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Abstract

In this paper, we study the problem of learning image

classification models in the presence of label noise. We

revisit a simple compression regularization named Nested

Dropout [22]. We find that Nested Dropout [22], though

originally proposed to perform fast information retrieval

and adaptive data compression, can properly regularize

a neural network to combat label noise. Moreover, ow-

ing to its simplicity, it can be easily combined with Co-

teaching [5] to further boost the performance.

Our final model remains simple yet effective: it achieves

comparable or even better performance than the state-of-

the-art approaches on two real-world datasets with label

noise which are Clothing1M [28] and ANIMAL-10N [24].

On Clothing1M [28], our approach obtains 74.9% accu-

racy which is slightly better than that of DivideMix [12].

On ANIMAL-10N [24], we achieve 84.1% accuracy while

the best public result by PLC [30] is 83.4%. We hope that

our simple approach can be served as a strong baseline for

learning with label noise. Our implementation is available

at https://github.com/yingyichen-cyy/Nested-Co-teaching.

1. Introduction

The availability of large-scale datasets with clean anno-

tations has made indispensable contributions to the prosper-

ity of deep learning. However, collecting these extensive

high-quality data has always been a major challenge since

the procedure is both expensive and time-consuming. Ap-

pealed by the inexpensive and convenient accesses to large

but defective data, such as querying commercial search en-

gines [14], downloading images from social media [16] and

other web crawling strategies [19], efforts have been made

in literature to learn with imperfect data, among which

learning with noisy labels has been attached great impor-

tance.

The problem of learning with noisy labels dates back to

[1, 21] and the mainstream solutions include adding regular-

ization [15, 18], estimating the label transition matrix [20],

training on selected or reweighted samples [5, 8, 17, 27, 29],

label correction [11, 30] and other strategies categorized

into the semi-supervised learning genre [3, 9, 12]. In ad-

dition to works that provide concise and theoretically sound

frameworks to combat label noise, there are other exist-

ing works devoted to achieving the state-of-the-art perfor-

mances on benchmark datasets which require an appropri-

ate tuning on multiple hyper-parameters [12, 30].

With the above in mind, we propose a simple method

that combines the regularization and training on selected

samples paradigms together to improve state-of-the-art per-

formance on two real-world datasets. To be specific, we

revisit a compression regularization called Nested Dropout

[22], which was originally proposed to learn ordered fea-

ture representations, such that it can be used to perform fast

information retrieval and adaptive data compression. It has

also been shown in the paper that the ordered feature repre-

sentation has a strong connection to the PCA solution, that

is, the feature channels can be associated to the eigenvec-

tors of the covariance of input data. We find this property

important in combating label noise since we are then able

to conduct a signal-to-noise separation on the learned fea-

ture channels. We verify this intuition empirically, which

shows that Nested Dropout gives rise to a strong baseline

for learning with noisy labels.

To further take full advantage of this compression reg-

ularization, we combine it with a widely acknowledged

method called Co-teaching [5]. This is another strong base-

line for learning with noisy labels. The basic idea is that two

networks can be trained simultaneously where each network

updates itself based on the small-loss mini-batch samples

selected by its peer. The success of Co-teaching requires

the two networks to be reliable enough to select clean sam-

ples for each other where we assume the smaller the loss,

the cleaner the data [5, 8, 10, 26, 29]. In this regard, we

propose a two-stage solution:

• In stage one, two Nested Dropout networks are trained

separately to provide reliable base networks for the

subsequent stage;

• In stage two, the two trained networks are further fine-

tuned with Co-teaching.



As such, we are able to boost the classical strategy with a

simple compression regularization.

The rest of the paper is organized as follows: Section

2 gives the architecture of the proposed method. Section

3 presents the experiments on an illustrative toy dataset

and two real-world datasets, namely, Clothing1M [28] and

ANIMAL-10N [24]. Empirical results demonstrate the ef-

fectiveness of our two-stage method given its superior per-

formance comparing to several state-of-the-art approaches

such as DivideMix [12] and PLC [30].

2. Method

In this section, we present our approach. We find that the

compression regularization is a simple yet effective tech-

nique to combat label noise. Specifically, we first focus on

one compression regularization named Nested Dropout [22]

in Section 2.1, which may serve as a stronger substitute of

Dropout [25]. To take full advantage of Nested Dropout,

we further combine it with one commonly accepted method

called Co-teaching [5] in Section 2.2.

2.1. Nested Dropout

Nested Dropout [22] is one regularization able to learn

ordered representations where different dimensions have

different degrees of importance. While applied, mean-

ingless representations can be dropped, leading to a com-

pressed network [4]. Taking above into consideration,

these ordered representations could be particularly adapted

to learning with noisy labels since representations learned

from noisy data are expected to be meaningless.

Let h ∈ R
K×H×W be the hidden feature representation

obtained by the feature network f , i.e. h = f(x) with x be-

ing the input. To obtain an ordered feature representation, in

each training iteration, we only keep the first k dimensional

feature of h and mask the rest to zeros, that is,

z =
[

h1:k, 0, . . . , 0
]

∈ R
K×···

where k is sampled from a categorized distribution with pa-

rameters

{

pk ∝ exp
(

−
k2

2σ2
nest

)

, ∀k = 1, . . . ,K
}

. (1)

where σnest is one major hyper-parameter in our method. In

this manner, smaller k’s are preferred when σnest is small.

2.2. Co­teaching

Co-teaching [5] is a standard baseline for learning with

label noise. The idea is to train two deep networks f1 and f2
simultaneously where each network selects its (1 - λforget)

percent small-loss instances, i.e. D1 and D2, respectively,

where λforget is the forget rate and it is an important hyper-

parameter in the Co-teaching architecture. Networks update

themselves based on the sample set selected by their peers.

Considering that small-loss instances are more likely to

be clean [5, 8, 10, 26, 29], we could obtain classifiers re-

sistant to noisy labels by training them on these instances.

However, the above comes with one premise that the clas-

sifier should be reliable enough so that the small-loss in-

stances are indeed clean. In the original Co-teaching [5], it

proposes to keep all the instances in the mini-batch at the

beginning, and then gradually decrease the number of in-

stances in D1 and D2 until the N -th epoch, after which the

number of samples used to train the models becomes fixed.

Compared to tuning the hyper-parameter N , we find it more

stable to conduct standard training for each model until con-

vergence then fine-tune both models with Co-teaching.

To combine with Nested Dropout, the training procedure

comes with two stages: (i) train two Nested Dropout net-

works separately; (ii) fine-tune these two networks with Co-

teaching.

In the first stage, we set a learning rate warm-up to cope

with the difficulty of training with Nested Dropout in early

epochs resulting from the high probability of dropping most

of the channels in the feature layer (i.e. large σnest). In

the second stage, Nested Dropout is maintained during the

training of each model except for selecting small-loss in-

stances D1 and D2. The final performance is the accuracy

of the ensembled model.

3. Experiments

In this section, we present our experimental results. We

first show how Nested Dropout deals with regression noise

in a toy example in Section 3.1. In Section 3.2, we compare

our method with state-of-the-art approaches on two real-

world datasets: Clothing1M [28] and ANIMAL-10N [24].

Finally, an ablation study on ANIMAL-10N [24] is given in

Section 3.3.

3.1. Toy example: a simple regression with noise

To gain an intuitive understanding on the reason why

Nested Dropout [22] is able to resist label noise, we present

a simulated regression experiment. We generate a dataset

of noisy observations from yi = xi + ǫi for i = 1, . . . , 64
where xi is the evenly spaced value between [0, 10] and ǫi ∼
N (0, 1) are independently sampled. We adopt a multilayer

perceptron (MLP) composed of three linear layers with in-

put and output dimensions being 1 → 64 → 128 → 1.

Each layer is followed by a ReLU activation except the last

one. For the model with Nested Dropout [22], we apply

Nested Dropout [22] to the last layer of this MLP and de-

note it by MLP+Nested. We set σnest = 200 and use the

(1) to sample the number of features for training. Results

after 100k epochs are shown in Figure 1. It can be seen that

MLP overfits to the label noise while MLP+Nested with the

first k ∈ {1, 10} channels recovers the ground-truth y = x

better. However, with the number of channels increasing,
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Figure 1: Comparisons of regression between MLP and MLP incorporated with Nested Dropout [22] on a synthetic noisy

label dataset. (a) Training the regression with standard MLP; (b-d) Learning regression with MLP+Nested and plot the

prediction results using only the first k channels where (b) k = 1, (c) k = 10, (d) k = 100.

Table 1: Test set accuracy (%) on Clothing1M [28]. We

report average accuracy as well as the standard deviation

for three runs. Results with “*” are either using a balanced

subset or a balanced loss.

Methods Acc. (%)

CE [27] 67.2

F-correction [27, 20] 68.9

Decoupling [27, 17] 68.5

Co-teaching [27, 5] 69.2

Co-teaching+ [27, 29] 59.3

JoCoR [27] 70.3

JO [26] 72.2

Dropout* [25] 72.8

PENCIL* [11] 73.5

MLNT [13] 73.5

PLC* [30] 74.0

DivideMix* [12] 74.8

Ours

Nested* 73.1 ± 0.3

Nested + Co-teaching* 74.9 ± 0.2

MLP+Nested gradually overfits to the label noise due to

over parameterization. This demonstrates that the first few

channels in MLP+Nested contain the main data structure

information, while channels towards the end are more likely

to encode misled information that would overfit to the noise.

3.2. Comparison with state­of­the­art methods on
real datasets

Datasets We conduct experiments on two real datasets:

Clothing1M [28] and ANIMAL-10N [24]. The Cloth-

ing1M [28] dataset contains 1 million clothing images ob-

tained from online shopping websites with 14 categories.

The labels in this dataset are quite noisy with an unknown

underlying structure. This dataset also provides 50k, 14k

and 10k manually verified clean data for training, valida-

tion and testing, respectively. Note that the clean training

set is not used during the training. Following [11, 30], in our

experiment, we randomly sample a balanced subset which

Table 2: Test set accuracy (%) on ANIMAL-10N [24]. We

report average accuracy as well as the standard deviation for

three runs.

Methods Acc. (%)

CE [24] 79.4 ± 0.1

Dropout [25] 81.3 ± 0.3

SELFIE [24] 81.8 ± 0.1

PLC [30] 83.4 ± 0.4

Ours

Nested 81.3 ± 0.6

Nested + Co-teaching 84.1 ± 0.1

includes 260k images (18.5k images per category) from the

noisy training set and use it as our training set and report

the classification accuracy on the 10k clean test data. We

adopt the standard data augmentation procedures to train

ImageNet [2, 6], including random horizontal flip, and re-

sizing the image with a short edge of 256 and then randomly

cropping a 224 × 224 patch from the resized image. The

ANIMAL-10N is recently proposed by [24]. It contains

10 animals with confusing appearance. The estimated la-

bel noise rate is 8%. There are 50k training and 5k testing

images. We did not apply any data augmentation so that the

setting is the same with [24].

Implementation details We implement our approach on

Pytorch. Experiments on Clothing1M [28] are with ResNet-

18 [6] pre-trained on ImageNet [2] following [27]. Note

that Nested Dropout or Dropout is applied right before the

linear classifier in the network. Models in stage one are

optimised with SGD optimizer with a momentum of 0.9,

a weight decay of 5e−4, an initial learning rate of 2e−2,

and batch size of 448. During training, we run learning

rate warm-up for 6000 iterations, then train the model for

30 epochs with the learning rate decayed by 0.1 after the

5th epoch. In stage two, we apply Co-teaching to fine-tune

two well-trained models. SGD optimizer is utilized with

the same settings only with an initial learning rate changing

to 2e−3. Moreover, we set forget rate λforget in the Co-



Table 3: Average test accuracy (%) with standard deviation (three runs) of different σnest on ANIMAL-10N [24]. The

corresponding optimal number of channels k∗ for each model is also provided (entry “k∗”). We report test accuracy of single

model (entry “Acc.”) as well as the accuracy with the combination of Co-teaching (entry “Co-teaching Acc.”)

σnest k∗ Acc. (%) k∗ Co-teaching Acc. (%)

CE 4096 79.4 ± 0.1 4096 82.2 ± 1.1

25 17.7 ± 9.7 81.0 ± 0.6 16.3 ± 6.9 83.7 ± 0.1

50 18.8 ± 6.9 81.3 ± 0.6 13.4 ± 4.1 84.1 ± 0.2

100 13.6 ± 5.6 81.0 ± 0.5 16.8 ± 7.1 84.1 ± 0.1

150 16.0 ± 3.6 81.1 ± 0.5 18.8 ± 7.4 83.8 ± 0.2

250 13.2 ± 3.1 81.1 ± 0.2 21.0 ± 10.4 83.8 ± 0.1

teaching [5] to be 0.3, freeze batch norm and no warm-up

is applied. Models are again trained for 30 epochs with the

learning rate decayed by 0.1 after the 5th epoch.

For ANIMAL-10N, we use VGG-19 [23] with batch

normalization [7] as in [24]. The two Dropout layers in

the original VGG-19 architecture are changed to Nested

Dropouts when Nested is applied. The SGD optimizer is

employed. Following [24], we train the network for 100
epochs and use an initial learning rate of 0.1, which is di-

vided by 5 at 50% and 75% of the total number of epochs. In

stage one, models are trained with learning rate warm-up for

6000 iterations. In stage two, no warm-up is applied, batch

norms are freezed, forget rate λforget is 0.2, initial learning

rate is 4e−3 and decayed by 0.2 after the 5th epoch with 30
epochs in total.

Results on the Clothing1M [28] We now compare our

method to state-of-the-art approaches on Clothing1M [28]

in Table 1. It is worth noting that Table 1 also includes very

recent approaches such as DivideMix [12] and PLC [30].

Surprisingly, our single model with Nested Dropout [22]

not only surpasses the standard Dropout [25], but also

achieves comparable performance to PENCIL [11] and

MLNT [11]. Incorporating Co-teaching [5] further boosts

the performance to 74.9% and outperforms the state-of-the-

art DivideMix [12].

Results on the ANIMAL-10N [28] Experimental results

on ANIMAL-10N [28] are given in Table 2. The dataset

is recently proposed, and we compare with two approaches

that report performance on this dataset: SELFIE [24] and

PLC [30]. It can be seen that our single model achieves

comparable performance to Dropout as well as SELFIE [24]

and Co-teaching provides a consistent performance boost,

which is similar to the results on the Clothing1M [28]. Note

that, our best performance by using Nested Dropout [22]

and Co-teaching [5] achieves 84.1% accuracy outperforms

recent approach PLC [30] by 0.7%.

3.3. Ablation study

In this section, we provide the ablation study of σnest on

ANIMAL-10N [24]. The results are given in Table 3. As

we can see, the Nested Dropout [22] provides consistent

improvement compared to training with standard cross en-

tropy loss (entry “CE”) and the performance gain is also

robust to the choices of the hyper-parameter σnest. More-

over, fine-tuning with Co-teaching [5] provides clear boost

for all the models. We also show the optimal number of

channels of each model (entry “k∗”) in the table. Note that

though two layers of Nested Dropout have been applied to

the classifier of VGG-19, the optimal number of channels

k∗ is recorded with regard to the last Nested Dropout layer

for simplicity. Interestingly, the models trained with Nested

Dropout [22] achieve better performance but with only us-

ing less than 1% of channels compare to the models trained

with standard cross entropy (entry “CE”).

4. Conclusion

In this paper, we investigated the problem of image clas-

sification in the presence of noisy labels. Specifically, we

first demonstrated that a simple compression regularization

called Nested Dropout [22] can be used to combat label

noise. Moreover, due to its simplicity, Nested Dropout [22]

can be easy combined with Co-teaching [5] to further boost

the performance. We validated our approach on two real-

world noisy datasets and achieved state-of-the-art perfor-

mance on both datasets. The proposed approach is simple

comparing to many existing methods. Therefore, we hope

that our approach can be served as a strong baseline for fu-

ture research on learning with noisy label.
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