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Abstract

Recent researches on unsupervised domain adaptation

(UDA) have demonstrated that end-to-end ensemble learning

frameworks serve as a compelling option for UDA tasks. Nev-

ertheless, these end-to-end ensemble learning methods often

lack flexibility as any modification to the ensemble requires

retraining of their frameworks. To address this problem, we

propose a flexible ensemble-distillation framework for per-

forming semantic segmentation based UDA, allowing any

arbitrary composition of the members in the ensemble while

still maintaining its superior performance. To achieve such

flexibility, our framework is designed to be robust against

the output inconsistency and the performance variation of

the members within the ensemble. To examine the effec-

tiveness and the robustness of our method, we perform an

extensive set of experiments on both GTA5→Cityscapes and

SYNTHIA→Cityscapes benchmarks to quantitatively inspect

the improvements achievable by our method. We further

provide detailed analyses to validate that our design choices

are practical and beneficial. The experimental evidence vali-

dates that the proposed method indeed offer superior perfor-

mance, robustness and flexibility in semantic segmentation

based UDA tasks against contemporary baseline methods.

1 Introduction

In the past few years, semantic segmentation has been

attracting the attention of computer vision researchers. Many

supervised semantic segmentation methods have been pro-

posed and achieved remarkable performance [1–13]. Typi-

cally, those supervised semantic segmentation methods re-

quire abundant labeled training data, which are usually ex-

pensive to annotate and are commonly unavailable in most

real-world scenarios. To resolve this problem, semantic seg-

mentation based unsupervised domain adaptation (UDA)

methods [14–36] have been introduced to bridge different

domains. These semantic segmentation based UDA mod-

els learn to generalize to a target domain by training with

the annotated data from a source domain and the unlabeled
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Figure 1: An illustrative example of (1) the inconsistency issue and

(2) the performance variation issue mentioned in Section 1. For

(1), the models t1, ..., tn are trained with ADA methods, which

produce relatively low-certainty outputs. In contrast, the model

tn+1 is trained with self-training method and outputs high-certainty

predictions. After averaging, the ensemble predicts class A as its

final prediction instead of the majority consensus, i.e., class C.

For (2), the models t1, ..., tn are assumed to be high-performing

members, while tn+1 is an under-performing one. After averaging,

the high-certainty predictions from tn+1 could dominate the output

of the ensemble, and cause the overall performance to degrade.

data from a target domain. Among these works, the authors

in [14–25, 31, 37–39] resorted to adversarial domain adapta-

tion (ADA) methods, through which the domain discrepancy

is minimized by using their adversarial training schemes.

Another branch of works has opted for self-training frame-

works [26–30], which aim to improve the stability of their

models during deployment by minimizing the entropy of

the models’ predictions in a target domain. These ADA and

self-training methods have demonstrated how a single model

is able to learn to generalize to an annotation-less target do-

main. However, they only learn from a single distribution,

leaving space for further improvements. Recently, in light of
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the potential benefits of combining multiple UDA models, a

number of works [40, 41] have attempted to borrow the con-

cepts from ensemble learning. These works demonstrated

how a group of UDA models can be trained simultaneously

in an end-to-end fashion to learn different distributions of

semantic information, and meanwhile transferring the knowl-

edge to a compact student model. Despite their successes

in bridging the domain gaps with multiple learners, these

ensemble learning methods often lack flexibility as any mod-

ification to the teacher ensemble requires complete retraining

of the whole framework.

To address such a problem, the concept of ensemble-

distillation [42–50] can be leveraged since its focus is on

designing an effective distillation process instead of a costly

end-to-end ensemble learning framework. Typically, these

ensemble distillation frameworks view the members in an en-

semble as probabilistic models, and transfer the knowledge

using expected certainty outputs. Nonetheless, the robust-

ness of these methods is not guaranteed as they do not care-

fully take into account the followings: (1) the inconsistency

in the scale of the output certainty values among the mem-

bers in an ensemble (abbreviated as the ‘inconsistency is-

sue’ hereafter), and (2) the performance variations across the

members in an ensemble (abbreviated as the ‘performance

variation issue’ hereafter). An example of these two issues

is illustrated in Fig. 1. For the former, since each teacher

model in the ensemble can be trained independently using

different methods (e.g., ADA, self-training, data augmenta-

tion, or compound usage of them), the scale of the output

certainty values may not be consistent across the ensemble.

This may result in a situation that few members’ decisions

with high certainty values dominate the entire ensemble’s

output. As a result, the outputs from the members in an

ensemble should be treated in an equal manner, as the in-

consistency in their certainty values may come from their

different training objectives instead of the real data distri-

bution in the target domain. For the latter, since the perfor-

mance (either per-class or average accuracy) of each teacher

model in the ensemble may vary substantially, few under-

performing members in the ensemble may cause the quality

of the combined prediction to degrade significantly. This

problem is especially severe under the context of UDA, since

the ground truth labels in the target domain are unavailable,

and the performance of the ensemble in the target domain

is actually unknown. The above observations suggest that

an effective mechanism is necessary to deal with these two

issues and prevent them from influencing the quality of the

combined predictions.

Being aware of these problems, we introduce a novel

ensemble-distillation framework to avoid the aforementioned

pitfalls. First, to tackle the certainty inconsistency issue,

we introduce an output unification method in the frame-

work to reduce the impact of the inconsistent scales of

the certainty outputs. Next, we embrace a new category

of fusion function in our framework, named channel-wise

fusion, to resolve the performance variation issue. More-

over, we design a method to determine the fusion pol-

icy of the proposed channel-wise fusion function to fur-

ther enhance its effectiveness. To validate our designs,

we evaluate the proposed framework with two commonly-

adopted metrics, GTA5 [51]→Cityscapes [52] and SYN-

THIA [53]→Cityscapes, to demonstrate the effectiveness

and robustness of our framework against a number of base-

lines. The contributions are summarized as follows:

• We introduce a flexible UDA ensemble-distillation

framework which is robust against the inconsistency in

the scale of the output certainty values and the perfor-

mance variations among the members in an ensemble.

• We propose a new category of fusion function, called

channel-wise fusion, along with a fusion policy selec-

tion strategy as well as a conflict resolving mechanism

to enhance its effectiveness.

• We evaluate our framework under various configura-

tions, and demonstrate that it is able to outperform the

baselines in terms of its robustness and effectiveness.

2 Related Works

Unsupervised Domain Adaptation: A number of meth-

ods have been proposed to bridge the discrepancy between

different domains. One branch of these works adopted

ADA frameworks to learn representations of their target

domains [14–25, 31, 37–39]. These approaches typically

employ a generator and a discriminator trained against each

other to minimize the domain gap, and have shown signifi-

cant improvements over those trained directly in the source

domains. Another line of works has turned their attention to

self-training and data augmentation measures to tackle UDA

problems. For those works utilizing self-training, the concen-

tration was mainly on preventing overfitting by using regu-

larization [28, 29] or class-balancing [27] when minimizing

the uncertainty in their target domains. The authors in [30]

extended the concept of self-training and proposed a data

augmentation technique. Their proposed method fine-tunes

a model with mixed labels generated by combining ground

truth annotations from a source domain and pseudo labels

from a target domain. Recent researchers employed ensem-

ble learning frameworks to resolve UDA problems [40, 41].

The authors in [41] proposed an end-to-end ensemble frame-

work to solve UDA classification problems. The authors

in [40] extended the idea of ensemble learning and proposed

a joint learning ensemble framework to solve person re-

identification UDA problems. These works showed how the

ensemble learning frameworks can be integrated into UDA.

Pseudo Labeling: Pseudo labeling is a self-training method

originally proposed to improve the performance of clas-
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sification networks [54], and is usually accomplished by

minimizing the entropy of a model’s predictions on unseen

data. Pseudo labeling enables a better decision boundary

to be achieved as the certainty of a model’s prediction in-

creases [54]. This concept has been further extended to the

field of semantic segmentation, and has gained success by

incorporating the information of unlabeled data. Since self-

training via pseudo labeling and UDA share many similar

characteristics in terms of their problem formulations, it has

recently been used to solve UDA problems [28–30].

Ensemble-Distillation Method: Ensemble-distillation is an

extension of knowledge distillation. The authors in [43, 46]

studied how the knowledge of a teacher model ensemble

can be transferred to a student by training it with the soft

predictions of the ensemble. They adopted averaging opera-

tion for combining the predictions and used KL-divergence

as the loss function to transfer the knowledge. The authors

in [50] aimed at resolving the diversity collapse issue in the

ensemble-distillation problem. They argued that the averag-

ing operation harms the diversity of the models in an ensem-

ble and proposed to use a prior network [55] to estimate the

distributions of their output uncertainties. These works have

demonstrated their effectiveness under supervised training

settings. However, the existing ensemble-distillation meth-

ods are not designed to handle unsupervised tasks, and are

susceptible to the issues introduced in Section 1.

3 Preliminary

Problem Definition: For semantic segmentation based UDA

problems, a model has access to the image-label pairs,

xsrc, ysrc, from a source domain dataset Dsrc, but only the

images xtgt from a target domain dataset Dtgt. The train-

ing objective is to train the model such that its predictions

can best estimate the ground truth labels ytgt in the target

domain. In other words, the mean intersection-over-union

(mIoU) between the predictions of the model and ytgt should

be maximized. In the problem formulation concerned by

this paper, a pretrained model ensemble T is given, where

each member in T is separately trained using any arbitrary

semantic segmentation based UDA method. The goal is

to develop an ensemble-distillation strategy that can effec-

tively integrate the knowledge from T and distill it into a

single student model, in a way that the mIoU of the student’s

predictions for the instances in Dtgt is maximized.

Previous Ensemble-Distillation Method: In this section,

we explain how the concepts of the previous ensemble-

distillation works [42–49] can be borrowed to perform se-

mantic segmentation based UDA ensemble-distillation tasks.

Typically, these works view T as a set of probabilistic mod-

els, and complete the ensemble-distillation process through

minimizing the negative log-likelihood loss LKL between

the expected outputs from the ensemble and the student
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Figure 2: A comparison between (a) the proposed ensemble-

distillation framework and (b) the baseline framework.

model, as depicted in Fig. 2 (b). The distillation process of

these methods under the settings of semantic segmentation

based UDA can be formulated as:

LKL = −
∑

p∈I

∑

c∈C

s̃(p,c) log(r(p,c)), (1)

where I is a set of pixels in an image, C is a given set of

semantic classes. r(p,c) ∈ R
|I|×|C| is the student’s certainty

output, and s̃(p,c) ∈ R
|I|×|C| represents the expected proba-

bilistic prediction for class c ∈ C at pixel p ∈ I . A common

way to capture s̃ is through averaging, expressed as follows:

s̃(p,c) =
1

|T |

∑

t∈T

ŝ(p,c,t), (2)

where ŝ(p,c,t) ∈ R
|I|×|C|×|T | is the probabilistic prediction

from t ∈ T for class c ∈ C at pixel p ∈ I on target instances.

As a result, the knowledge of the teacher ensemble can be

transferred through minimizing LKL in a target domain.

Pitfalls: As discussed in Section 1, directly adopting pre-

vious methods to solve semantic segmentation based UDA

problems is problematic because of the inconsistency issue

and the performance variation issue. For the former, the scale

of ŝ may vary across the models in T under our problem

formulation. This suggests that a direct operation, such as

the averaging operation in Eq. (2), is inappropriate as a few

ŝ with high certainty values may dominate the ensemble’s

output decision. For the performance variation issue, the per-

class or the average performance of each member in T can

vary substantially under our problem formulation. Since the

fusion function formulated in Eq. (2) fuses the predictions

of all teacher models, the under-performing members in T
can influence the quality of the fused results. Therefore, the

adoption of such a fusion function is inappropriate as it may

be sensitive to the performance variations within T .

4 Methodology

To address the aforementioned problems, we introduce

a new ensemble-distillation framework, and illustrate it in

Fig. 2 (a). The main difference between the proposed method

and the previous ones lies in two aspects: Output Unifi-

cation and Fusion Function. In Sections 4.1 and 4.2, we
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Figure 3: A illustration of the pixel-wise and channel-wise fusions.

walk through the designs of the output unification operation

as well as the fusion function, and discuss how they may

contribute to resolving the aforementioned issues. Finally,

in Section 4.3, we formulate and summarize the proposed

ensemble-distillation framework.

4.1 Output Unification

To resolve the inconsistency issue, we argue that the soft

predictions ŝ in Eq. (2) should be unified first in the target

domain, as illustrated in Fig. 2. This additional unification

operation ensures that the raw output certainty values from

the models in T do not directly influence the subsequent fu-

sion results. To accomplish this, we unify the soft predictions

by converting them to pseudo labels, so as to make them all

bear the same scale, i.e., representing the final decisions of

the models in T . The unification operation is formulated as:

ŷ(p,c,t) =







1, if c = argmax
c∈C

{ŝ(p,c,t)}

0, otherwise
, (3)

where ŷ(p,c,t) is the unified output prediction from t ∈ T
for class c ∈ C at pixel p ∈ I in the target domain. This

operation ensures that the subsequent fusion function can op-

erate on items with a consistent scale, and thus eliminates the

impact of the inconsistency in the original certainty outputs.

4.2 Fusion Function

We next move on to focus on investigating a fusion func-

tion that can take advantage of the unified predictions to

achieve robustness against the performance variations issue.

We compare two categories of fusion functions: pixel-wise

fusion and channel-wise fusion. The former is a direct con-

version from Eq. (2) and is used as our baseline method.

The latter is the proposed method and is adopted to address

the performance variation issue. Both pixel-wise fusion and

channel-wise fusion are mapping functions f : I → C0 that

assign a class label c ∈ C0 for the pixel p ∈ I in the fusion

output based on ŷ(p,c,t), where C0 := C ∪ {c0} is a set that

includes all c ∈ C as well as the unlabeled symbol c0.

4.2.1 Pixel-Wise Fusion

Pixel-wise fusion (fPixel) adopts a statistical view on

T , and is designed to capture the average behavior of the

ensemble. As depicted in Fig. 3, pixel-wise fusion treats

each pixel in a semantic segmentation map as the basic unit

of the fusion operation. Specifically, the fused result of each

Figure 4: An illustrative example of the three scenarios in Eq. (5).
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Figure 5: An illustrative example of π used in fChannel.

pixel is determined by taking majority voting among the

predictions from T , and is implemented as the following:

fPixel(p) = argmax
c∈C

∑

t∈T

ŷ(p,c,t), (4)

where ŷ is the unified output generated according to Eq. (3).

4.2.2 Channel-Wise Fusion

Based on a different perspective, channel-wise fusion

(fChannel) treats each class channel as the basis for fusion,

as depicted in Fig. 3. Instead of fusing the outputs of all t ∈
T , channel-wise fusion relies on a fusion policy π : C → T ,

which is a mapping function for recombining the unified

outputs from different teacher models. More specifically,

for each class c ∈ C, the fusion policy π selects that class

channel from the unified output ŷ(p,c,t) of a teacher model

t ∈ T , as illustrated in the example shown in Fig. 5. Given

such a π, the channel-wise fusion function is formulated as:

fChannel(p) =











(i) ε, if p ∈ Aπ
o

(ii) c, if p ∈ Aπ
c \Aπ

o ,

(iii) c0, otherwise

(5)

where (i) is the condition that p is labeled by multiple teach-

ers, (ii) is the condition that p labeled as a certain class by a

single teacher, and (iii) is the condition that p is unlabeled,

as illustrated in Fig. 4. In Eq. (5), ε denotes a class label

to be assigned in scenario (i), c is a class in C in scenario

(ii), and c0 denotes the unlabeled symbol in scenario (iii).

Aπ
c := {p | p ∈ I, π(c) = t, ŷ(p,c,t) = 1} is a set of pixels

comprising ŷ(p,c,t) for a given class c generated by a teacher

t selected according to the given fusion policy π. Since dif-

ferent Aπ
c may be produced by different t ∈ T for different

c ∈ C, the pixels they cover are not necessarily mutually

exclusive. Therefore, Aπ
o is defined to represent the set of

pixels labeled by multiple teachers, expressed as follows:

Aπ
o =

⋃

c1 6=c2,
c1,c2∈C

(Aπ
c1

∩Aπ
c2
). (6)
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Figure 6: An illustration of how the quality of a teacher model’s

pseudo labels can affect the output certainty values of the student

model. If the student model is trained with high-quality pseudo

labels (i.e., pseudo labels with high IoU’s w.r.t. ytgt), it can learn a

mapping from input features to the segmentation mask effectively,

and generates high-certainty predictions. In contrast, if the student

model is trained with low-quality pseudo labels (i.e., pseudo la-

bels with low IoU’s w.r.t ytgt) that are mismatched with the input

features, the student’s output certainty values are likely to degrade.

The mechanism that assigns the value of ε for all p ∈ Aπ
o

is referred as the conflict-resolving mechanism. In this work,

we employ a spatially-aware conflict-resolving mechanism

that assigns a class label for each pixel in Aπ
o using majority

voting on a kernel. The size of the kernel is denoted as κ,

and the set of pixels covered by the kernel centered at p is

referred to as Bκ
p . The mechanism is formulated as follows:

ε = argmax
c∈Cπ

p

|Bκ
p ∩Aπ

c |. (7)

where Cπ
p := {c | c ∈ C; p ∈ Aπ

c } represents a set of class(es)

assigned to a pixel p under Aπ
c .

4.2.3 Theoretical Properties of Channel-Wise Fusion

Let Φ(c,t) and Φ̃(c,π(c)) be the per-class IoU’s w.r.t. ytgt
for the pseudo labels generated by t ∈ T and the fused

pseudo labels generated by fChannel, respectively. Channel-

wise fusion conforms to the following properties:

Proposition 1. Consider an arbitrary fusion policy π. Given

a constant α ∈ (0, 1) and classes c1, ..., cn ∈ C. If Φ(ci,t) ≥
α, ∀i ∈ {1, ..., n}, ∀t ∈ T and |Aπ

o | = 0, we have:

mIoU =
1

|C|

∑

c∈C

Φ̃(c,π(c)) ≥
nα

|C|
. (8)

Proposition 2. Consider an optimal fusion policy π∗(c) =
argmaxt∈T {Φ(c,t)}. Assume |Aπ∗

o | = 0, we have:

mIoU =
1

|C|

∑

c∈C

Φ̃(c,π∗(c)) ≥
1

|C|

∑

c∈C

Φ(c,t), ∀t ∈ T . (9)

For the detailed elaborations and proofs with regard to

these properties, please refer to the supplementary materials.

Proposition 1 states the condition when the mIoU lower

bound can be ensured. On the other hand, Proposition 2 de-

scribes how the effectiveness of channel-wise fusion can be

maximized. In the next section, we discuss how an effective

π can be determined.

G
T
A
5

Cosine Similarity

1

-1

.98 .88.98.99.96.96.98.97 .99 .89.90.98.98.99.97.98 .13 .98.99

.94 .94.99.99.63.87.95.98 .91 .85-.98.97.99.96- - .98.97

R
D

S
W

B
D

W
L

F
E

P
E

L
T

S
N

V
G

T
N

S
Y

P
N

R
R

C
R

T
K

B
S

T
N

M
R

B
E

S
Y
N

Figure 7: The cosine similarity between the per-class IoU of each

t ∈ T and the per-class certainty values of the student evaluated

on the training set of Cityscapes, i.e., the cosine similarity between

Φ(c,t) in Proposition 2 and ρ(c,t) in Eq. (10). The experimental

results reveal that the two variables are positively correlated to each

other, as the cosine similarity values for all c ∈ C are greater than

0 and close to 1. For the detailed settings, please refer to Section 5.

4.2.4 Certainty-Aware Policy Selection Strategy

Since the fusion policy π determines which teacher model

is allowed to involve in fChannel, choosing an appropriate π

is therefore crucial to the robustness of our framework. In or-

der to achieve this objective, a suitable measure is necessary

for evaluating the quality of each teacher’s predictions in the

target domain without using any target domain ground truth.

The experimental clue illustrated and explained in Fig. 6 and

7 offers an empirical manner for the above purpose. From

Fig. 6, it is observed that the quality of the unified outputs

ŷ(p,c,t), i.e., the pseudo labels, from t ∈ T are positively

correlated to the output certainty values of distilled student

model. This correlation suggests that any low-quality ŷ(p,c,t),

which might be generated by some under-performing teacher

models, can confuse the student model and causes its output

certainty values to degrade. This correlation between the

quality of the pseudo labels from t ∈ T and the student’s

output certainty values thus shed light on the development

of the measure for approximating a teacher model’s perfor-

mance without using target domain ground truth. In practice,

an offline fusion policy selection strategy is adopted. Our

framework first performs knowledge distillation on all t ∈ T
and transfers their knowledge to |T | identical student models

using the unified outputs. Then, their output certainty values

are measured to obtain the approximated performance of

their corresponding teacher models. Finally, for each c ∈ C,

a t ∈ T that maximizes the student model’s output certainty

values is selected. The fusion policy π is written as follows:

π(c) = argmax
t∈T

{ρ(c,t)}, (10)

where ρ(c,t) ∈ R
|C|×|T | refers to the average certainty out-

puts of class c ∈ C from the student model trained with the

unified outputs generated by teacher t ∈ T .

4.3 The Proposed Framework

Based on the formulations of output unification and fusion

function, the loss function LCE for performing the ensemble-

distillation in our framework is defined as follows:

LCE = −
∑

p∈I

∑

c∈C

ỹ(p,c) log(r(p,c)), (11)
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where ỹ(p,c) ∈ {0, 1}|I|×|C| is the fused results, defined as:

ỹ(p,c) =

{

1, if c = fChannel(p)

0, otherwise
. (12)

The pseudo code of the ensemble-distillation method in our

framework is summarized in the supplementary materials.

5 Experimental Setup

Baselines and Evaluation Methods: In this work, we eval-

uate and compare the experimental results in terms of the

effectiveness and the robustness. To examine the effective-

ness of the proposed framework, we compare our method

against two ensemble-distillation schemes and a number of

UDA baselines. The ensemble-distillation schemes include

EnD [43] and its recent revision EnD2 [50]. The seman-

tic segmentation based UDA baselines cover APODA [20],

PatchAlign [21], AdvEnt [22], FDA-MBT [36], PIT [35],

CBST [27], MRKLD [28], R-MRNet [29], and DACS [30].

To examine the robustness of our framework, we select the

members for T based on two criteria: (1) each member in T
is trained with different UDA methods; and (2) there exists

large per-class and average performance variations among

the members in T . According to these criteria, we select

DACS [30] (data augmentation), R-MRNet [29] (adversar-

ial training), MRKLD [28] (self-training), and CBST [27]

(self-training) to form T in our experiments. We evalu-

ate the proposed framework and the baselines on two com-

monly adopted benchmarks: GTA5 [51]→Cityscapes [52]

and SYNTHIA [53]→Cityscapes. For the former, the mod-

els have access to 24,966 image-label pairs from the train-

ing set of GTA5, and 2,975 images from the training set

of Cityscapes. We evaluate the student model’s per-class

IoU’s of the 19 semantic classes as well as the its mIoU’s on

the validation set of Cityscapes. For the latter, the models

have access to 9,400 image-label pairs from the training set

of SYNTHIA, and 2,975 images from the training set of

Cityscapes. In a similar fashion, we evaluate the student

model’s per-class IoU’s of 13 and 16 semantic classes as

well as its mIoU’s on the validation set of Cityscapes.

Implementation Details: For the student model, we adopt

Deeplabv3+ [12] architecture with DRN-D-54 [1] as our

backbone, which is trained using SGD with a learning rate

initialized to 2.5× 10−4 and decreased with a factor of 0.9.

The weight decay is set to 5× 10−3, the momentum is set

to 0.9, and the batch size is set to 10 for 100K iterations

with early stopping. The value of κ in fChannel is set to

13. During the process of certainty-aware policy selection

strategy, 500 images from the training set of Cityscapes

are used for measuring ρ(c,t), while the other 2475 images

are used for training the student. The student model is pre-

trained in the source domain, and fine-tuned with (xsrc, ysrc)
and (xtgt, ỹ) during the distillation process.

6 Experimental Results

In this section, we present a number of experiments to

validate the design of our framework. First, we compare our

framework against a number of baselines and demonstrate its

superior performance. Next, according to the experimental

results, we show that the output unification operation can

provide robustness against the inconsistency issue. Then,

we present another experiment, in which under-performing

members are added to T to create performance variations, to

demonstrate the robustness of our framework with fChannel

against the performance variation issue. In addition, we per-

form experiments to validate the effectiveness of the fusion

policy selection strategy and analyze how the value of κ

in the conflict resolving mechanism can impact the perfor-

mance. Finally, we explore the flexibility of our framework

by adding additional teacher models in an iterative manner,

and show that our framework is able to evolve with time.

6.1 Quantitative Results on the Benchmarks

Table 1 first demonstrates the quantitative results

of the proposed framework against a number of base-

lines mentioned in Section 5 on the two benchmarks:

GTA5→Cityscapes and SYNTHIA→Cityscapes. It is ob-

served that the student models trained under our proposed

framework with fChannel (i.e., ‘Ours (Channel)’) is able

to outperform the previous ensemble-distillation baselines,

i.e., EnD [43] and EnD2 [50], by a margin of 6.64%

mIoU and 6.02% mIoU on GTA5→Cityscapes, and 6.41%

mIoU and 4.57% mIoU on SYNTHIA→Cityscapes, re-

spectively. In addition, it is also observed that the student

model trained with the proposed framework with fChannel

(i.e., ‘Ours (Channel)’) is able to outperform that with

the baseline fPixel (i.e., ‘Ours (Pixel)’) by a margin of

4.72% mIoU on GTA5→Cityscapes, and 4.52% mIoU on

SYNTHIA→Cityscapes.

6.2 Robustness of the Proposed Framework

In this section, we validate the robustness of the proposed

framework against the two issues discussed in Section 1.

First, to verify that the proposed output unification opera-

tion can provide robustness against the inconsistency issue,

we leverage the insights from an experiment conducted on

T , with the members of T bearing substantial output cer-

tainty scale variations, as shown in Fig. 8. The results from

Table 1 reveal that the performance of the student models

trained with ‘Ours (Pixel)’, which is basically the ensemble-

distillation baseline EnD [43] equipped with the proposed

output unification method, is able to outperform EnD by a

noticeable margin on both benchmarks. This implies that the

adoption of the output unification method is able to provide

robustness against the inconsistency issue. Nevertheless, as

discussed in Section 4.2, ‘Ours (Pixel)’ may still be vul-

nerable to the performance variations of the members in T .
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GTA5 → Cityscapes

Method Road SideW Build Wall Fence Pole Light Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike mIoU

APODA [20] 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9

PatchAlign [21] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

AdvEnt [22] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

FDA-MBT [36] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

PIT [35] 87.5 43.4 78.8 31.2 30.2 36.3 39.9 42.0 79.2 37.1 79.3 65.4 37.5 83.2 46.0 45.6 25.7 23.5 49.9 50.6

CBST [27] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

MRKLD [28] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

R-MRNet [29] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3

DACS [30] 89.90 39.66 87.87 30.71 39.52 38.52 46.43 52.79 87.98 43.96 88.76 67.20 35.78 84.45 45.73 50.19 0.00 27.25 33.96 52.14

Source Only 57.40 21.43 56.80 8.93 22.14 32.38 34.62 24.90 78.98 15.92 63.71 55.55 13.83 58.11 21.99 29.78 2.36 28.41 33.98 34.80

EnD [43] 92.17 53.12 84.85 24.77 29.76 40.38 40.98 49.35 86.21 42.85 79.74 62.79 35.98 85.72 42.10 44.45 0.26 28.27 51.80 51.34

EnD2 [50] 92.39 53.84 85.34 24.51 30.53 40.28 42.40 50.28 86.19 43.39 80.55 63.26 36.75 86.15 43.95 43.91 0.20 30.17 53.22 51.96

Ours (Pixel) 92.29 57.34 84.09 36.75 29.17 41.37 48.96 42.26 86.91 39.95 82.81 66.29 37.42 86.94 35.21 48.82 1.48 40.78 53.02 53.26

Ours (Channel) 94.43 60.90 88.07 39.46 41.80 43.24 49.08 56.00 88.01 45.83 87.79 67.58 38.05 90.08 57.64 51.90 0.00 46.57 55.28 57.98

SYNTHIA → Cityscapes

Method Road SideW Build Wall* Fence* Pole* Light Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike mIoU mIoU*

APODA [20] 86.4 41.3 79.3 - - - 22.6 17.3 80.3 - 81.6 56.9 21.0 84.1 - 49.1 - 24.6 45.7 - 53.1

PatchAlign [21] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 - 84.6 53.5 21.6 71.4 - 32.6 - 19.3 31.7 40.0 46.5

AdvEnt [22] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 - 84.1 57.9 23.8 73.3 - 36.4 - 14.2 33.0 41.2 48.0

FDA-MBT [36] 79.3 35.0 73.2 - - - 19.9 24.0 61.7 - 82.6 61.4 31.1 83.9 - 40.8 - 38.4 51.1 - 52.5

PIT [35] 83.1 27.6 81.5 8.9 0.3 21.8 26.4 33.8 76.4 - 78.8 64.2 27.6 79.6 - 31.2 - 31.0 31.3 44.0 51.8

CBST [27] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 - 78.3 60.6 28.3 81.6 - 23.5 - 18.8 39.8 42.6 48.9

MRKLD [28] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 - 80.5 60.8 29.1 82.8 - 25.0 - 19.4 45.3 43.8 50.1

R-MRNet [29] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 - 80.6 63.0 21.8 86.2 - 40.7 - 23.6 53.1 47.9 54.9

DACS [30] 80.56 25.12 81.90 21.46 2.85 37.20 22.67 23.99 83.69 - 90.77 67.61 38.33 82.92 - 38.90 - 28.49 47.58 48.34 54.81

Source Only 25.40 15.55 59.70 18.07 0.66 26.35 19.36 30.22 72.50 - 74.28 48.11 13.67 74.62 - 36.94 - 13.92 36.45 35.36 40.06

EnD [43] 85.29 25.47 81.52 15.66 3.94 34.87 30.08 35.41 80.18 - 85.86 59.94 22.78 83.53 - 36.58 - 16.88 52.42 46.90 53.53

EnD2 [50] 83.88 39.08 81.14 12.65 1.01 41.16 22.91 28.26 82.83 - 84.17 69.54 23.87 87.65 - 41.59 - 21.68 53.26 48.42 55.38

Ours (Pixel) 86.98 44.18 80.95 19.38 1.52 30.47 25.64 30.39 79.92 - 78.84 56.55 27.14 84.47 - 44.52 - 26.03 55.08 48.25 55.43

Ours (Channel) 88.65 46.69 83.79 22.66 4.14 35.01 35.93 36.16 82.80 - 81.35 61.61 32.13 87.93 - 52.79 - 31.95 57.65 52.58 59.95

Table 1: The quantitative results evaluated on the GTA5→Cityscapes and SYNTHIA→Cityscapes benchmarks. The numbers presented in

the middle and the last two columns correspond to per-class IoUs, mIoU, and mIoU*, respectively. mIoU* represents the mean IoU over all

the semantic classes excluding those with superscript *, and is adopted by a few baseline methods in their original papers. The models used

in our semantic segmentation based UDA model ensemble T are highlighted in blue. The setting ‘Source Only’ indicates that the student

model is trained only with the source domain ground truth annotations. The evaluation results of EnD [43] and EnD2 [50] are obtained from

our self-implemented models, while those of the remaining baselines are directly obtained from their original papers.
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Figure 8: The distribution of the pixel output certainty values from

the models in T , which are trained on GTA5→Cityscapes, with

their output certainty values normalized to the range [0, 1] using

softmax operation and evaluated on the training set of Cityscapes.
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Figure 9: The performance comparison of our framework

with fChannel (‘Ours (Channel)’), our framework with fPixel

(‘Ours (Pixel)’), and the baseline EnD and EnD2 methods, with

under-performing members added to T . In this experiment, the

members in T are evaluated on the GTA5→Cityscapes benchmark.

To inspect the robustness of the proposed framework

with channel-wise fusion (‘Ours (Channel)’) against the

performance variation issue, we next look into an experi-

ment that introduces performance variations by adding under-

performing members into T . Specifically, we use the models

trained using only source domain instances, i.e., ‘Source

Only’ in Table 1, as the under-performing members. The

analysis is presented in Fig. 9. It is observed that the per-

formance of the students trained with ‘Ours (Pixel)’, EnD,

and EnD2 all degrade when the number of under-performing

members increases. In contrast, the students trained us-

ing ‘Ours (Channel)’ is able to maintain their performance

despite the inclusion of the under-performing members in

T . These results demonstrate the significance of preventing

clueless incorporation of information from all t ∈ T , and

highlight the effectiveness of fChannel in providing robust-

ness against the unfavorable performance variation issue.

6.3 Analysis on Channel-Wise Fusion

Fusion Policy: To examine the effectiveness of π selected

according to the strategy described in Section 4.2.4, we

design two additional fusion policies, πrnd and πtgt, for

comparison purposes. πrnd designates a t ∈ T for each

c ∈ C randomly, while πtgt carries out this designation

greedily according to the oracle performance of the models

in T in the target domain (i.e., π∗ described in Proposition

2). As shown in Table 3, the mIoU of the fused pseudo labels

generated based on the π selected according to the proposed

strategy is 7.09% higher than that with πrnd. It is also

observed that the mIoU of the fused pseudo labels generated
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κ 1 5 7 13 21 27

mIoU Gains +0.00 +0.15 +0.37 +0.73 +0.31 +0.09

Table 2: The mIoU gains of fChannel with πrnd for different κ.

= 5 = 13 = 21 Ground Truth

Figure 10: The visualized results of the pseudo labels generated by

the proposed channel-wise fusion with different choices of κ.

Policy πrnd (Random) π (Ours) πtgt (Oracle)

mIoU 49.22 56.31 56.48

Overlapped Area |Aπrnd

o | |Aπ
o | |Aπtgt

o |

Ratio 4.6% 3.7% 2.6%

mIoU Gains +0.73 +1.13 +1.21

Table 3: The mIoU’s of the fused pseudo labels generated by

channel-wise fusion fChannel under different fusion policies w.r.t.

the ground truth annotations of the training set of Cityscapes. πrnd,

π, and πtgt refer to the fusion policies mentioned in Section 6.3.

‘Ratio’ refers to the average proportion of the overlapped area in

an image (i.e.,
|Aπ

o |

|I|
). The ‘mIoU gains’ represents the mIoU gains

from the adoption of the proposed conflict-resolving mechanism.

based on this π is very close to the mIoU obtained from πtgt.

These pieces of evidence validate that the proposed policy

selection strategy is able to generate a fusion policy π that is

very close to the optimal policy π∗ without leveraging any

sort of unavailable target domain ground truth annotations.

Conflict-Resolving Mechanism: To investigate the effec-

tiveness of the conflict-resolving mechanism described in

Section 4.2 and Eq. (7), we perform parameter analysis on

fChannel with different choices of κ. In this analysis, the

fusion policy adopted is πrnd to ensure that results are in-

dependent of the design of π. Fig. 10 shows the visualized

results of the fused pseudo labels with different κ. Table 2

reports the mIoU gained for various κ with respect to the

condition κ = 1. It is observed that pixel predictions in the

overlapped area can be better determined if a moderate col-

lection of predictions from the neighboring pixels are taken

into account. However, if κ becomes too large, an excessive

amount of unrelated semantic information is included in the

conflict resolving mechanism, and degrades the quality of

the fused pseudo labels. Table 3 shows that different policies,

e.g., π and πtgt, can also benefit from the conflict-resolving

mechanism, thus justifying it from a different perspective.

6.4 Flexibility of the Proposed Framework

In comparison to end-to-end UDA ensemble learning

methods, our framework is more flexible as the proposed

framework can operate on any arbitrary compositions of

T . Such flexibility enables our framework to evolve with

time as (1) a model trained with any newly developed UDA

method can be integrated into our framework, and (2) the

student models can be added back to T and further improve
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S3
S4

S6

CBST[27]: C MRKLD[28]: M R-MRNet[29]: R DACS[30]: D
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S4

S5

S6
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53.15

57.98

58.82

59.01

59.25
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C+M

C+M+R

C+M+R+D

C+M+R+D+S3

C+M+R+D+S3+S4

C+M+R+D+S3+S4+S5

Figure 11: The performance of the student models trained with the

proposed framework using fChannel with different compositions

of T . The experiment is performed on GTA5→Cityscapes. For

settings ‘S4’, ‘S5’ and ‘S6’, the student models trained under the

previous settings, i.e., ‘S3’, ‘S4’, and ‘S5’, are added back to T .

the overall performance. To demonstrate these two merits

of our framework, we evaluate our framework with different

composition of T , as shown in Fig. 11. It is observed that

the student models trained under the settings ‘S1’, ‘S2’, and

‘S3’, which simulate the addition of the members trained

with newly developed UDA methods, can outperform their

corresponding teacher models in T (whose mIoU’s are re-

ported in Table 1). This implies that our framework offers the

potential to evolve with time. In addition, ‘S4’, ‘S5’, and ‘S6’

in Fig. 11 showcase that the performance of our framework

can be further improved if the students are added back to T ,

indicating that our framework can be applied in an iterative

manner to produce better results. These results highlight the

flexibility of our framework as any UDA methods can be

incorporated and potentially enhance its performance.

7 Conclusion

In this paper, we presented a flexible ensemble-distillation

framework to address the common pitfalls, i.e., the lack

of robustness, of previous methods. We incorporated an

output unification operation into the proposed framework to

ensure that the fused outputs of the ensemble are free of the

influence from the certainty inconsistency among the models

in the ensemble. In addition, to tackle the performance

variation issue, we proposed a channel-wise fusion function

that is robust against this issue. As our framework is able to

integrate different types of UDA methods while maintaining

its robustness, it therefore pioneers a new direction for future

semantic segmentation based UDA researches.
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