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Abstract

Few-shot learning aims to build classifiers for new

classes from a small number of labeled examples and is

commonly facilitated by access to examples from a distinct

set of ‘base classes’. The difference in data distribution be-

tween the test set (novel classes) and the base classes used

to learn an inductive bias often results in poor generaliza-

tion on the novel classes. To alleviate problems caused by

the distribution shift, previous research has explored the use

of unlabeled examples from the novel classes, in addition

to labeled examples of the base classes, which is known

as the transductive setting. In this work, we show that,

surprisingly, off-the-shelf self-supervised learning outper-

forms transductive few-shot methods by 3.9% for 5-shot ac-

curacy on miniImageNet without using any base class la-

bels. This motivates us to examine more carefully the role of

features learned through self-supervision in few-shot learn-

ing. Comprehensive experiments are conducted to compare

the transferability, robustness, efficiency, and the comple-

mentarity of supervised and self-supervised features.

1. Introduction

Deep architectures have achieved significant success in

various vision tasks including image classification and ob-

ject detection. Such success have relied heavily on massive

numbers of annotated examples. However, in real-world

scenarios, we are frequently unable to collect enough la-

beled examples. This has motivated the study of few-shot

learning (FSL), which focuses on building classifiers for

novel categories from one or very few labeled examples.

Previous approaches to FSL include meta-learning and

metric learning. Meta-learning aims to learn task-agnostic

knowledge that improves optimization. Metric learning fo-

cuses on learning representations on base categories that

can generalize to novel categories. Most previous FSL

methods attempt to borrow a strong inductive bias from the

supervised learning of base classes. However, the challenge

of FSL is that a helpful inductive bias, i.e., one that improves

performance on novel classes, is hard to develop when there

is a large difference between the base and novel classes.

To address this challenge, previous research explores

using unlabeled examples from novel classes to improve

the generalization on novel classes, which is referred to

transductive few-shot learning. Typical transductive few-

shot learning (TFSL) methods include exploiting unlabeled

novel examples that have been classified (by an initial clas-

sifier) with high confidence in order to self-train the model

[4, 23, 26] or fine-tuning the model on unlabeled novel

examples with an auxiliary loss serving as a regularizer

[8,24,31]. These methods still focus on improving the gen-

eralization of inductive bias borrowed from the supervised

learning of base classes.

In comparison, our key motivation is that, unlabeled ex-

amples from novel classes not only can fine-tune or retrain

a pre-trained model, but also can effectively train a new

model from scratch. The advantage of doing so is that the

model can generalize better on novel classes. In this paper,

we demonstrate the effectiveness of an extremely simple

baseline for transductive few-shot learning. Our baseline

does not use any labels on the base classes. We con-

duct self-supervised learning on unlabeled data from both

the base and the novel classes to learn a feature embed-

ding. When doing few-shot classification, we directly learn

a linear classifier on top of the feature embedding from the

few given labeled examples and then classify the testing

examples. Surprisingly, this baseline significantly outper-

forms state-of-the-art transductive few-shot learning meth-

ods, which have additional access to base-class labels.

The empirical performance of this baseline should not

be “the final solution” for few-shot learning. We believe

that meta-learning, metric learning, data augmentation, and

transfer learning are also critical for effective few-shot

learning. However, this baseline can help us interpret ex-

isting results and indicates that using self-supervised learn-

ing to learn a generalized representation could be another

important tool in addressing few-shot learning.

To investigate the best possible way to use self-

supervised learning in few-shot learning, it is necessary to

examine more carefully the role of features learned through

self-supervision in few-shot learning. For brevity, we re-



fer to these features as ‘self-supervised features’. (1) In

a non-transductive few-shot learning setting, we explore

the complementarity and transferability of supervised and

self-supervised features. By directly concatenating self-

supervised and supervised features, we get a 2-3% per-

formance boost and achieve new state-of-the-art results.

We conduct cross-domain few-shot learning and show that

supervised features have better transferability than self-

supervised features. However, when more novel labeled

examples are given, self-supervised features overtake su-

pervised features. (2) In a transductive few-shot learning

setting, we show that simple off-the-shelf self-supervised

learning significantly outperforms other competitors who

have additional access to base-class labels. We confirm

the performance gain is not from a better representation

but from a representation that better generalizes on the

novel classes. The proof is that the self-supervised fea-

tures achieve the top performance on the novel classes but

not on other unseen classes. (3) For both non-transductive

and transductive settings, we conduct comprehensive ex-

periments to explore the effect of different backbone ar-

chitectures and datasets. We report results using a shallow

ResNet, a very deep ResNet, a very wide ResNet, and a spe-

cially designed shallow ResNet that is commonly used for

few-shot learning. While deeper models generally have sig-

nificantly better performance for the standard classification

task on both large (e.g, ImageNet [7]) and small datasets

(e.g., CIFAR-10) as shown in [18], the performance gain is

relatively small for supervised features in few-shot learning.

In comparison, self-supervised features show a much larger

improvement when using a deeper network, especially in

the transductive setting. We also conduct experiments on

various datasets, including large datasets, small datasets,

and datasets that have small or large domain differences

between base and novel classes. We show the efficiency

and robustness of self-supervised features on all kinds of

datasets except for very small datasets.

2. Related Work

Few-shot Learning. Few-shot learning is a classic prob-

lem [27], which refers to learning from one or a few labeled

examples for each novel class. Existing FSL methods can

be broadly grouped into three categories: data augmenta-

tion, meta-learning, and metric learning. Data augmenta-

tion methods synthesize [6, 34, 43], hallucinate [16] or de-

form [5] images to generate additional examples to address

the training data scarcity. Meta-learning [10, 21, 28, 32] at-

tempts to learn a parameterized mapping from limited train-

ing examples to hidden parameters that accelerate or im-

prove the optimization procedure. Metric learning [1,22,37]

aims at learning a transferable metric space (or embedding).

MatchingNet [40] and ProtoNet [35] adopt cosine and Eu-

clidean distance to separate instances belonging to different

classes. Recently, some works [6,25,39] showed that learn-

ing a classifier on top of supervised features can achieve

surprisingly competitive performance.

Transductive Few-shot Learning. TFSL methods use

the distribution support of unlabeled novel instances to help

few-shot learning. Some TFSL methods [23, 26, 42] ex-

ploit unlabeled instances with high confidence to train the

model. [4] propose a data augmentation method to directly

mix base examples and selected novel examples in the im-

age domain to learn generalized features. In addition, previ-

ous work [8,24,31] seek to take unlabeled testing instances

to acquire an auxiliary loss serving as a regularizer to adapt

the inductive bias. These methods borrow inductive bias

from the supervised learning of the base classes and further

utilize unlabeled novel examples to improve it. In compar-

ison, we show that unlabeled novel examples in addition to

labeled examples of the base classes can directly develop a

very strong inductive bias.

Self-supervised Learning. Self-supervised learning

aims to explore the internal data distribution and learns dis-

criminative features without annotations. Some work takes

predicting rotation [13], counting [30], predicting the rela-

tive position of patches [9], colorization [20, 46], and solv-

ing jigsaw puzzles [29] as self-supervised tasks to learn rep-

resentations. Recently, instance discrimination [2,15,38,44]

has attracted much attention. [17] propose a momentum

contrast to update models and shows superior performance

to supervised learning. In this work, we explore the gen-

eralization ability of self-supervised features to new classes

in the few-shot setting, i.e., in circumstances where few la-

beled examples of novel classes are given. Other works that

have explored transductive techniques, e.g., [17], have used

large training sets for new classes. Gidaris et al. [12] and Su

et al. [36] take rotation prediction, solving jigsaw as auxi-

lary tasks to learn better representation on base classes to

help few-shot learning. Tian et al. [39] utilize contrastive

learning to learn features for non-transductive few-shot

learning. In comparison, while previous works only con-

duct self-supervised learning under the non-transductive,

we confirm the effectiveness of self-supervised learning in

a transductive few-shot setting. We claim this as our major

contribution.

3. Methods

In Fig. 1, we illustrate our few-shot learning settings.

We denote the base category set as Cbase and the novel

category set as Cnovel, in which Cbase ∩ Cnovel = ∅.

Correspondingly, we denote the labeled base dataset as

Dbase = {(Ii, yi)}, yi ∈ Cbase, the labeled novel dataset

as Dnovel = {(Ii, yi)}, yi ∈ Cnovel, the unlabeled base

dataset as Ubase = {(Ii)}, yi ∈ Cbase, and the unlabeled

novel dataset as Unovel = {(Ii)}, yi ∈ Cnovel.

In a standard few-shot learning task, we are only given
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Figure 1: An illustration of different few-shot learning settings. There are four few-shot settings, including few-shot

learning (FSL), transductive few-shot learning (TFSL), unlabeled-base-class few-shot learning (UBC-FSL), and unlabeled-

base-class transductive few-shot learning (UBC-TFSL). The differences between these settings are whether they have labels

for examples from the base classes and unlabeled examples from the novel classes.

labeled examples from base classes so the training set

is DFSL = Dbase. For transductive few-shot learn-

ing (TFSL), we are given DTFSL = Dbase ∪ Unovel.

For unlabeled-base-class few-shot learning (UBC-FSL), we

have DUBC−FSL = Ubase. For unlabeled-base-class

transductive few-shot learning (UBC-TFSL), we denote the

training set as DUBC−TFSL = Ubase ∪ Unovel. Note that

UBC-TFSL has strictly less supervision than TFSL and this

setting has not been explored before. We claim we are the

first to explore this setting.

These four few-shot learning settings use the same eval-

uation protocol as in previous works [40]. At inference

time, we are given a collection of N-way-m-shot classifi-

cation tasks sampled from Dnovel to evaluate our methods.

3.1. Self­supervised learning

Here we take instance discrimination as our self-

supervision task due to its efficiency. We follow momen-

tum contrast [17], where each training example xi is aug-

mented twice into xq
i and xk

i . xq
i and xk

i are then fed into

two encoders forming two embeddings qi = fq(x
q
i ), and

ki = fk(x
k
i ). A standard log-softmax function is used to

discriminate a positive pair (2 instances augmented from

one image) from several negative pairs (2 instances aug-

mented from 2 images):

L(qi, ki) = − log

(

exp(qTi ki/τ)

exp(qTi ki/τ) +
∑

j 6=i exp(q
T
i kj/τ)

)

(1)

where τ is a temperature hyper-parameter. Since our imple-

mentations are based on MoCo-v2 [3], please refer to it for

further details. We also try other self-supervised methods in

§ 4.6.

3.2. Evaluation Protocols

Here we introduce our protocols for the four different

few-shot learning settings. All protocols consist of a train-

ing phase and an evaluation phase. In the training phase,

we learn a feature embedding on the training sets DFSL,

DTFSL, DUBC−FSL, and DUBC−TFSL. In the evaluation

phase, we evaluate the few-shot classification performance.

For simplicity and efficiency, we learn a logistic regression

classifier on top of the learned feature embedding of N ∗m
training examples and then classify the testing examples.

Training and testing examples come from the given N-way-

m-shot classification task. Such procedures are repeated

1000 times and we report the average few-shot classifica-

tion accuracies with 95% confidence intervals. Now, we

would like to introduce our methods.

Few-shot learning baseline. We learn our embedding

network on DFSL using cross-entropy loss under a standard

classification process. We use the logit layer as the feature

embedding as it is slightly better than the pre-classification

layer. This baseline is very simple and achieve the state-of-

the-art performance.

Unlabeled-base-class few-shot learning. For UBC-

FSL, we learn from self-supervised supervision on

DUBC−FSL. We follow MoCo-v2 to do instance discrimi-

nation. The output of the final layer of the model is used as

the feature embedding.

Unlabeled-base-class transductive few-shot learning.

For UBC-TFSL, our method is similar to our UBC-FSL
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Figure 2: Comparison between different methods under the non-transductive and transductive few-shot setting. For

the non-transductive few-shot learning, there is great complementarity among supervised and self-supervised features. For

the transductive few-shot learning, our UBC-TFSL outperform other competitors even without using base-classes labels.

method. The difference is that we train on DUBC−TFSL,

which has additional access to unlabeled test instances.

Combination of FSL baseline and UBC-FSL. This

method works under standard, non-transductive, few-shot

learning setting. We explore the complementarity be-

tween supervised features (from the FSL baseline) and self-

supervised features (from UBC-FSL). We directly concate-

nate normalized supervised features and normalized self-

supervised features and then do normalization again. T his

feature is used as the feature embedding and we refer this

method as “Combined”.

4. Experiments

We define two types of experiments based upon whether

the base and novel classes come from the same dataset or

not. We refer to the standard FSL paradigm in which the

base and novel classes come from the same dataset (e.g.,

ImageNet) as single-domain FSL. We also perform experi-

ments in which the novel classes are chosen from a separate

dataset, which we call cross-domain FSL. In cross-domain

FSL, the domain differences between the base and novel

classes are much larger than the single-domain FSL. For

both setting, we report 5-way-1-shot and 5-way-5-shot ac-

curacies.

Datasets. For single-domain FSL, we run experiments

on three datasets: miniImageNet [40], tieredImageNet [33],

and Caltech-256 [14]. The miniImageNet contains 100

classes randomly selected from ImageNet [7] with 600

images per class. We follow [32] to split the categories

into 64 base, 16 validation, and 20 novel classes. The

tieredImageNet is another subset of ImageNet but has far

more classes (608 classes). These classes are first divided

into 34 groups and then further divided into 20 training

groups (351 classes), 6 validation groups (97 classes), and

8 testing groups (160 classes), which ensure the distinction

between training and testing sets. Caltech-256 (Caltech) has

30607 images from 256 classes. Following [6], we split it

into 150, 56, and 50 classes for training, validation, and

testing respectively.

For the cross-domain experiments, we construct a

dataset that has high dissimilarity between base and novel

classes by drawing the base classes from one dataset

and the novel classes from another. We denote this

dataset as ’miniImageNet&CUB’, which is a combination

of miniImageNet and CUB-200-2011 (CUB) dataset [41].

CUB is a fine-grained image classification dataset includ-

ing 200 bird classes and 11788 bird images. We follow [19]

to split the categories into 100 base, 50 validation, and

50 novel classes. In miniImageNet&CUB, the training set

(base classes) contains 64 classes from miniImageNet and

the testing set (novel classes) contains 100 classes from

CUB. Specifically, the 64 classes in the training set are the

64 base classes in miniImageNet and the 100 classes in the

test set are the 100 base classes in CUB.

Competitors. We compare our methods with the top

few-shot learning methods: MetaOptNet [21], Distill [39],

and Neg-Cosine [25]. We also compare with three trans-

ductive few-shot learning methods: ICI [42], TAFSSL [24],

and EPNet [31]. TFSL methods have 100 unlabeled images

per novel class by default. EPNet (full) and our UBC-TFSL

uses all of the images of novel classes as unlabeled training

samples.

Implementation details. Most of our settings are the

same as [3]. We use a mini-batch size of 256 with 8 GPUs.

We set the learning rate as 0.03 and use cosine annealing to

decrese the learning rate. The feature dimension for con-

trastive loss is 128. The momentum for memory update is

0.5 and the temperature is set as 0.07. For miniImageNet,

miniImageNet&CUB, and Caltech-256, we sample 2048

negative pairs in our contrastive loss and train 1000 epochs.

For tieredImageNet, we sample 20480 negative pairs and

train 800 epochs.

Architecture. We use ResNet-12∗, ResNet-12, ResNet-

50, ResNet-101, and WRN-28-10 as our backbone archi-

tecture. ResNet-12∗ is a modified version of ResNet-12

and will be introduced in Sec.§ 4.2. WRN-28-10 [45] is

a very wide version of ResNet-10 and have 36.5M param-

eters whereas ResNet-50 and ResNet-101 have 25.6M and



Table 1: Top-1 accuracies(%) on miniImageNet and tieredImageNet. We report the mean of 1000 randomly generated

test episodes as well as the 95% confidence intervals. The top results are highlighted in blue and the second-best results in

green. We provide results on Caltech-256 and miniImageNet&CUB in the supplementary.

miniImageNet tieredImageNet

setting method backbone 1-shot 5-shot 1-shot 5-shot

Non-transductive

MetaOptNet ResNet-12∗ 62.6±0.6 78.6±0.4 65.9±0.7 81.5±0.5

Distill ResNet-12∗ 64.8±0.6 82.1±0.4 71.5±0.6 86.0±0.4

Neg-Cosine ResNet-12∗ 63.8±0.8 81.5±0.5 - -

Neg-Cosine WRN-28-10 61.7±0.8 81.7±0.5 - -

UBC-FSL (Ours) ResNet-12∗ 47.8±0.6 68.5±0.5 52.8±0.6 69.8±0.6

UBC-FSL (Ours) ResNet-12 56.9±0.6 76.5±0.4 58.0±0.7 76.3±0.5

UBC-FSL (Ours) ResNet-50 56.2±0.6 75.4±0.4 66.6±0.7 83.1±0.5

UBC-FSL (Ours) ResNet-101 57.5±0.6 77.2±0.4 68.0±0.7 84.3±0.5

UBC-FSL (Ours) WRN-28-10 57.1±0.6 76.5±0.4 67.5±0.7 83.9±0.5

FSL baseline ResNet-12∗ 61.7±0.7 79.4±0.5 69.6±0.7 84.2±0.6

FSL baseline ResNet-12 61.1±0.6 76.1±0.6 66.4±0.7 81.3±0.5

FSL baseline ResNet-50 61.3±0.6 76.0±0.4 69.4±0.7 83.3±0.5

FSL baseline ResNet-101 62.7±0.7 77.6±0.5 70.5±0.7 83.8±0.5

FSL baseline WRN-28-10 62.4±0.7 77.5±0.5 70.2±0.7 83.5±0.5

Combined (Ours) ResNet-12∗ 59.8±0.8 73.3±0.7 69.2±0.7 82.0±0.6

Combined (Ours) ResNet-12 63.8±0.7 79.9±0.6 67.8±0.7 83.0±0.5

Combined (Ours) ResNet-50 63.9±0.9 79.9±0.5 72.3±0.7 86.1±0.5

Combined (Ours) ResNet-101 65.6±0.6 81.6±0.4 73.5±0.7 86.7±0.5

Combined (Ours) WRN-28-10 65.2±0.6 81.2±0.4 73.1±0.7 86.4±0.5

Transductive

ICI ResNet-12∗ 66.8±1.1 79.1±0.7 80.7 ±1.1 87.9±0.6

ICI ResNet50 60.2±1.1 75.2±0.7 78.6±1.1 86.8±0.6

ICI ResNet101 64.3±1.2 78.1±0.7 82.4±1.0 89.4±0.6

TAFSSL DenseNet 80.1±0.2 85.7±0.1 86.0±0.2 89.3±0.1

EPNet WRN-28-10 79.2±0.9 88.0±0.5 83.6±0.9 89.3±0.5

EPNet (full) WRN-28-10 80.2±0.8 88.9±0.5 84.8±0.8 89.9±0.6

UBC-TFSL (Ours) ResNet-12∗ 51.1±0.9 74.6±0.6 57.2±0.6 74.7±0.6

UBC-TFSL (Ours) ResNet-12 70.3±0.6 86.9±0.3 65.7±0.7 81.4±0.5

UBC-TFSL (Ours) ResNet-50 79.1±0.6 92.1±0.3 81.0±0.6 90.7±0.4

UBC-TFSL (Ours) ResNet-101 80.4±0.6 92.8±0.2 87.0±0.6 93.6±0.3

UBC-TFSL (Ours) WRN-28-10 80.3±0.6 92.4±0.2 85.7±0.6 93.0±0.3

44.4M parameters respectively.

4.1. Self­supervised learning can develop a strong
inductive bias with no base­class labels

[36] shed light on improving few-shot learning with

self-supervision and claim that “Self-supervision alone is

not enough” for FSL. We agree there is still a gap between

unlabeled-base-class few-shot learning and few-shot learn-

ing. However, in the transductive few-shot classification

setting, we present the surprising result that state-of-the-art

performance can be obtained without using any labeled

examples from the base classes at all.

The results on miniImageNet and tieredImageNet are

shown in Table 1. A better visualization is shown in

Fig. 2. Results on Caltech-256 and miniImageNet&CUB

are provided in supplementary material. We notice that

(1) UBC-FSL shows some potential. Even without any

base-class labels, it only underperforms the state-of-the-art

few-shot methods by 2 − 7% in 1-shot and 5-shot accu-

racy on miniImageNet and tieredImageNet. (2) There is

great complementarity among supervised features and

self-supervised features. Combining supervised and self-

supervised features (“Combined”) beats the FSL baseline

on all four datasets for all backbone networks. Specifi-

cally, it gives 4% and 2.9% improvements in 5-shot ac-

curacy on miniImageNet and tieredImageNet when us-

ing ResNet-101. Also, it beats all other FSL competi-

tors on tieredImageNet. (3) For the transductive few-

shot classification setting, state-of-the-art can be ob-

tained without actually using any labeled examples at

all. Even without any base-class labels, UBC-TFSL sig-

nificantly surpasses all other methods. In Table 1, it out-

performs all other TFSL methods by 3.5% and 3.9% for

5-shot accuracy on miniImageNet and tieredImageNet re-

spectively. (4) The FSL baseline struggles to learn a

strong inductive bias with high dissimilarity between
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Figure 4: Accuracy of 1-shot cross-domain FSL (first row) or single-domain FSL (second row). First row: we visualize

1-shot test accuracy on the source dataset (x-axis) and the target dataset (y-axis). Second row: we visualize 1-shot accuracy

on the base classes (x-axis) and the novel classes (y-axis). Squares, diamonds, and triangles denote ResNet-12, ResNet-50,

and ResNet-101 respectively. We provide detailed statistics in the supplementary. From the first row, the results suggest that

supervised features are better when transferring to a new target dataset even if self-supervised features (UBC-TFSL)

have more training data and better performance on the source dataset. From the second row, the results suggest that in few-

shot learning, even if supervised features have better performance on base classes, it underperforms self-supervised features

(UBC-TFSL) on novel classes. It confirms that UBC-TFSL benefit from the representation that better generalized on

the novel classes.

base and novel classes (cross-domain) whereas such dis-

similarity has a relatively minor effect on UBC-TFSL.

In miniImageNet&CUB (please refer to supplementary),

UBC-TFSL outperforms the FSL baseline by 15% and 13%
for 1-shot and 5-shot accuracy respectively.

4.2. A deeper network is better

While deeper models generally have better performance

for the standard classification task on both large (e.g, Im-

ageNet [7]) and small dataset(e.g., CIFAR-10) as shown

in [18], most previous few-shot methods [21, 39] report

the best results with a modified version (ResNet-12∗) of

ResNet-12 [18]. ResNet-12∗ employs several modifica-

tions, including making it 1.25× wider, changing the input

size from 224×224 to 84×84, using Leaky ReLU’s instead

of ReLU’s, adding additional Dropblock layers [11], and re-

moving the global pooling layer after the last residual block.

We feel that the effect of different backbone architecture is

not very clear in few-shot learning literature. We want to

know if using a very deep network (e.g., ResNet-101) can

bring significant improvement in few-shot classification as

in the standard classification task. More importantly, we

want to explore the differences between supervised and self-

supervised features when using various backbone architec-
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Figure 5: Few-shot classification accuracy with larger shots. We use ResNet-50 as our backbone architecture and evaluate

on tieredImageNet and Caltech (transferred from tieredImageNet). Training on same data, supervised features (FSL baseline)

outperform self-supervised features (UBC-FSL) in few-shot setting. However, self-supervised features are better when large

numbers (100-shot) of labeled novel examples are given.

tures in few-shot learning.

As shown in Table 1, we report results using ResNet-

12∗, ResNet-12, ResNet-50, ResNet-101, and WRN-28-10.

To better compare the effect of depth of backbone architec-

ture, we visualize the performance in Fig. 3. We notice that

(1) ResNet-101 have the best performance and all our base-

lines benefit from deeper network in most cases. (2) The

commonly used ResNet-12∗ work well for FSL baseline but

do not suit for self-supervised learning based baselines. (3)

The wide network WRN-28-10 has very good performance

on all our baselines, only slightly underperform ResNet-

101. We confirm that few-shot learning can actually benefit

from a deeper or wider backbone architecture. The perfor-

mance gain is small for supervised features (FSL base-

line) and large for self-supervised features (UBC-FSL),

especially in a transductive setting (UBC-TFSL).

4.3. Supervised vs. self­supervised features in cross­
domain FSL

Another interesting question is whether models learned

in a single domain can perform well in a new domain (with

highly dissimilar classes). To study this, we conduct cross-

domain FSL, in which we learn models on miniImageNet

or tieredImageNet and evaluate our models on Caltech-256

and CUB. Specifically, the FSL baseline and UBC-FSL are

trained on base classes of the source dataset, and UBC-

TFSL are trained on both base and novel classes of the

source dataset. Then, we evaluate our methods on the test-

ing set of target datasets (Caltech-256 and CUB).

Notice that the way we are applying the UBC-TFSL

model, it does not qualify as a true transductive setting,

since the model does not have access to unlabeled data from

the testing set. Instead, we are testing whether this model

can improve its performance on cross-domain classes with

unlabeled data from additional classes in the source data

set.

Previous work [17] compares supervised and self-

supervised features when transferring to a new domain for

classification, object detection, and instance segmentation.

It shows that self-supervised features have better transfer-

ability for these tasks. However, the conclusion is based on

when large numbers of labeled examples are used to learn

the final linear classifier. In few-shot setting, we show that

supervised features do better than self-supervised fea-

tures.

In the first row of Fig. 4, we compare UBC-FSL, FSL

baseline, UBC-TFSL, and Combined in cross-domain FSL.

The x-axis and y-axis denote the 1-shot testing accuracy

on the source and target dataset respectively. Surpris-

ingly, supervised features (FSL baseline, Combined) sig-

nificantly outperform self-supervised features (UBC-FSL,

UBC-TFSL) on the target dataset even if they have lower ac-

curacy on the source dataset. In the second row of Fig. 4, we

visualize the performance of our methods on base and novel

classes in single-domain FSL. The x-axis and y-axis denote

the 1-shot accuracy on base and novel classes respectively.

As you can see, UBC-TFSL (gray points) outperforms FSL

baseline (orange) on novel classes but underperforms on

base classes. These experiments show that UBC-TFSL has

mediocre performance when it does not have access to un-

labeled data from the test classes, but performs extremely

well when it does. In other words, it is not simply access

to additional unlabeled data that helps, but rather, data from

the test classes themselves.

4.4. Supervised vs. self­supervised features with
larger shots

In Fig. 5, we compare UBC-FSL, the FSL baseline,

UBC-TFSL and Combined with larger shots using ResNet-

50 on tieredImageNet and tieredImageNet-Caltech (cross-

domain FSL). For 1-shot learning, there is a large gap

around 5% between UBC-FSL and the FSL baseline. How-
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Figure 6: 1-shot testing accuracy under various scales of dataset size. ResNet-12 is our backbone architecture. In (a),

we compare UBC-FSL, FSL baseline, UBC-TFSL, and Combined on three datasets of different sizes (30607, 60000, and

779165 images). In (b), we randomly select part of miniImageNet (e.g., 20% of the whole dataset) and compare our methods.

ever, as the shots become larger, this gap gradually dimin-

ishes. For 100-shot on tieredImageNet and 80-shot on Cal-

tech, UBC-FSL even outperforms the FSL baseline by 1.3%

and 0.6% respectively.

We suggest that supervised features may contain

higher-level semantic concepts that are easier to di-

gest with a few training instances while self-supervised

features have better transferability with abundant training

data. This statement is compatible with previous work [17],

which use abundant labeled data to learn the final classifi-

cation layer and claims that self-supervised features have

better transferability.

4.5. Supervised vs. self­supervised features and
dataset size

In this section, we compare supervised and self-

supervised features under various dataset sizes. We

conduct experiments on Caltech, miniImageNet, and

tieredImageNet, which have 30607, 60000, and 779165

images respectively. We also randomly select subsets of

miniImageNet (20%, 40%, 60%, 80%, and 100%) and

report the 1-shot accuracy. An equal portion of exam-

ples from each class are randomly selected. As shown in

Fig. 6, self-supervised features (UBC-TFSL) significantly

outperform other methods with a big dataset. However,

when the dataset is small (e.g., Caltech-256 and 20% of

miniImageNet), it is overtaken by the FSL baseline. This

result suggests that supervised features are more robust

to dataset size.

4.6. Comparing different self­supervised methods

As shown in Table 2, we compare three different in-

stance discrimination methods to learn the feature embed-

ding. Here we compare MoCo-v2 [3], CMC [38], and Sim-

CLR [2]. From the results, we can see that all these self-

supervised methods can learn a powerful inductive bias,

especially in the transductive setting, suggesting that most

Table 2: Few-shot classification accuracy with differ-

ent self-supervised methods. We run experiments using

MoCo-v2 [3], CMC [38], and SimCLR [2] as our self-

supervised methods to learn the feature embedding. The top

results are highlighted in blue and the second-best results in

green.

miniImageNet

method backbone 1-shot 5-shot

UBC-FSL (MoCo-v2) ResNet-101 57.5±0.6 77.2±0.4

UBC-FSL (CMC) ResNet-101 56.9±0.6 76.9±0.5

UBC-FSL (SimCLR) ResNet-101 57.6±0.7 76.7±0.6

UBC-TFSL (MoCo-v2) ResNet-101 80.4±0.6 92.8±0.2

UBC-TFSL (CMC) ResNet-101 79.7±0.6 92.1±0.3

UBC-TFSL (SimCLR) ResNet-101 79.5±0.7 92.2±0.3

self-supervised methods can be generalized to learn a good

embedding for few-shot learning.

5. Conclusion

Most previous FSL methods borrow a strong inductive

bias from the supervised learning of base classes. In this

paper, we show that no base class labels are needed to de-

velop such an inductive bias and that self-supervised learn-

ing can provide a powerful inductive bias for few-shot learn-

ing. We examine the role of features learned through self-

supervision in few-shot learning through comprehensive ex-

periments.
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