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Abstract

Neural networks trained on real-world datasets with

long-tailed label distributions are biased towards frequent

classes and perform poorly on infrequent classes. The im-

balance in the ratio of positive and negative samples for

each class skews network output probabilities further from

ground-truth distributions. We propose a method, Partial

Label Masking (PLM), which utilizes this ratio during train-

ing. By stochastically masking labels during loss computa-

tion, the method balances this ratio for each class, lead-

ing to improved recall on minority classes and improved

precision on frequent classes. The ratio is estimated adap-

tively based on the network’s performance by minimizing

the KL divergence between predicted and ground-truth dis-

tributions. Whereas most existing approaches addressing

data imbalance are mainly focused on single-label classi-

fication and do not generalize well to the multi-label case,

this work proposes a general approach to solve the long-tail

data imbalance issue for multi-label classification. PLM is

versatile: it can be applied to most objective functions and it

can be used alongside other strategies for class imbalance.

Our method achieves strong performance when compared

to existing methods on both multi-label (MultiMNIST and

MSCOCO) and single-label (imbalanced CIFAR-10 and

CIFAR-100) image classification datasets.

1. Introduction

The impressive performance of deep learning meth-

ods has led to the creation of many large-scale datasets

[6, 12, 27, 23]. Due to the naturally imbalanced distri-

bution of objects within the world, these datasets contain

imbalanced numbers of samples for different classes. The

class labels in these datasets form a long-tailed distribution:

several classes appear frequently (the head classes), while

many classes contain few samples (the tail classes). This

imbalance causes classifiers to perform poorly, especially

on classes which are infrequent in training. Finding a solu-

Figure 1. The output probability (ŷc) distributions of a ResNet-

32 classifier trained on artificially imbalanced CIFAR-10 for pos-

itive (left) and negative samples (right). For frequent classes, the

predicted distribution skews towards 1; for infrequent classes, it

skews towards 0. Classifiers trained using PLM (bottom) reduces

this bias, when compared to classifiers trained with binary cross-

entropy (top).

tion to this problem is necessary to successfully scale deep

networks to larger real-world datasets which tend to have

long-tail data distributions.

Several recent works [2, 5, 3] attempt to solve the data

imbalance issues; however, most tend to have single-label

assumptions. For example, LDAM-DRW [3] performs very

well in single-label settings, but it assumes a single class

label, y, is present for a given sample, x, to compute class

margins γ(x, y) for their proposed loss. Not only that, but

the two most common methods for learning long-tailed dis-

tributions, reweighting and resampling, were not designed

for data with multiple labels. Our experiments show that

reweighting based on the inverse number of samples per-

forms poorly on multi-label datasets; also, it is difficult to

resample multi-label data due to the co-occurrence of labels

within individual samples. Since many real-world applica-

tions like image tagging [28, 10], recommendation systems

[37, 31], and action detection [12, 9], often involve multi-

label classification and suffer from imbalanced data, we be-



lieve that class-imbalance methods should be developed for

both single-label and multi-label settings. Therefore, in this

work, we propose a general solution for long-tailed imbal-

ance which works for both multi-label and single-label clas-

sification.

Classifiers trained on imbalanced multi-label datasets

tend to over-predict frequent classes and under-predict mi-

nority classes. This behaviour is displayed in Figure 1.

When the class is not present within the image, the prob-

ability output for the frequent classes is skewed towards 1;

conversely, when an infrequent class is present within the

sample, the classifier outputs a low probability score. These

output probability distributions differ greatly from the ideal

distribution (i.e. the ground-truth distribution where all pos-

itive samples are labeled 1 and all negative samples are la-

beled 0). We argue, that this behaviour is caused not only

by an imbalance in the number of positive samples between

different classes, but also by the ratio of positive and nega-

tive samples for each class.

As dataset imbalance increases, the ratio of positive sam-

ples to negative samples increases for head classes and de-

creases for tail classes. We find that the change in this ra-

tio greatly impacts the classifier’s ability to generalize. If

a class has large ratio of positive samples to negative sam-

ples, the classifier over-predicts the given class, leading to

an increase of false positive predictions; conversely, a small

ratio leads to under-prediction and an increase of false neg-

atives. Assuming there is an optimal ratio which can mini-

mize the over/under-predictions, an algorithm can estimate

and leverage this ratio to improve network performance.

We present Partial Label Masking (PLM): a novel ap-

proach for training classifiers on imbalanced multi-label

datasets which improves network generalization by lever-

aging this ratio. By partially masking positive and nega-

tive labels for frequent and infrequent classes respectively;

our method reduces the discrepancy between the classifiers’

output probability distribution and the ground-truth distri-

bution (as seen in Figure 1). Our method performs this

masking stochastically for each sample and it continually

adapts the target ratio based on the classifier’s output prob-

abilities. This leads to improved precision on classes with

many samples and improved recall on classes with few sam-

ples. Moreover, our method consistently improves perfor-

mance on difficult classes, regardless of the number of sam-

ples.

Our contributions include: (i) we present a general solu-

tion for data imbalance which balances the ratio between

positive and negative samples, (ii) we propose an adap-

tive strategy to determine the ideal ratio which minimizes

the difference between predicted probability and ground-

truth distributions, (iii) we empirically evaluate our method

on both multi-label datasets (imbalanced MultiMNIST and

MSCOCO) and single-label datasets (CIFAR10 and CI-

FAR100), and (iv) we thoroughly analyse our method’s

ability to improve classifiers’ performance on both difficult

and infrequent classes.

2. Method

Notation We denote a dataset with N samples and C
class categories as D = {

(

x(i), y(i)
)

} where x(i) is the

ith input and y(i) = [y
(i)
1 , ..., y

(i)
C ] is its corresponding bi-

nary label vector; note that multiple elements in this label

may be non-zero in multi-label classification. The num-

ber of positive samples for a class c is n+
c = |{i : i ∈

{1, ..., N}, where y
(i)
c = 1}|, and the number of negative

samples is n−

c = N − n+
c . The ratio of positive samples to

negative samples for a class c is rc =
n+
c

n
−

c

. We denote the

“optimal” ratio, which minimizes over/under-predictions as

r̄c.

2.1. Partial Label Masking

Given a network prediction, ŷ
(i)

, the total loss is sum of

the losses over all C classes:

L
(

y(i), ŷ
(i)
)

=

C
∑

j=1

ℓ
(

y
(i)
j , ŷ

(i)
j

)

. (1)

This is a general form (e.g. for binary cross-entropy,

ℓ (y, ŷ) = − [y log (ŷ) + (1− y) log (1− ŷ)]).
Partial Label Masking (PLM) masks the loss computed

for certain classes. For each image i we generate a binary

mask g(i) = [g
(i)
1 , ..., g

(i)
C ] that masks loss calculations for

certain classes as follows:

L
(

y(i), ŷ
(i), g(i)

)

=
C
∑

j=1

g
(i)
j ℓ

(

y
(i)
j , ŷ

(i)
j

)

. (2)

Note that equation 2 is a generalized form of 1 when all

masks equal one, i.e. g
(i)
c = 1. Therefore, PLM can be used

with any loss which sums over different classes.

Masks Generation With this formulation, one can gener-

ate masks so that frequent class samples are ignored by the

loss calculation and an equal number of samples for each

class is used to train the network, which is typically em-

ployed in under-sampling. The issue with under-sampling

samples, however, is that frequent and infrequent classes

can co-occur within the same sample, so removing it from

training would not meaningfully change the imbalance. The

benefit of the PLM formulation is that individual positive, or

negative, labels can be masked to ensure a specific number

of labels for each class is used to train the network regard-

less of co-occurrence.

Instead of under-sampling based on the number of pos-

itive samples, we consider the ratio of positive to negative



samples for each class, rc. Assuming there is some ideal

ratio, r̄c, which minimizes over/under-predictions, we can

generate the masks, g(i), stochastically as a function of the

label:

g(i)c = f
(

y(i)c

)

=















✶

[

r̄c
rc

]

, rc > r̄c and y
(i)
c = 1

✶

[

rc
r̄c

]

, rc < r̄c and y
(i)
c = 0

1, otherwise

(3)

where ✶ [p] = 1 with probability p, and 0 with probability

1 − p. The probabilities used, r̄c/rc and rc/r̄c, ensure that

the ratio between positive and negative samples on which

loss is calculated is r̄c. With partial label masking, we are

able to train a classifier with a set ratio between positives

and negatives for each class. Now the question arises: How

does one determine this ideal ratio?

Ratio Selection The ratio between positives and negatives

for each class should be set to minimize over-predictions

and under-predictions for the head and tail classes respec-

tively. Since decreasing the ratio reduces the number of

positive samples used for loss calculation and increasing

the ratio reduces the number of negative samples, the ra-

tio selected for the head classes should be decreased (i.e.

r̄c < rc). On the other hand, the ratio for the tail classes

should be increased (r̄c > rc).

One simple approach for setting the ratio would be to

use the average ratio of all the classes. This ensures a de-

crease in the ratio for head classes and increase for tail

classes. Although, this ratio leads to improved results on

some datasets, it is sensitive to different levels of imbalance

within the dataset as well as the relative difficulty of the

various classes. Ideally this hyper-parameter would change

based on the performance of the classifier on the dataset

on-hand. To this end, we propose a method to estimate the

ratio adaptively based on the output probability distribution

of the classifier.

Ratio Adaptation For a class c, the set of output proba-

bilities for the positive and negative samples are represented

by Ŝ+
c and Ŝ−

c , respectively. The ground-truth sets are S+
c

and S−

c , where members of this set will be 1 for a positive

sample and 0 for a negative sample. Formally, these sets

can be defined as:

S+
c = {y(i)c |y

(i)
c = 1, ∀i},

Ŝ+
c = {ŷ(i)c |y

(i)
c = 1, ∀i},

S−

c = {y(i)c |y
(i)
c = 0, ∀i},

Ŝ−

c = {ŷ(i)c |y
(i)
c = 0, ∀i}.

(4)

A discrete distribution1 is formed using these sets by plac-

ing the probabilities in τ bins of width 1/τ . For each set,

we denote these distributions as P+
c , P̂+

c , P−

c , and P̂−

c re-

spectively. When data imbalance is present, the classifiers

output probabilities skew further from the ground-truth dis-

tributions. For head classes, the difference between P̂−

c and

P−

c increases as the probability outputs for negative sam-

ples become larger; conversely, for tail classes, probabilities

are pushed closer to 0 for positive samples, so the difference

between P̂+
c and P+

c increases.

We utilize this difference to change the ratio until the out-

put distributions better resemble the ground-truth distribu-

tion. To compute the difference between the distributions,

we use the Kullback-Leibler divergence:

D+
c = DKL

(

P̂+
c ||P

+
c

)

; and D−

c = DKL

(

P̂−

c ||P
−

c

)

.

(5)

We normalize the divergence

D̃+
c =

D+
c − µ+

σ+
; and D̃−

c =
D−

c − µ−

σ−

, (6)

with their means (µ+ and µ−) and standard deviations (σ+

and σ−). After normalization, D̃+
c tends to be positive when

the network under-predicts class c and negative when the

network over-predicts. The inverse holds for D̃−

c : it is pos-

itive when the network over-predicts, and negative other-

wise.

The ratio should be adjusted during training until the

divergence scores in equation 6 become balanced (D+
c =

D−

c ). At each epoch t, the ratio r̄c,t becomes

r̄c,t = eλDc r̄c,t−1, (7)

where r̄c,1 is the initial ratio (e.g. the dataset’s ratio, rc),

Dc = D̃+
c − D̃−

c , and λ is a hyper-parameter which con-

trols the rate of change of the ratio. The exponential term

in equation 7 increases, or decreases, the current ratio for

each class based on the divergence between ground-truth

and output probability distributions: if Dc > 0, which tends

to occur for infrequent classes, then the ratio increases; if

Dc < 0, which occurs for frequent classes, then the ratio

decreases. If Dc = 0 (i.e. D+
c = D−

c ), then the ratio re-

mains unchanged as some optimal ratio has been reached.

The training procedure used for partial label masking is de-

scribed in Algorithm 1.

3. Experimental Evaluation

We evaluate our proposed method on several image clas-

sification benchmarks with varying levels of imbalance. Im-

balance, ρ, is denoted as the ratio between the number of

samples for the most frequent class and the least frequent

class: ρ = maxi{n
+
i }/mini{n

+
i }.

1Additional information on how this distribution is formed can be

found in the Supplementary Material.



Algorithm 1 PLM training algorithm. Inputs are a network Fθ and the dataset D = {
(

x(i), y(i)
)

}Ni=1.

1: Initialize r̄c,1
2: for t = 1 to T epochs do

3: Generate masks g
(i)
c = f

(

y
(i)
c

)

, using r̄c,t ⊲ Equation 3

4: repeat

5: B ← SampleMiniBatch (D)
6: ŷ← Fθ (B) ⊲ Perform forward pass on mini-batch

7: Fθ ← Fθ − α∇θL (y, ŷ, g) ⊲ One SGD step with loss in equation 2

8: until all data has been sampled

9: Generate P+
c , P−

c , P̂+
c , P̂−

c from all y(i) and ŷ
(i)

10: Compute Dc = D̃+
c − D̃−

c using equations 5 and 6

11: r̄c,t+1 ← eλDc r̄c,t ⊲ Update ratio

3.1. Multilabel Classification

Datasets We evaluate our method on two multi-label

datasets: MultiMNIST and the large-scale real-world multi-

label dataset MSCOCO [27]. We construct the imbalanced

MultiMNIST dataset by superimposing two MNIST [25]

digits into a single image. We sample the MNIST train-

ing set to obtain a long-tail distribution over the differ-

ent digits. Due to coocurrence of the same digit within a

sample, the final imbalance of the dataset is ρ = 90.33.

The test set consists of 90000 samples; it is roughly bal-

anced, with all classes being present a similar number of

samples2. MSCOCO is a multi-label image classification

benchmark, which contain a large amount of imbalance

(ρ = 352.92). We use the standard train/test split which

consists of 82,783 training and 40,504 evaluation images. It

contains 80 classes, with an average of 2.9 labels per sam-

ple.

Metrics We evaluate classifier performance using mul-

tiple standard multi-label classification metrics: per-class

precision, per-class recall, F1-score, and 0-1 exact match

accuracy. To evaluate performance on tail classes, we mea-

sure some metrics averaged over the K most infrequent

classes. A description of these metrics is in the Supplemen-

tary Material.

Baselines Since recent class imbalance works tend to fo-

cus on single-label classification, we compare our method

with those approaches which can be applied to multi-label

classification. We use the following baselines: i) binary

cross-entropy, ii) focal loss [26], iii) reweighting by in-

verse number of classes (CB), and iv) undersampling. For

reweighting, we use the formulation:

L
(

y(i), ŷ
(i)
)

=

C
∑

j=1

wjℓ
(

y
(i)
j , ŷ

(i)
j

)

, (8)

2Additional details of the dataset’s construction and the dataset statis-

tics are in the Supplementary Material.

where wj is the inverse number of samples for class j, as

calculated in [5]. Undersampling that removes all imbal-

ance is a non-trivial operation when multiple labels can are

present in each sample. Therefore, for each epoch, we select

S samples from each class (without duplication) to reduce

the imbalance seen by the network (S=500 for MultiMNIST

and S=1000 for MSCOCO).

Implementation For experiments on MultiMNIST, we

train a ResNet-12 [16] model using stochastic gradient de-

scent (SGD) with momentum of 0.9 for 90 epochs. The

initial learning rate is set to 0.1 which is decayed by a fac-

tor of 0.1 at epochs 60 and 80. We employ a linear learn-

ing rate warm-up [11] for the first 5 epochs. The network is

model with a batch size of 128. On MSCOCO, a ResNet-50

model is trained with a similar training procedure; however,

the initial learning rate is set to 0.4 which is decayed epochs

30, 60, and 80, and the batch size is increased to 200. For

both datasets, we initialize the ratio with the dataset’s ratio

(i.e. r̄c,1 = rc) and set λ to 0.01. Since the imbalance in

MSCOCO is large, we clip the ratios within the range [0, 1].

Results on MultiMNIST We present results for Mul-

tiMNIST in Table 1. Undersampling improves results on

MultiMNIST across all metrics, but the use of reweighting

(CB) leads to a decrease in performance since the technique

is formulated for the single-label case. The use of PLM

during training improves results across all metrics. The

F1-score improves by 2.34% and the exact match accuracy

improves by 2.49% over the next best baseline. Notably,

PLM greatly improves performance on the minority classes

- for the three most infrequent digits, the recall increases by

11.7% and the F1-score increases by 7.18%.

Results on MSCOCO Results for MSCOCO are pre-

sented in Table 2. We find conventional methods de-

signed for single-label data imbalance (focal loss, class-

based reweighting, and under-sampling) tend to underper-



Loss Und. Precision Recall F1 Score 0-1 Acc.

Avg. Avg. K=5 K=3 Avg. K=5 K=3

BCE ✗ 86.96 78.65 63.39 51.50 80.35 73.87 65.73 53.42

Focal ✗ 86.75 78.28 62.53 50.44 79.93 73.33 64.88 52.64

BCE+CB ✗ 85.86 76.55 61.02 49.12 78.05 72.32 63.81 48.51

BCE ✓ 87.97 79.00 65.36 54.16 81.39 75.57 67.92 54.46

PLM (BCE) ✗ 87.41 81.55 71.91 65.31 83.73 79.17 74.27 56.95

PLM (Focal) ✗ 87.50 80.95 70.27 62.31 83.22 78.13 72.61 56.45

PLM (BCE+CB) ✗ 89.37 75.24 65.31 56.25 80.52 75.64 69.28 49.95

PLM (BCE) ✓ 88.54 80.38 71.29 65.86 83.56 79.44 75.10 56.53
Table 1. Results for multi-label image classification on MultiMNIST. “Und.” denotes undersampling and “CB” denotes class-based

reweighting [5].

Loss Und. Precision Recall F1 Score 0-1 Acc.

Avg. Avg. K=20 K=10 Avg. K=20 K=10

BCE ✗ 69.35 39.89 30.02 16.00 48.74 37.94 21.80 21.76

Focal ✗ 68.01 38.62 28.92 15.10 47.38 36.52 20.46 20.88

BCE+CB ✗ 67.82 37.23 35.25 23.68 46.10 43.64 30.53 19.43

BCE ✓ 65.96 37.75 35.18 19.50 46.06 41.59 24.16 18.60

PLM (BCE) ✗ 67.75 41.29 39.69 29.91 50.16 44.24 31.26 20.51

PLM (Focal) ✗ 66.89 39.48 37.63 27.67 48.49 42.38 29.56 19.66

PLM (BCE+CB) ✗ 65.71 37.06 39.06 29.25 46.39 45.68 33.18 17.41

PLM (BCE) ✓ 63.72 36.23 40.21 31.46 44.85 44.49 32.72 16.71
Table 2. Results for multi-label image classification on MSCOCO. “Und.”, denotes undersampling and “CB” denotes class-based reweight-

ing [5].

form standard binary cross-entropy (BCE) training. Al-

though reweighting and under-sampling lead to improve-

ments on tail classes, they dramatically reduce performance

on head classes leading to an overall performance decrease.

PLM, on the other hand, achieves an overall improvement

on recall (1.4%) and f1-score (1.42%). There is a de-

crease in precision due to the drastic improvement of re-

call on minority classes - this is further discussed in section

4. Whereas PLM leads to a 0-1 accuracy improvement on

MultiMNIST, there is a decrease on MSCOCO due to the

imbalance of the MSCOCO test set and the bias of this met-

ric to frequently occurring classes. Overall, PLM greatly

improves performance on tail classes: when compared to

the BCE baseline, the 10 most infrequent classes have a

13.91% increase in recall and a 9.46% increase in f1-score.

Moreover, these experiments highlight the versatility of our

method: PLM can be used on top of existing data imbalance

methods as well as different losses.

3.2. Singlelabel Classification

Datasets CIFAR-10 and CIFAR-100 [24] contain 32×32
images with 10 and 100 classes respectively. To artificially

create imbalance, we reduce the training examples for cer-

tain classes, while keeping the 10,000 validation images un-

changed. Following the experimental setup in [5], we evalu-

ate on varying levels of long-tailed imbalance, ranging from

10 to 200.

Baselines We compare our method with the following

baselines: i) binary-cross entropy (BCE), ii) focal loss, iii)

reweighting (CB) [5], and iv) LDAM-DRW [3]. The later

two are recent methods for dealing with imbalanced single-

label datasets.

Implementation For the CIFAR experiments, we train a

ResNet-32 following the training procedure described in

[5]. Again, we initialize the ratio with the dataset’s ra-

tio. The hyper-parameter λ is set to 1.0 and 0.01 for the

CIFAR-10 and CIFAR-100 experiments respectively. These

values were selected empirically - we analyse the effect of

this hyper-parameter in section 3.3.

Results Tables 3 and 4 contain PLM’s results on CIFAR-

10 and CIFAR-100, respecively, for several imbalance fac-

tors (ρ = 10, 20, 50, 100, 200). PLM achieves improvement

when compared to the common methods for data imbalance

- focal loss and reweighting based on the inverse effective

number of samples (CB). Although the LDAM-DRW ap-

proach tends to achieve lower error in these experiments,

it is based on a single-label assumption (i.e. equations 10

and 12 in their work require only a single positive label to

be be present within a sample) and cannot be applied to

multi-label classification. On the other hand, our approach

achieves strong performance in both single-label and multi-

label settings.



Imbalance 200 100 50 20 10

Overall K=50 Overall K=50 Overall K=50 Overall K=50 Overall K=50

BCE 34.88 55.84 29.43 46.46 23.34 35.52 16.37 22.54 12.71 15.98

Focal 36.28 58.80 29.69 46.88 23.38 35.22 16.53 23.00 12.63 16.74

CB [5] 31.11 - 25.43 - 20.73 - 15.64 - 12.51 -

LDAM-DRW [3] - - 22.97 - - - - - 11.84 -

PLM (BCE) 29.67 44.65 24.86 36.05 20.50 28.66 15.21 19.92 12.35 14.98

PLM (Focal) 29.79 44.54 25.19 36.53 20.19 27.94 15.21 19.60 12.20 14.60
Table 3. Error rates for single-label image classification on imbalanced CIFAR-10. We measure the average error across all classes (Overall)

as well as the error on the 5 classes with the fewest number of samples (K=5).

Imbalance 200 100 50 20 10

Overall K=50 Overall K=50 Overall K=50 Overall K=50 Overall K=50

BCE 63.92 86.10 59.88 79.18 55.25 72.84 48.66 59.98 43.35 52.12

Focal 64.67 87.84 60.04 81.62 55.71 74.60 48.62 63.86 43.04 53.74

CB [5] 63.77 - 60.40 - 54.68 - 47.41 - 42.01 -

LDAM-DRW [3] - - 57.96 - - - - - 41.29 -

PLM (BCE) 61.37 80.79 55.98 73.14 52.49 67.07 46.15 57.26 41.71 49.78

PLM (Focal) 61.68 79.43 56.19 72.39 52.09 65.39 46.11 56.28 41.54 48.83
Table 4. Error Rates for single-label image classification on imbalanced CIFAR-100. We measure the average error across all classes

(Overall) as well as the error on the 50 classes with the fewest number of samples (K=50).

3.3. Ablations

In this section, we run several experiments to understand

the importance of the hyperparameter, λ, and the initial ra-

tio, r̄c,1.

Ratio Adaptation Since our approach attempts to esti-

mate an optimal ratio for training a network, we investigate

how the ratio changes throughout training. We present the

effect of ratio’s rate of change (λ) on the CIFAR-10 and

CIFAR-100 datasets in Table 5. We find that all tested

values lead to an improvement over no change (i.e. us-

ing standard BCE). On CIFAR-10, a higher rate of change

(λ = 1.0) leads to best performance. Meanwhile, a lower

rate of change (λ = 0.01) leads to best results on CIFAR-

100 (this is also the case on MultiMNIST and MSCOCO).

Figure 2 depicts how the ratio changes throughout training

on the imbalanced MultiMNIST dataset. The ratio of head

classes (digits 0, 1, and 2) decrease, while the ratio of the

tail classes (digits 7, 8, and 9) increase. Over the 90 epochs,

the ratio of the most frequent class (digit 0) decreases from

1.82 to 0.24 (decreasing by a factor of 7.58), and the ratio

of the least frequent class (digit 9) increases from 0.007 to

0.047 (increasing by a factor of 6.54). This demonstrates

that the original ratios (i.e. the dataset’s ratios) are not op-

timal for performance; by adapting the ratio, PLM greatly

improves the training process.

Ratio Initialization We analyse the importance of the ini-

tial ratio, r̄c,1, for our algorithm. We run ablations on

CIFAR-10 and CIFAR-100 (ρ = 100), where we initialize

the ratio with various values. The results for this ablation

Figure 2. The change of the ratio over time on imbalanced Mul-

tiMNIST. The ratio for tail classes tend to increase while the ratio

for head classes tend to decrease.

can be found in Table 6. We find that initializing the ra-

tio with the dataset’s ratio (rc) or the mean of the dataset’s

ratio (mean{rc}) leads to the lowest error. We find that ini-

tializing with the maximum or minimum ratio of the dataset

tends to lead to poor results. Since the datasets are heavily

imbalanced, initializing with either of these ratios leads to

too many masked labels which adversely impacts the net-

work’s training. We find that initializing the ratio with the

dataset’s ratio is necessary to achieve good performance on

the large-scale dataset MSCOCO. This may be the result of

the larger amount of imbalance in MSCOCO or the pres-

ence of very difficult classes which have many samples (i.e.

a difficult class with many positive samples may require a

larger ratio than an easy class with fewer samples).



Figure 3. The test accuracy for each class on CIFAR-10 with varying levels of imbalance. PLM leads to improved generalization on

minority classes, especially when there is a large amount of imbalance.

λ CIFAR-10 CIFAR-100

1.0 24.86 56.92

0.1 25.08 57.67

0.01 25.64 55.98

0.0 (BCE) 29.43 59.88
Table 5. Error rates on CIFAR-10 and CIFAR-100 (both with

ρ = 100). This ablation measures the effect of λ. For these exper-

iments, the initial ratio is the dataset’s ratio r̄c,1 = rc.

Initial Ratio CIFAR-10 CIFAR-100

min{rc} 28.82 73.46

max{rc} 30.74 56.73

mean{rc} 25.65 56.08

rc 24.86 55.98
Table 6. Ablations on CIFAR-10 and CIFAR-100 (both with ρ =

100) measuring the effect of the initial ratio. λ = 1 and λ = 0.01

for CIFAR-10 and CIFAR-100 respectively.

4. Discussion and Analysis

Generalization on minority classes To perform well on

long-tailed datasets, classifiers must generalize well on

classes which have few training samples. All of our ex-

periments show that PLM greatly improves performance on

minority classes. Figure 3 displays the class-level accuracy

on the CIFAR-10 dataset for various levels of imbalance; as

the imbalance factor increases, there is a corresponding rel-

ative improvement on tail classes. Similarly, the MSCOCO

experiments show an improvement on all 15 of the least fre-

quent classes in terms of F1-score, as seen in Figure 4.

Effects on Precision and Recall In imbalanced datasets,

classifiers tend to have poor precision on frequent classes

and poor recall on infrequent classes. This is due, in part,

to the large difference in the ratio of positive to negative

samples. By minimizing the KL divergence between the

ground-truth and predicted output distributions, PLM effec-

tively balances this ratio, leading to improved performance.

On MSCOCO3, we find that our classifier’s precision over

the 5 most frequent classes improves by 12.73% whereas its

recall over the 5 least frequent classes improves by 13.04%.

In general, PLM leads to improved recall over most classes,

3We present per-class precision and recall graphs in the Supplementary

Materials.

which suggests that it would be best suited for applications

which prioritize true positives over false positives.

Improvements on difficult classes Another benefit of

using PLM during training is the improvements observed

on difficult classes. This behaviour can be seen in Fig-

ure 4, with categories backpack, bench, and cell phone.

These categories contain many samples, but the network

achieves less than 20% F1-score when trained with BCE;

when trained with PLM, performance on each of these cat-

egories improves by an average of 11.16%. This improve-

ment is caused by the increasing of the ratio r̄c during train-

ing, which leads to masking more negative labels for these

classes and an increase in recall.

PLM and Under-sampling Under-sampling (US) is dif-

ficult to apply to the multi-label case due to class co-

occurrence. When a head class co-occurs with a tail class,

randomly removing samples from the prior can lead to

an increase in the level of imbalance (i.e. by remov-

ing a sample which contains two classes i and j, the im-

balance between those classes increases from n+
i /n

+
j to

(n+
i −1)/(n+

j −1)). Since PLM masks partial labels, it can

circumvent this issue by removing the label corresponding

to the frequent class while still using the label for the in-

frequent class. This is evident from the MSCOCO exper-

iments (Table 2) where undersampling to reduced the av-

erage f1-score by 2.68% while PLM led to an increase of

1.42%. Another difference between the two approaches is

that PLM masks both positive and negative labels within a

sample, while US only deals with positive labels. This al-

lows PLM to change the ratio of positive and negative labels

for a class, without effecting the ratio of other classes.

5. Related Work

Many works have studied the problem of long-tailed data

imbalance. Extensive overviews of the problem can be

found for both classical methods [20, 15] and convolutional

neural networks [2].

Resampling Methods Resampling techniques either

over-sample the infrequent classes or under-sample the fre-



Figure 4. The class-wise F1 score on the MSCOCO dataset. The classes are ordered based on the number of samples in the training set.

The bars represent the results achieved by using PLM, and the points are the results with BCE. Not only does PLM improves results on the

15 most infrequent classes, but also it improves scores on difficult classes, like backpack, bench, and cell phone.

quent classes to reduce the amount of the amount of im-

balance seen by the network during training. Several over-

sampling approaches [4, 13, 14, 33] generate synthetic sam-

ples of minority classes which are used alongside real-data

to improve classifier performance. Under-sampling [19, 29]

randomly removes some samples from frequent classes dur-

ing training, and has generally been shown to outperform

over-sampling [7]. These techniques have mainly been de-

signed for single-label classification, and do not necessarily

extend well to the multi-label case (see Section 4).

Reweighting Methods Reweighting methods apply

weights to certain classes, or samples, during the objective

calculation. The standard approach is to apply class weights

based on the inverse number of samples [17, 35, 22, 18],

or the square-root of the inverse number of samples [32].

Cui et al. [5] proposed class weights based on the effective

number of samples, which improved results on frequent

classes. The focal loss [26] is another popular technique,

which reweighs the loss based on the classifiers’ output

probabilities. Our method can be viewed as a type of loss

reweighting where binary weights are generated stochas-

tically for each sample. Furthermore, PLM is versatile

and can be applied on top of existing reweighting and

resampling approaches.

Additional Long-tail Recognition Methods Recently,

Kang et al. [21] proposed a method achieving strong long-

tailed recognition by decoupling the learned feature repre-

sentations and the classifier. Liu et al. [30] propose the task

of open long-tailed recognition and present a method which

uses dynamic meta-embeddings and modulated attention to

transfer knowledge from head to tail classes. Although most

long-tail recognition works focus on the single-label classi-

fication, a recent work [36] presents a distribution-balanced

loss which is effective for multi-label imbalance.

Partial Label Learning Our approach takes inspiration

from partial label learning, in which learning is performed

on data with incomplete, or missing, labels [1, 34]. Re-

cently, [8] proposed an effective method for training a con-

volutional neural network on partial labels. Whereas the

goal of partial label learning is to learn from sparsely anno-

tated samples, our work deals with learning completely an-

notated imbalanced datasets; our method assumes all labels

are complete, and we partially mask some labels to reduce

the effect of data imbalance on network training.

6. Conclusion

In this work, we propose a general approach to the long-

tail data imbalance problem. Our partial label masking al-

gorithm leverages the ratio of positive and negative samples

for each class to greatly improve performance on both in-

frequent and difficult classes. Unlike most data-imbalance

approaches, PLM can be successfully applied to the multi-

label setting. Furthermore, the method is versatile as it can

be used alongside most existing methods for data imbal-

ance. We evaluate PLM on multiple datasets and perform

extensive analysis to verify its effectiveness.
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