,y)∈Tk

log fy
θ (x) , (1)

where f
y
θ (x) denotes the probability of x to belong to class

y as given by fθ.

With Eq. (1), we obtain for each client k ∈ K its corre-

sponding local parameters θk tuned to address the classifi-

cation task of Tk. At each round, the server gathers all lo-

cal updates and combines them to update the central model

parameters θ. A simple yet effective strategy to aggregate

the local updates is FedAvg [30], that computes θ as the

weighted average of each θk:

θ =
1

∑

k∈K nk

∑

k∈K

nkθk . (2)

Heterogeneity may be a problem in FedAvg, and in gen-

eral for FL strategies, due to the lack of convergence guar-

antees in non-i.i.d. and unbalanced data [41, 22]. In realistic

applications, the joint probability distributions over X and

Y are usually different in each client, i.e. given two clients

c and k with c 6= k, we have pXY (Tc) 6= pXY (Tk).
To address this problem, we propose an approach that

i) identifies the distributions (i.e. domains) present in dif-

ferent clients through clustering; ii) instantiates domain-

specific components to adapt the model to each domain; iii)

makes the various domain-specific modules interact through

a GCN, such that updating one of them can benefit the oth-

ers. In the following we describe each of these elements.

3.1. Federated Clustering

To address statistical heterogeneity through domain-

specific modules, we need to identify the different domains

present in the data. This is challenging since data are split

across multiple clients and the server cannot cluster them

directly. Moreover, these clusters, even if correctly identi-

fied for the training set, may not be optimal for the test set.

Here we address the first problem by a clustering procedure

built on two domain classifiers, one having the role of the

teacher and the other of the student, which iteratively group

images such that their grouping is easier to classify. We

describe how we match clusters to the test set in Sec. 3.3.

Formally, let us assume our data contain D domains,

with D being a hyperparameter. We initialize two domain

classifiers, the teacher gφ and the student gϕ parametrized

by φ and ϕ respectively. Each domain-classifier is a func-

tion, mapping images to a probability vector D defined over

the D domains, i.e. g· : X → D. Given an input image,

the teacher provides domain pseudo-labels as a target to re-

fine student’s predictions. In particular, we learn the client

student parameters ϕk by iteratively minimizing the cross-

entropy loss between the teacher and student domain pre-

dictions over Tk. Thus, for a client k ∈ K, the parameters

ϕk of the student are:

ϕk = argmin
ϕ

−
1

nk

∑

(x,y)∈Tk

log gd̂ϕ(x) , (3)

where d̂ is the pseudo-label given by the teacher for x, i.e.

d̂ = argmaxd∈D gdφ(x) and gd∗(x) denotes the probability

of x to belong to the d-th domain as given by g∗. Eq. (3)

rewards the student from being able to classify according to

the pseudo labels, and implicitly encourages agreement on

the pseudo-labels, thus on the clustering, which most easily

may be agreed upon. Then the domain classifier parameters

ϕ are updated after each round with standard FedAvg, i.e.

ϕ = 1∑
K
i=1

nk

∑

k∈K nkϕk.

The idea behind this approach is inspired from deep clus-

tering with self-labelling [45], i.e. the teacher and the stu-

dent networks would find the equilibrium once they group

images in such a way so they can be more easily recog-

nized. This reconnects to the DNNs being natural deep im-

age priors[42], working well for image-related tasks even if

just randomly initialized. And it may intuitively match that

a “bad” labelling would leave no alternative to a DNN but

to overfit [46], which may be hard to imitate by the student.

Differently from [45], since we have no access to data and

cluster labels, we use the teacher gφ to provide them locally

in each client. Both φ and ϕ are randomly initialized and

φ is fixed during training. After T rounds, with T being a

hyperparameter, the parameters φ of the teacher are updated

with the current student ones ϕ, iteratively.

Note that, unlike previous works [44], our clustering

algorithm can assign unseen data to clusters at test time,

thanks to the domain classifier. In particular, the cluster as-

signment of a test image x corresponds to the domain prob-

abilities given by the student gϕ. Since gϕ(x) is soft, we

can accommodate for data belonging to unseen domains by

a combination of existing ones. Additionally, in our for-

mulation, one client’s data samples may belong to multi-

ple clusters, considering the more general case where each

client may contain more than one data distribution.

3.2. Cluster­specific Models

Since our model can identify data clusters through the

previously described procedure, we can design a way to

specialize the function fθ to each domain. Inspired by

multi-domain learning [36, 39, 37, 27, 29], we can achieve

this with domain-specific components. For simplicity, let

us consider the parameters θ to be split into two sets, i.e.

θ = {θa, θs} where θa are the domain-agnostic parameters

and θs the domain-specific ones. Note that θs is actually a

set θs = {θds}
D
d=1 where θds are the parameters specific to

the d-th domain. To tailor the model to a specific domain,

we can consider multiple ways to include θs, such as di-

rect influence on the agnostic parameters θa [39, 27, 29] or

residual activations [36, 37]. Here we follow the latter strat-

egy, since the former relies on the robustness of θa, which

is harder to guarantee in FL. Let us assume fθ to be a deep

neural network with a set of layers L, denoting as f ℓ
θ the

function applied at layer ℓ ∈ L. Given input from a do-

main and the features zℓ extracted at the previous layer, the

output of the ℓ-th layer is:

zℓ = f ℓ
θa
(z) + λl

D
∑

d=1

wd · f
ℓ
θd
s
(z) , (4)

where λl is a learnable parameter balancing the effect of

the domain-specific components and wd is the weight of

domain d. During training, we assume data to belong to

a single cluster, given by the pseudo-labels of the teacher,

thus wd is 1 if d = d̂ and 0 otherwise. At test time, we

want our model to deal with data from arbitrary domains

by simply combining residuals of seen ones. Thus we set

wd = gdϕ(x), weighting the impact of each domain-specific

component by the student output probabilities. Note that the

formulation in Eq. (4) is general, with f ℓ
θ being any layer of

a standard convolutional neural network. We explored its

application to either the whole network or the last layers.

Since we are in a federated scenario, also the central

domain-specific parameters must be updated without access

to local data and after each round. In practice, we follow

Eq. (2) and we perform FedAvg on both domain-agnostic

and domain-specific parameters in each training round.

3.3. Connecting Cluster­specific Models

We now have a model that can adapt to the specificity

of each domain. Here we propose to refine the domain-

specific parameters by making them interact. Specifically,

we model the interaction of the domain-specific parameters

of each layer ℓ via a graph Gℓ = (Vℓ, Eℓ), where the nodes

i ∈ Vℓ are the set of all domain-specific parameters at layer

ℓ, and eij ∈ Eℓ are the edges connecting two domain nodes i

and j which may interact together. This addresses the draw-

back of our formulation in Sec. 3.2, i.e. if a domain has few

assigned samples, its parameters will be rarely updated and

thus not robust enough to capture the specificity of the do-

main and generalize to unseen samples of the same domain.

We propose to use a GCN [18] to model the interaction of

domain-specific parameters. Let us collect in the matrix V
ℓ

Server

Client
ClassificationDomain clustering

Domain-specific parameters
Knowledge
distillation

Teacher

Student

...

Figure 2. FedCG framework (best seen in colors). The server sends the model fθ to the clients selected for the federated round, together

with the teacher gφ and student gϕ domain classifiers. On the client-side, the domain classifier clusters the local data x, producing as

output the domain of belonging d̂ of each image. At training time, the hard label d̂ is predicted by gφ and is used as input to train gϕ
through a process based on knowledge distillation. At test time, d̂ is given by gϕ and is a weighted combination of the discovered domains.

In FedCG, the network fθ is made of a domain-agnostic part (in gray) and a residual domain-specific one (in blue). The domain-specific

parameters are produced by the GCN, receiving as input A,Wℓ,Vℓ and d̂. After training both fθ and gϕ on its data, the client k sends back

to the server the updated weights θk and ϕk. On the server-side, the updates are aggregated by the means of the FedAvg algorithm.

the value of each node, i.e. all domain-specific parameters at

layer ℓ: Vℓ = [θ1s|l, . . . , θ
D
s|l]

⊺ ∈ IRD×q , with q = |θds|l| the

number of parameters per domain. We compute the graph-

version V̂
ℓ of the domain-specific parameters Vℓ as:

V̂
ℓ = σ(A V

ℓ
W

ℓ) , (5)

where σ is an activation function (e.g. ReLU), A ∈ IRD×D

is the adjacency matrix defined across the domains, and

W
ℓ ∈ IRq×q′ is a weight projection matrix, projecting

the domain-specific parameters into dimension q′. Here,

for simplicity, we set q = q′. In FedCG, we replace the

domain-specific parameters of Eq. (4) with the ones com-

puted in Eq. (5). Similarly to all other parameters of the

network, we update W in each training round through Fe-

dAvg. In case q is large, we implement W as a multi-layer

bottleneck (see implementation details).

The values in the adjacency matrix encode, for each

edge, how close two domains are; since we have no pri-

ors on the structure of the graph, we model Gℓ as a fully-

connected weighted graph. Without direct access to the data

server-side, we compute the distance among two domains

directly in the (domain-specific) parameter’s space. In prac-

tice, we define the similarity hi,j among domains i, j as:

hi,j =
1

‖θis − θ
j
s‖2

, (6)

and the corresponding value Aij in the adjacency matrix as:

Aij =

{

β if i = j
(1−β)·hij∑
D
d=1

✶i 6=dhid
otherwise

where β is a hyperparameter weighing the impact of the

self-connection, which we set to 0.5, and ✶i 6=m is an indi-

cator function being 1 when i 6= m and 0 otherwise.

In our formulation, each client receives not only the set

of parameters θ, but also the adjacency matrix. With this

definition, we are forcing the gradient of a domain-specific

component to flow to all others through the GCN. Conse-

quently, an update on a domain-specific component will in-

fluence all domain-specific parameters, even the ones of the

domains not present in the current training round. More-

over, given two domains i, j with i 6= j, the influence of

j on i in each layer is directly proportional to the adja-

cency matrix value Aij . This means that the more two sets

of domain-specific parameters are close, the higher is their

mutual influence. Finally, while the GCN is a way to en-

sure information flow across domains during training, at in-

ference we can just precompute V̂
ℓ for each layer, to save

memory usage.

4. Experiments

4.1. Datasets and implementation details

We evaluate the proposed model on image classifica-

tion tasks on the LEAF benchmark [2], testing both on

the CelebA [25] and Federated Extended MNIST (FEM-

NIST) [20, 6] datasets. Table 1 details each setting.

CelebA is a widely used dataset containing pictures of

faces of several celebrities. We follow the same experimen-

tal protocol of [2], partitioning the dataset by celebrities

and ignoring the ones with less than 5 images. The task is

binary classification, recognizing whether the depicted per-

son is smiling or not. Following [2], we use 10% of the total

clients for training and a separate split of 20% of them for

test. We train FedAvg and our model on 100 rounds with

10 clients each, training locally for a single epoch with a

batch size of 5 and a learning rate of 10−3. To perform a

fair comparison we used the same architecture of [2], re-

placing convolutional and batch-normalization layers with

their FedCG counterpart, based on a 1-layer GCN.

FEMNIST contains images depicting different characters

drawn by different writers. The task is a 62-way classifica-

tion problem, where the classes correspond to the uppercase

and lowercase letters of the alphabet and numbers. Fol-

lowing the setting proposed by [2], each client corresponds

to a different writer, using 60% of them for training, 20%

for validation and 20% for test. We run both FedAvg and

FedCG for 1000 rounds of 5 clients each, using a batch size

of 10, a learning rate of 10−3 and one local epoch. We use

the same and architecture of [2], replacing the last convolu-

tional layer with our GCN-based version. In this case, we

use a 2-layers GCN, modeling the projection matrix W as

a bottleneck dividing the features by a factor of 16.

Implementation details In all datasets, the domain clas-

sifiers are CNNs made of two convolutional layers of 32
and 64 features and kernel size 3× 3, followed by an aver-

age pooling and a linear layer whose output dimension is the

number of domains. We train the domain classifiers through

an SGD optimizer without weight decay and a learning rate

of 10−4. We implement FedCG on PyTorch [35], running

the experiments on NVIDIA GeForce 1070 GTX GPUs. We

chose PytTorch due to its higher flexibility for prototyping

and experimenting the components of our model. To en-

sure a fair comparison, we implemented the FedAvg base-

line using the same framework, architectures, hyperparam-

eters and training protocols of [3].Table 2 compares our re-

sults with the performance of the Tensorflow [1] implemen-

tation from the LEAF repository [3]: our FedAvg baseline

outperforms the original one by almost 3% in accuracy on

FEMNIST, while performing almost 2.5% less on CelebA.

Nevertheless, our main interest is to evaluate the relative im-

provement of the proposed model with respect to a baseline

that does not exploit domain information, using the same

aggregation strategy of FedAvg for federated learning. For

these reasons, in the following we will take as reference

the FedAvg results of the PyTorch framework, to ensure a

comparison with the baseline under the exact conditions.

We evaluate our results in terms of global accuracy on the

test set, i.e. on the union of the images of all test devices.

All experiments on the same dataset were run with the same

configuration to perform a fair comparison between the con-

sidered approaches.

Dataset Clients Total samples Samples per client Classes

Mean Stdev

CelebA 9,343 200,288 21.44 7.63 2

FEMNIST 3,550 805,263 226.83 88.94 62

Table 1. Datasets Statistics

Dataset TensorFlow PyTorch

CelebA 89.46 86.88

FEMNIST 74.72 77.81

Table 2. Accuracy of FedAvg in TensorFlow [2] and our version

implemented in PyTorch.

4.2. Ablation study

In this section, we focus our analysis on testing the per-

formance of the proposed model on the CelebA dataset, ana-

lyzing the various components of our approach. All referred

studies and results can be found in Table 3 and 4.

4.2.1 How to use domain information

To create a sanity-check for our model, we first define the

domains manually, exploiting the a priori knowledge given

from the images meta-data, i.e. the 40 attributes of the

dataset (Table 3). This allows us to isolate the choice of how

to include domain-specific information within the model,

without any influence from the clustering procedure. From

the 40 attributes, we select the combination of n attributes

leading to the most balanced subdivisions of the dataset and

having a low correlation with the target feature. Since each

attribute can only assume the values {0, 1}, the number of

possible domains is given by all the 2n combinations of the

n features. We choose n = 5, having N = 32 domains. The

selected features are attractive, heavy makeup, high cheek-

bones, mouth slightly open and wavy hair.

Domain-specific models We start by replacing the stan-

dard single server model with N separate domain-specific

models, trained and tested only on the images of their spe-

cific domains. As shown in Table 3, the performance drops

significantly (33.61% vs 86.88% of FedAvg), since the in-

sufficient amount of data seen by each model leads to poor

generalization. This shows that learning a single full model

per each domain is not a viable strategy in this scenario.

Modeling the relations across domains In order to ac-

count for the relations existing among the different do-

mains, we introduce the graph, modeled as a 1-layer GCN.

To study the impact of introducing a GCN, we also test

a simpler version of the model without the weight trans-

formation matrix W . We analyze different choices of A,

considering the cases where i) they are uniformly weighted

(U) and ii) the domains are weighted according to a similar-

ity criterion (H), specifically the normalized inverse of the

Hamming distance [34] between the numerical representa-

tion of the domains (i.e. their binary metadata). As Table 3

shows, using a GCN consistently improves the final perfor-

mance over the domain-specific models. The uniform adja-

cency matrix performs slightly better than the weighted one

in this case, with both their performance improving when

the projection matrix W is introduced. These results con-

firm the importance of making the domain-specific nodes

interact. However, the results are not satisfactory, being ei-

ther below or just 1% above (GCN-H with W) FedAvg.

This means that domain information is still dully exploited

within the model.

Residual domain-specific layers. Finally, we analyze the

usage of domain-specific parameters to produce residual ac-

tivations (i.e. Eq. (4)), as in FedCG, comparing it with the

GCN when not using any domain-agnostic component. As

Table 3 shows, while the model with uniform adjacency

matrix (U) sees a decrease in performance from GCN to

FedCG (i.e. 87.92% vs 86.96%), the model with weighted

adjacency matrix (H) sees a large boost, going from the

84.25% accuracy of GCN to the 88.65% of FedCG. We

can draw two conclusions. First, using residual layers to

refine the domain agnostic activations (FedCG) performs

better than using only domain-specific components (GCN).

Second, when domain-specific components are integrated

as residuals, they are much more effective when connected

in a weighted (H) rather than a uniform (U) fashion. This

is proved by the results of FedCG-H, surpassing FedCG-

U by 1.7% in accuracy. Finally, we test the importance of

the ReLU non-linearity applied to the output of the residual

GCN. The non-linearity improves FedCG, both when the

domains are connected uniformly (+1%) and in a weighted

fashion (+0.9%). The final FedCG model with 1-layer GCN

filtered with a ReLU and a weighted adjacency matrix out-

performs the baseline FedAvg by 2.6% accuracy, showing

the effectiveness of our choices.

4.2.2 How to identify the domains

In the previous section, we analyzed how to integrate

domain-specific components given oracle domain informa-

tion. In this section, we drop the assumption of having

such information and we study the effectiveness of the

domains discovered through our clustering procedure on

FedCG held out through the teacher-student domain clas-

sifier (cf. Sec. 3.1). We report the results of our analysis in

Table 4.

Domains extracted through clustering We start by

comparing our domain classifier with the K-means algo-

rithm [26] applied to the parameters of the models trained

separately on each client. FedCG performs clustering lo-

cally instead, accessing only a subset of the clients at each

round. As Table 4 shows, the performance of our clustering

procedure is either on par (D = 2) or superior (D = 3,4)

to K-means clustering. In particular, as the number of clus-

ters grows, the performance of K-means drops (i.e. from

88.36% with D = 2 to 87.21 with D = 4), while our

method - with the same residual GCN - shows performance

improvements (i.e. from 88.03% with D = 2 to 88.74 with

D = 4). This indicates the effectiveness of our local clus-

tering procedure that, differently from K-means, captures

the presence of different domains within each client, with-

out requiring one specific model per client.

Then, we analyze the effect of different initialization

strategies for the adjacency matrix of the GCN, consider-

ing two choices, i.e. domains either disconnected (identity

matrix, eye) or randomly connected (random adjacency ma-

trix, rand). From Table 4, it is easy to see our method per-

formances are not dependent on the particular initialization

strategy, achieving over 88.5% for all choices with D = 4.

With random initialization though, the performance does

not grow with the number of domains, which may indicate

the importance of carefully initializing A as the number of

domains grows. For this reason, in the following we always

consider a uniform initialization strategy. Note that such

a strategy allows the model to refine the domain-specific

components separately before merging them based on their

distance (see Eq. (3.3)).

As a third analysis, we focus on the impact of perform-

ing a soft combination of domains at test time (as described

in Section 3.2) rather than using a hard-assignment derived

from the predictions of the domain classifier. In both cases,

performances are close for all D, showing the domain clas-

sifier provides reliable domain predictions at test time. In

the following, we always consider the soft-assignment due

to its higher flexibility.

Finally, we test the application of the domain-specific

modules only on the last layer of the network (rather than

on all layers) to see whether a good performance can be

achieved while reducing the number of parameters required

by FedCG. As the experiments show, using domain-specific

parameters on the last layer provides the best results over-

all (89.18% with D = 4), improving the best combination

by 0.44%. Since this choice allows FedCG to use less pa-

rameters while still achieving good results, we limit the use

of domain-specific parameters to the last layers in the next

section.

4.3. Comparison with the state of the art

Here we compare our FedCG with state-of-the-art results

on both CelebA and FEMNIST. Unfortunately, since dif-

ferent methods employ different settings and client splits,

it is difficult to provide an extensive comparison on these

datasets. For this reason, on CelebA we compare our model

directly with the FedAvg baseline, while for FEMNIST we

compare it with FedAvg, FedProx [23] and SCAFFOLD

[16]. FedProx [23] adds a proximal term to the standard

FedAvg algorithm for improving the model stability when

applied over heterogeneous systems and data. SCAFFOLD

[16] uses variance reduction for minimizing the impact of

the drift in the updates of each client. We report the results

of FedProx and SCAFFOLD shown in their original papers,

Model A W ReLU Acc(%)

Domain-specific models - - - 33.61

GCN

U ✗ ✗ 84.39

H ✗ ✗ 82.10

U ✓ ✗ 87.92

H ✓ ✗ 84.25

FedCG

U ✓ ✗ 86.96

H ✓ ✗ 88.65

U ✓ ✓ 87.97

H ✓ ✓ 89.57

Table 3. Ablation studies on CelebA dataset with N = 32 do-

mains extracted from images meta-data. A is the adjacency ma-

trix that weights the domains contributions: the symbols (eye,U,H)

respectively stand for identity, uniform and weighted (with inverse

Hamming distance) matrices. W is the weight projection matrix

and ReLU the chosen non-linear activation.

FedCG layers A init Clusters D Soft domains Acc(%)

all

eye K-means 2 ✗ 88.36

eye K-means 3 ✗ 87.97

eye K-means 4 ✗ 87.21

eye Clf 2 ✗ 88.03

eye Clf 3 ✗ 88.59

eye Clf 4 ✗ 88.74

rand Clf 2 ✗ 88.73

rand Clf 3 ✗ 88.24

rand Clf 4 ✗ 88.55

eye Clf 2 ✓ 87.88

eye Clf 3 ✓ 88.74

eye Clf 4 ✓ 88.67

last

eye Clf 2 ✓ 88.31

eye Clf 3 ✓ 88.13

eye Clf 4 ✓ 89.18

eye Clf 32 ✓ 88.40

Table 4. Ablation studies on CelebA dataset with domains

given by a priori knowledge or online clustering procedures.

In the A init column, “eye” stands for identity matrix and “rand”

for random. The third column specifies the clustering, i.e. clusters

generated with K-means or the teacher-student classifier (“Clf”).

while for FedAvg we use our baseline. For our method,

we use the domain-specific parameters applied on the last

layer, D = 4, soft domain assignments at test time and the

adjacency matrix initialized as identity.

The experimental comparison is reported in Table 5.

FedCG largely outperforms FedAvg in both scenarios. It

achieves 89.18% accuracy compared to 86.88% of FedAvg

on CelebA, and 83.41% accuracy compared to 77.81% of

FedAvg on FEMNIST. This latter improvement (+5.6%) is

remarkable given the higher complexity of the classifica-

tion task in FEMNIST. Comparing FedCG with FedProx

and SCAFFOLD on FEMNIST, we can see that FedCG out-

performs FedProx by a large margin (+8.41%) while be-

ing slightly inferior to SCAFFOLD (i.e.-0.79%). However,

both FedProx and SCAFFOLD present results under differ-

ent federated protocols, e.g. FedProx runs the algorithm for

Dataset Model Accuracy (%)

CelebA
FedAvg 86.88

FedCG 89.18

FEMNIST

FedAvg 77.81

FedCG 83.41

FedProx 75.00

SCAFFOLD 84.20

Table 5. Comparison with the state of the art on CelebA and

FEMNIST. We separate the methods according to their setting.

200 rounds of 10 clients while SCAFFOLD performs 1000

rounds with 20 clients each. Despite that, our comparisons

demonstrate that FedCG is far superior to the standard Fe-

dAvg baselines, due to its better ability to address the statis-

tical heterogeneity across clients, while showing either su-

perior (w.r.t. FedProx) or competitive (w.r.t. SCAFFOLD)

results with other state-of-the-art algorithms trained on dif-

ferent settings.

As a final analysis, we verify the role of the domain-

specific components by checking the final values of the

λ scalar of Eq. (4), which weighs the importance of the

domain-specific residual. Interestingly, in CelebA, where

the concept of heterogeneity is less marked, the λ value

in the last convolutional layer is 0.3. The final value for

FEMNIST, instead, where the heterogeneity across clients

is clearer due to the different writing styles, is 2.1. That

shows FedCG tailors the use of the domain-specific resid-

ual to the specific characteristics of the target dataset and the

consequent heterogeneity across the discovered domains.

5. Conclusions

In this work, we introduced FedCG, the first cluster-

driven approach addressing statistical heterogeneity in fed-

erated learning with Graph Convolutional Neural Networks.

FedCG uses an iterative clustering algorithm based on

teacher and student domain classifiers. This clustering pro-

cedure serves to discover different input distributions, i.e.

domains, and to instantiate domain-specific parameters ac-

cordingly. The domain-specific parameters are connected

through a GCN that enables them to interact and share

knowledge during training. These parameters influence the

activation of the main, domain-agnostic, network thanks to

weighted residual activations. Thanks to the domain clas-

sifiers and connections of the GCN, new input distributions

and unseen users can be addressed at test time via their do-

main soft-assignment scores. Experimental results show

that FedCG outperforms the FedAvg on multiple bench-

marks, demonstrating the efficacy of each component.

Acknowledgments This work has been partially funded by the

ERC 853489 - DEXIM, the ERC 802554 - SPECGEO, the ERC

637076 RoboExNovo, the DFG – EXC number 2064/1 – Project

number 390727645, and the MIUR under grant “Dipartimenti di

eccellenza 2018-2022”.

References

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A

system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation

({OSDI} 16), pages 265–283, 2016.

[2] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečnỳ,

H Brendan McMahan, Virginia Smith, and Ameet Talwalkar.

Leaf: A benchmark for federated settings. arXiv preprint

arXiv:1812.01097, 2018.

[3] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečnỳ,

H Brendan McMahan, Virginia Smith, and Ameet Tal-

walkar. Leaf: A benchmark for federated settings.

https://github.com/TalwalkarLab/leaf, 2018.

[4] Rich Caruana. Multitask learning. Machine learning,

28(1):41–75, 1997.

[5] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and

Xiuqiang He. Federated meta-learning with fast con-

vergence and efficient communication. arXiv preprint

arXiv:1802.07876, 2018.

[6] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre

Van Schaik. Emnist: Extending mnist to handwritten letters.

In 2017 International Joint Conference on Neural Networks

(IJCNN), pages 2921–2926. IEEE, 2017.

[7] Luca Corinzia and Joachim M Buhmann. Variational feder-

ated multi-task learning. arXiv preprint arXiv:1906.06268,

2019.

[8] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Per-

sonalized federated learning with theoretical guarantees: A

model-agnostic meta-learning approach. In H. Larochelle,

M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,

Advances in Neural Information Processing Systems, vol-

ume 33, pages 3557–3568. Curran Associates, Inc., 2020.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

arXiv preprint arXiv:1703.03400, 2017.

[10] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling

the knowledge in a neural network. In NIPS Deep Learning

and Representation Learning Workshop, 2015.

[11] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Mea-

suring the effects of non-identical data distribution for feder-

ated visual classification, 2019.

[12] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Fed-

erated visual classification with real-world data distribution.

In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-

Michael Frahm, editors, Computer Vision – ECCV 2020,

pages 76–92, Cham, 2020. Springer International Publish-

ing.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In International conference on machine learn-

ing, pages 448–456. PMLR, 2015.

[14] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kan-

nan. Improving federated learning personalization via model

agnostic meta learning. arXiv preprint arXiv:1909.12488,

2019.

[15] Peter Kairouz, H Brendan McMahan, Brendan Avent,

Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith

Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-

mings, et al. Advances and open problems in federated learn-

ing. arXiv preprint arXiv:1912.04977, 2019.

[16] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,

Sashank Reddi, Sebastian Stich, and Ananda Theertha

Suresh. Scaffold: Stochastic controlled averaging for fed-

erated learning. In International Conference on Machine

Learning, pages 5132–5143. PMLR, 2020.

[17] Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Tal-

walkar. Adaptive gradient-based meta-learning methods. In

H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,

E. Fox, and R. Garnett, editors, Advances in Neural Infor-

mation Processing Systems, volume 32. Curran Associates,

Inc., 2019.

[18] Thomas N Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. In International

Conference on Learning Representations, 2016.

[19] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter

Richtárik, Ananda Theertha Suresh, and Dave Bacon. Fed-

erated learning: Strategies for improving communication ef-

ficiency. arXiv preprint arXiv:1610.05492, 2016.

[20] Yann LeCun and Corinna Cortes. MNIST handwritten digit

database. 2010.

[21] Daliang Li and Junpu Wang. Fedmd: Heterogenous feder-

ated learning via model distillation. In Workshop on Feder-

ated Learning for Data Privacy and Confidentiality, 2019.

[22] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia

Smith. Federated learning: Challenges, methods, and future

directions. IEEE Signal Processing Magazine, 37(3):50–60,

2020.

[23] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-

jabi, Ameet Talwalkar, and Virginia Smith. Federated op-

timization in heterogeneous networks. In I. Dhillon, D. Pa-

pailiopoulos, and V. Sze, editors, Proceedings of Machine

Learning and Systems, volume 2, pages 429–450, 2020.

[24] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and

V. Smithy. Feddane: A federated newton-type method. In

2019 53rd Asilomar Conference on Signals, Systems, and

Computers, pages 1227–1231, 2019.

[25] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In Proceedings of

International Conference on Computer Vision (ICCV), De-

cember 2015.

[26] James MacQueen et al. Some methods for classification

and analysis of multivariate observations. In Proceedings of

the fifth Berkeley symposium on mathematical statistics and

probability, volume 1, pages 281–297. Oakland, CA, USA,

1967.

[27] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-

back: Adapting a single network to multiple tasks by learn-

ing to mask weights. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 67–82, 2018.

[28] Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo,

and Elisa Ricci. Adagraph: Unifying predictive and continu-

ous domain adaptation through graphs. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 6568–6577, 2019.

[29] Massimiliano Mancini, Elisa Ricci, Barbara Caputo, and

Samuel Rota Bulo. Boosting binary masks for multi-domain

learning through affine transformations. Machine Vision and

Applications, 31(6):1–14, 2020.

[30] Brendan McMahan, Eider Moore, Daniel Ramage, Seth

Hampson, and Blaise Aguera y Arcas. Communication-

efficient learning of deep networks from decentralized data.

In Proc. 20th Int. Conf. Artificial Intelligence and Statistics,

pages 1273–1282. PMLR, 2017.

[31] Guangxu Mei, Ziyu Guo, Shijun Liu, and Li Pan. Sgnn: A

graph neural network based federated learning approach by

hiding structure. In 2019 IEEE International Conference on

Big Data (Big Data), pages 2560–2568. IEEE, 2019.

[32] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh.

Agnostic federated learning. In Kamalika Chaudhuri and

Ruslan Salakhutdinov, editors, Proceedings of the 36th In-

ternational Conference on Machine Learning, volume 97 of

Proceedings of Machine Learning Research, pages 4615–

4625. PMLR, 09–15 Jun 2019.

[33] Alex Nichol, Joshua Achiam, and John Schulman. On

first-order meta-learning algorithms. arXiv preprint

arXiv:1803.02999, 2018.

[34] Mohammad Norouzi, David J Fleet, and Russ R Salakhutdi-

nov. Hamming distance metric learning. In Advances in neu-

ral information processing systems, pages 1061–1069, 2012.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-

perative style, high-performance deep learning library. In H.

Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.

Fox, and R. Garnett, editors, Advances in Neural Informa-

tion Processing Systems 32, pages 8024–8035. Curran Asso-

ciates, Inc., 2019.

[36] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.

Learning multiple visual domains with residual adapters. In

Proceedings of the 31st International Conference on Neural

Information Processing Systems, pages 506–516, 2017.

[37] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.

Efficient parametrization of multi-domain deep neural net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 8119–8127, 2018.

[38] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Has-

sani, Ali Jadbabaie, and Ramtin Pedarsani. Fedpaq: A

communication-efficient federated learning method with pe-

riodic averaging and quantization. In International Confer-

ence on Artificial Intelligence and Statistics, pages 2021–

2031. PMLR, 2020.

[39] Amir Rosenfeld and John K Tsotsos. Incremental learning

through deep adaptation. IEEE transactions on pattern anal-

ysis and machine intelligence, 42(3):651–663, 2018.

[40] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek.

Clustered federated learning: Model-agnostic distributed

multitask optimization under privacy constraints. IEEE

Transactions on Neural Networks and Learning Systems,

2020.

[41] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and

Ameet S Talwalkar. Federated multi-task learning. In Ad-

vances in Neural Information Processing Systems, pages

4424–4434, 2017.

[42] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep image prior. In CVPR, 2018.

[43] Binghui Wang, Ang Li, Hai Li, and Yiran Chen. Graphfl: A

federated learning framework for semi-supervised node clas-

sification on graphs, 2020.

[44] Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi

Wang, and Jing Jiang. Multi-center federated learning. arXiv

preprint arXiv:2005.01026, 2020.

[45] Asano YM., Rupprecht C., and Vedaldi A. Self-labelling via

simultaneous clustering and representation learning. In In-

ternational Conference on Learning Representations, 2020.

[46] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin

Recht, and Oriol Vinyals. Understanding deep learning re-

quires rethinking generalization. In ICLR, 2017.

[47] Longfei Zheng, Jun Zhou, Chaochao Chen, Bingzhe Wu, Li

Wang, and Benyu Zhang. Asfgnn: Automated separated-

federated graph neural network. Peer-to-Peer Networking

and Applications, pages 1–13, 2021.

