
Contrastive Learning Improves Model Robustness Under Label Noise

Aritra Ghosh Andrew Lan

University of Massachusetts Amherst

{arighosh,andrewlan}@cs.umass.edu

Abstract

Deep neural network-based classifiers trained with the

categorical cross-entropy (CCE) loss are sensitive to label

noise in the training data. One common type of method

that can mitigate the impact of label noise can be viewed as

supervised robust methods; one can simply replace the CCE

loss with a loss that is robust to label noise, or re-weight

training samples and down-weight those with higher loss val-

ues. Recently, another type of method using semi-supervised

learning (SSL) has been proposed, which augments these su-

pervised robust methods to exploit (possibly) noisy samples

more effectively. Although supervised robust methods per-

form well across different data types, they have been shown

to be inferior to the SSL methods on image classification

tasks under label noise. Therefore, it remains to be seen that

whether these supervised robust methods can also perform

well if they can utilize the unlabeled samples more effectively.

In this paper, we show that by initializing supervised robust

methods using representations learned through contrastive

learning leads to significantly improved performance under

label noise. Surprisingly, even the simplest method (training

a classifier with the CCE loss) can outperform the state-of-

the-art SSL method by more than 50% under high label noise

when initialized with contrastive learning. Our implemen-

tation will be publicly available at https://github.

com/arghosh/noisy_label_pretrain.

1. Learning under Label Noise

In standard classification tasks, we are given a dataset

D = {(xi,yi)}
N
i=1 where xi is the feature vector of the ith

sample (image) and yi ∈ {0, 1}K is the class label vector

with K total classes. We minimize the following empirical

risk minimization (ERM) objective,

min
w

1

N

N
∑

i=1

ℓCCE(yi, f(xi;w)), (1)

where f(·;w) is a deep neural network (DNN)-based clas-

sifier with parameters w and ℓCCE is the categorical cross-

entropy (CCE) loss. However, real-world datasets often

contain noisy labels; i.e., yi can be corrupted. DNNs are sen-

sitive to label noise when they are trained with the CCE loss,

which reduces their ability to generalize to clean dataset.

Most of the early works on learning under label noise

can be called as supervised robust methods and they are

equally applicable to image, text, or any other data types.

A general trick to mitigate the impact of label noise is to

replace the CCE loss function ℓCCE with a loss that is more

robust to label noise in Eq. 1 [39, 25, 26, 13, 14, 11, 32,

25, 35]. In [11], the authors show that a loss function ℓ
is robust to uniform label noise if it satisfies the condition
∑K

k=1 ℓ(k, f(xi;w)) = C for some constant C. The mean

absolute error (MAE) loss satisfies this symmetric condition;

however, the MAE loss is difficult to optimize under the

ERM objective with DNNs. Several loss functions have

been proposed that offer model robustness under label noise

and they are easier to optimize compared to the MAE loss

[25, 35, 39, 26]. For example, the generalized cross-entropy

loss Lq (q ∈ (0, 1] is a hyper-parameter) is defined as [39]

Lq(y, f(x;w)) = 1−y
⊺f(x;w)q

q
. The Lq loss is equivalent

to the CCE loss when q→0 and is equivalent to the MAE

loss when q=1. However, these robust loss functions do not

perform well on large image datasets.

Another common strategy for learning under label noise

is to separate out the noisy samples from the clean samples

or re-weight the training samples and stick with the CCE

loss; we can simply change the objective as

min
w

1

N

N
∑

i=1

W(xi,yi)ℓCCE(yi, f(xi;w)), (2)

where W(xi,yi) ∈ [0, 1] is the assigned weight for the

training sample (xi,yi). A common heuristic, studied in

earlier research, is that noisy samples have higher loss values

compared to the clean samples [4, 3]. Many recent meth-

ods apply this idea to filter out or lower weights to possibly

noisy samples [15, 17, 31, 7, 17, 20, 31, 33, 37, 23, 28, 16].

Instead of filtering samples based on the loss value, a

more principled way is to learn a weighting function

W(ℓ(yi, f(xi;w)); θ) in a data-driven manner where the

function takes the loss value as the input. Meta-learning-

based methods have been particularly useful to learn a

weighting function [30, 12, 29, 22]. As an example, Meta-

Weight Network (MWNet) [30] learns a weighting function



W with parameter θ using a small number of clean valida-

tion samples in a bilevel setup [10]. The objective is to learn

the optimal weighting function W(ℓ(·, ·); θ∗) such that the

optimal classifier parameters w∗(θ∗) on the training samples

(train), obtained from Eq. 2, optimizes the ERM objective on

the clean validation samples (val). The bilevel optimization

problem can be written as

min
θ

∑

j∈val

ℓ
(

yj , f(xj ;w
∗(θ))

)

s.t. w∗(θ)=argmin
w

∑

i∈train

W
(

ℓ(yi,f(xi;w)); θ
)

ℓ(yi,f(xi;w)).

These supervised robust methods perform well across many

data types.

Recently, many semi-supervised learning (SSL) meth-

ods have been proposed for image datasets to mitigate the

impact of label noise. SSL methods aim to improve the

performance of a DNN classifier by exploiting unlabeled

data [2]. Common tricks in SSL methods include using a

consistency regularization loss to encourage the classifier to

have similar predictions for an image xi and the augmented

view of the image Aug(xi), an entropy minimization ob-

jective to promote high confidence predictions, and a label

guessing method to produce a good guess from many aug-

mentations of the same image [2, 38]. DivideMix, an SSL

method, divides the training dataset into the clean (labeled)

and noisy (unlabeled) parts using the observation that noisy

samples tend to have a higher loss value [21]. These SSL

methods have been shown to be superior to the supervised

robust methods on image datasets [24, 21].

1.1. Contributions

We observe that SSL methods for label noise can use

unlabeled (noisy) samples effectively to improve their repre-

sentation learning capability. Consequently, prior supervised

robust learning methods suffer a significant drop in perfor-

mance compared to the SSL methods on image datasets.

Hence, we ask the following question:

• Is the performance drop of supervised robust methods

caused by label noise or the impaired representation

learned using fewer clean samples?

Thus, we study the effect of fine-tuning these supervised

robust methods after initializing them with good represen-

tations learned by a self-supervised method. Contrastive

learning has emerged as a key method for self-supervised

learning from visual data; the general idea is to learn good

visual representations of images through comparing and con-

trasting different views of an original image under various

data augmentation operations [5, 6]. We find that the super-

vised robust methods work remarkably well when they are

initialized with the contrastive representation learning model.

Surprisingly, we notice that even using the (most sensitive)

CCE loss can outperform state-of-the-art SSL methods under

high label noise. Moreover, we observe that the generalized

cross-entropy loss [39] can retain good performance even

under 95% uniform label noise on the CIFAR-100 dataset

whereas training with a random initializer does not outper-

form a random model. These observations suggest that the

drop in performance for the supervised robust methods is

due to the lack of good visual representations. We use one

representative method from each of the two major paradigms

we described for the supervised robust methods (the Lq loss

for the loss correction approach and the MWNet method for

the sample re-weighting strategy) to illustrate the benefits

of fine-tuning representations learned through contrastive

learning with a classification task under label noise.

1.2. Related Works

The idea of using a pre-trained model initializer or self-

supervised learning is not new in label noise research. In

[19], the authors use auxiliary tasks, such as rotation predic-

tion, to improve model robustness under label noise. In [18],

the authors propose to use a pre-trained Imagenet classifier to

improve model robustness. These methods lead to improved

performance under high label noise, adversarial perturbation,

class imbalance conditions, and on out-of-distribution de-

tection tasks. However, they require a larger similar dataset

where label noise is not present or need to use an auxiliary

loss from the self-supervised tasks in addition to the clas-

sification task. In contrast, our work does not propose any

additional auxiliary tasks or require any larger datasets. We

learn the contrastive model for visual representations from

the same dataset as the classification task. This is helpful

when the classification task uses datasets (e.g., in medical

imaging datasets) that are very different than the commonly

used large-scale image datasets (e.g., the ImageNet dataset).

The most related work is [9], which uses a contrastive model

to improve the DivideMix algorithm. However, we show

that a self-supervised contrastive learning model initializer

can improve model robustness under label noise for many

supervised robust methods.

1.3. Methodology

We will use the SimCLR framework for contrastive learn-

ing [5, 6]; however, other visual representation learning

methods (including other contrastive learning methods) can

also potentially improve model robustness under label noise.

We use a base encoder f̂(·) (ResNet-50 in this paper) to

encode each image xi to hi = f̂(xi), and a two-layer multi-

layer perceptron g(·) as the projection head to project into

a fixed dimension embedding zi = g(hi). Using M im-

ages and two augmentations for each image, we construct

a dataset of 2M images {xi,0,xi,1}
M
i=1 and project them

into {zi,0, zi,1}
M
i=1 using the base encoder and the projec-

tion head. The final objective in the SimCLR framework is

defined as



M
∑

i=1

1
∑

j=0

−log
exp (sim(zi,j , zi,j+1%2)/τ)

−exp (1/τ)+
∑k=M,l=1

k=1,l=0 exp(sim(zi,j,zk,l)/τ)
,

where τ is the temperature parameter, and sim(zi, zj) is the

normalized cosine similarity
z
⊺

i
zj

||zi||||zj ||
. We use the same

dataset D = {xi,yi}
N
i=1 to learn the SimCLR encoder f̂(·).

The base encoder f̂ does not contain the classification head

(last output layer). For supervised robust methods, we use

this encoder f̂ to initialize the DNN classifier f(·;w) and

we set the weights and biases of the classification head of

f(·;w) to zero at initialization. Note that we fine-tune the

final classifier f(·) for each method and do not keep the base

encoder f̂(·) fixed.

2. Experimental Results

Datasets and Experimental Setup: We demonstrate the

efficacy of our proposed approach on CIFAR-10, CIFAR-

100, and Clothing1M datasets. Unless otherwise specified,

we use ResNet-50 (RN-50) as the classifier; for CIFAR

datasets, we adopt the common practice of replacing the

first convolutional layer of kernel size 7, stride 2 with a

convolutional layer of kernel size 3 and stride 1 and removing

the first max-pool operation in RN-50 [5].

CIFAR-10 and CIFAR-100 datasets contain 50k train-

ing samples and 10k test samples; label noise is introduced

synthetically on the training samples. We keep 1000 clean

training samples for validation purposes. We experiment

with symmetric noise and asymmetric noise. Under symmet-

ric noise, the true class label is changed to any of the class

labels (including the true label) whereas, under asymmetric

noise, the true class label is changed to a similar class la-

bel. We use the exact same setup of [39, 27] for introducing

asymmetric noise. For CIFAR-10, the class mappings are

TRUCK → AUTOMOBILE, BIRD → AIRPLANE, DEER

→ HORSE, CAT ↔ DOG. For CIFAR-100, the class map-

pings are generated from the next class in that group (where

100 classes are categorized into 20 groups of 5 classes).

Clothing1M dataset is real-world datasets consisting of

1M training samples; labels are generated from surround-

ing text in an online shopping website [34]. Clothing1M

dataset contains around 38% noisy samples [9] and we do

not introduce any additional noise on this dataset.

Pre-Training: We compare the supervised robust meth-

ods using two initialization, namely the SimCLR initializer

and the ImageNet pre-trained initializer [18]. To train the

SimCLR encoder f̂(·) and the projection head g(·), we use

a batch size of 1024 (1200) and run for 1000 (300) epochs

with the LARS optimizer [36] on a single NVIDIA RTX8000

(12 NVIDIA M40) GPU(s) on the CIFAR-10/100 (Cloth-

ing1M) datasets. For the Clothing1M dataset, we use the

standard pre-trained ImageNet RN-50 initialization. For the

CIFAR datasets, we train a RN-50 classifier from scratch

(with CIFAR changes in the first convolutional layer) on the

ImageNet-32× 32 (INet32) dataset [8] that achieves 43.67%

Top-1 validation accuracy.

Methods: We use the SimCLR RN-50 initializer for three

methods: standard ERM training with the CCE loss, ERM

training with the generalized cross-entropy loss Lq (q=0.5

or 0.66), and MWNet. The value of q in Lq loss is important

only for a high rate of noise (≥ 0.8), where the Lq loss with

a large q (0.66) is difficult to optimize; however, for all other

noise rates, a higher value of q leads to better performance.

We fine-tune for 120 epochs on the CIFAR datasets with

the SGD optimizer, learning rate of 0.01, momentum of 0.9,

weight-decay of 0.0001, and a batch size of 100. For other

baseline methods, we use the results listed in their respective

paper (or their public implementation). Note that different

prior works use different architectures; thus, we also list

the test accuracy from training on clean samples with that

architecture (and initialization). For CIFAR datasets, we list

the average accuracy from five runs of noisy label generation.

We use the CCE loss, the Lq loss (q=0.66), and the MAE

loss with the SimCLR initializer on the Clothing1M dataset.

We use the SGD optimizer, a batch size of 32, momentum of

0.9, and an initial learning rate of 0.001. Following [24, 21],

we randomly sample 4000x32 training samples in each epoch

such that the total number of samples from each of the classes

are equal. We fine-tune for 60 epochs and reduce the learning

rate by a factor of 2 after every 10 epochs.

2.1. Results and Discussion

Table 1 lists classification performance on the test set

under symmetric noise on the CIFAR datasets. The SimCLR

initializer significantly improves performance for the CCE

loss, the Lq loss, and the MWNet method. Under 90% label

noise, the CCE loss has an accuracy of 42.7% (10.1%) with a

random initializer and DivideMix has an accuracy of 93.2%

(31.5%) on the CIFAR-10 (CIFAR-100) dataset. Under the

same noise rate, the CCE loss with the SimCLR initializer

has an accuracy of 82.9% (52.11%) on the CIFAR-10 (100)

dataset which translates to a 9% (65%) gain compared to the

state-of-the-art method DivideMix. Moreover, the SimCLR

initializer beats these performances even further with the

MWNet method and the Lq loss. Under very high levels of

label noise, MWNet and the Lq loss are not able to learn

anything useful with the standard random initializer. How-

ever, with the SimCLR initializer, these methods perform

significantly better than the state-of-the-art method.

Table 2 lists the classification performance on the test

set under asymmetric label noise on the CIFAR datasets.

Similarly, we observe that the SimCLR initializer improves

model robustness under asymmetric label noise. However,

supervised robust methods do not beat the prior-state-of-the-

art method for the asymmetric noise case.

Table 3 lists the test performance on the Clothing1M

dataset. Although the CCE loss, the Lq loss, and the MAE

loss do not outperform state-of-the-art methods with the



Noise Rate (%) 0 20 40 50 60 80 90 95 0 20 40 50 60 80 90 95
Method Arch Initializer CIFAR-10 CIFAR-100

CCE [21]

PRN-18 No 95.11

86.8 - 79.4 - 62.9 42.7 -

74.4

62.0 - 46.7 - 19.9 10.1 -

MLNT [22, 21] 92.9 - 89.3 - 77.4 58.7 - 68.5 - 59.2 - 42.4 19.5 -

F-Correction [27, 21] 86.8 - 79.8 - 63.3 42.9 - 61.5 - 46.6 - 19.9 10.2

M-Correction [1, 21] 94.0 - 92.0 - 86.8 69.1 - 73.9 - 66.1 - 48.2 24.3 -

Divide-Mix [21] PRN-18 No 95.8∗ 96.1 - 94.6 - 93.2 76 - 78.9∗ 77.3 - 74.6 - 60.2 31.5 -

MWNet [30] WRN-28-10 No 95.60 92.45 89.27 87.49 84.07 69.65 25.8 18.49 79.95 73.99 67.73 66.88 58.75 30.55 5.25 3.05

Lq [39]
RN-34 No 93.34

89.83 87.13 - 82.54 64.07 - -
76.76

66.81 61.77 - 53.16 29.16 - -

ELR [24] 92.12 91.43 88.87 80.69 - - 74.68 68.43 - 60.05 30.27 - -

CCE

RN-50 INet32 96.52

92.37 - 91.56 - 83.34 62.66 39.09

81.51

70.26 - 65.76 - 54.33 38.9 20.59

Lq 94.07 - 93.75 - 90.56 85.89 73.14 77.22 - 69.87 - 60.5 54.83 44.3

MWNet 97.33 - 96.17 - 93.12 90.88 85.27 82.85 - 80.28 - 71.29 58.21 44.62

CCE

RN-50 SimCLR 94.59

93.29 - 91.96 - 88.75 82.9 66.07

75.36

71.98 - 67.89 - 59.84 52.11 39.57

Lq 94.02 - 92.94 - 90.85 88.45 83.76 73.33 - 70.14 - 63.26 55.93 45.7

MWNet 93.88 - 92.92 - 91.51 90.19 87.23 73.2 - 69.88 - 64.05 57.6 44.91

Table 1. Test accuracy (%) for various methods on the CIFAR datasets under symmetric label noise. We re-use results for the ‘No’ initializer

cases from their respective papers. We re-run public implementation of MWNet [30] for some (missing) noise levels. The test accuracy

under 0% label noise refers to the accuracy obtained from minimizing the ERM objective with the CCE loss except for DivideMix (∗) for

which test accuracy is obtained from training the MixUp objective with Preactivated ResNet-18 (PRN-18) [38]. We bold performance for the

best method under each noise settings.

Noise Rate (%) 0 20 30 40 0 20 30 40
Method Arch Initializer CIFAR-10 CIFAR-100

CCE [39]

RN-34 No 93.34

88.59 86.14 80.11

76.76

59.20 51.40 42.74

F-correction[27, 39] 90.35 89.25 88.12 71.08 70.76 70.82

Lq[39] 89.33 85.45 76.74 66.59 61.45 47.22

ELR [24] 93.28 92.70 90.35 74.20 74.02 73.73

MWNet [30] WRN-28-10 No 95.60 93.14 91.45 89.71 79.95 71.55 66.07 56.05

CCE

RN-50 INet32 96.52

92.93 91.78 90.22

81.51

69.76 62.41 52.4

Lq 93.77 93.23 90.24 71.63 67.29 59.29

MWNet 96.85 95.9 94.99 80.74 77.36 72.93

CCE

RN-50 SimCLR 94.59

93.3 92.13 88.38

75.36

69.63 63.91 54.28

Lq 93.54 92.69 90.27 71.26 68.04 59.26

MWNet 93.67 93.18 92.59 72.17 69.86 64.92

Table 2. Test accuracy (%) for various methods on the CIFAR datasets under asymmetric label noise. We re-use results for the ‘No’

initializer cases from their respective papers except for MWNet for which we run their public implementation with asymmetric noise.

Method Initializer Accuracy

CCE [21]

ImageNet

68.94

F-Correction [27] 69.84

MLNT [22] 73.47

DivideMix [21] 74.76

ELR [24] 72.87

ELR+ [24] 74.81

CCE

SimCLR

73.27

Lq 73.35

MAE 73.36

Table 3. Test accuracy (%) for various methods on Clothing1M. We

use results for the ImageNet initializer from their respective papers.

SimCLR initializer, they perform remarkably well.

We also observe that RN-50 pre-trained on the INet32

dataset also improves model robustness under label noise on

the CIFAR datasets. Note that there is significant overlap

between the classes of the INet32 dataset and the classes of

the CIFAR datasets. On the CIFAR-100 dataset, the RN-50

pre-trained model (on INet32) significantly improves test

accuracy to 81.51% from fine-tuning compared to ∼ 75%
with a random or the SimCLR initializer. However, the

SimCLR initializer does not require such a considerable

knowledge transfer from another larger dataset. Moreover,

we observe that the drop in performance (w.r.t. the accuracy

from the clean training samples) is significantly lower for the

SimCLR initializer compared to the pre-trained ImageNet

initializer. The pre-trained INet32 initializer seems to help

more in the case of the asymmetric noise case; class overlap

and label corruptions to a similar class might be a reason

behind the improvement. In contrast, in the Clothing1M

dataset, only two of the classes (out of 14) are present in

the ImageNet dataset. Consequently, the CCE loss with the

SimCLR initializer improves the test performance by 6%

compared to the ImageNet pre-trained RN-50 initializer.

3. Conclusion

In this paper, we have shown that many of the supervised

robust methods do not learn anything useful under high

label noise rates. However, they perform significantly better

with the SimCLR initializer on image datasets and can even

outperform previous state-of-the-art methods for learning

under label noise. Even the typical method, i.e., training a

deep neural network-based classifier under the categorical

cross-entropy loss, can outperform previous state-of-the-art

methods under some noise conditions. These observations

suggest that lack of good visual representations is a possible

reason that many supervised robust methods perform poorly

on image classification tasks. We believe that our findings

can serve as a new baseline for learning under label noise on

image datasets. Moreover, we believe that decoupling the

representation learning problem from learning under label

noise would lead to new methods that can do well on either

of these tasks with complementary strengths without the

need for methods targeting both of these tasks together.
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