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Abstract

In this work we investigate the potential of larger

datasets for one-shot semantic segmentation. While com-

puter vision models are often trained on millions of diverse

samples, current one-shot semantic segmentation datasets

encompass only a small number of samples (PASCAL-5i),
a small number of classes (PASCAL-5i and COCO-20i) or

have little variability (FSS-1000). To improve this situa-

tion, we introduce LVIS-OneShot, a one-shot variant of the

LVIS dataset. With 718 classes and 114,347 images, it ex-

ceeds previous datasets substantially in terms of size. By

controlled experiments we show that not only the number

of images but also the number of different classes is cru-

cial. We analyze transfer learning across common datasets

and find that by training on LVIS-OneShot we outperform

current state-of-the-art models on PASCAL-5i. In particu-

lar, we observe that a simple baseline model (MaRF) learns

to perform one-shot segmentation when trained on a large

dataset although it has a generic architecture without strong

inductive biases. Code and dataset are available here:

eckerlab.org/code/one-shot-segmentation

1. Introduction

In many fields of computer vision, we witnessed a trend

towards training conceptually simple models with a large

number of parameters on large-scale datasets involving mil-

lions of samples, starting from AlexNet [12] on the Im-

ageNet dataset [5] to the recent Big Transfer [11] and

CLIP [20] on text segments from the Internet. Instead of

designing mechanisms to solve specific tasks (for example

fine-grained recognition), features are learned by scaling up

the dataset and applied on downstream tasks by fine-tuning,

learning a linear classifier from frozen features or zero-shot

transfer [20]. Very recently, similar findings were made for

one-shot image classification [25] and object detection [15].

One may wonder to what degree these findings can

be replicated for one-shot segmentation, which requires

dynamic adaptation at inference time to make pixel-wise
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Figure 1: One-shot segmentation on PASCAL-5i benefits

from the larger and more diverse LVIS-OneShot dataset.

The simple MaRF baseline profits from more (left) data and

more diverse (right) data. Both, PFENet and MaRF exceed

the current state-of-the-art (SotA).

predictions. One-shot segmentation models are currently

trained and evaluated on datasets with relatively few classes

(PASCAL-5i [23]: 20, COCO-20i[17]: 80) or little vari-

ation in object size and position (FSS-1000 [28]). At the

same time, models use customized mechanisms to tackle

one-shot segmentation, such as operating on mutliple scales

[26] or modeling object parts [14, 30, 4] (see Table 1 for an

overview). Thus, it is quite possible that scaling up datasets

in terms of labels and classes could similarly boost perfor-

mance in one-shot segmentation and dwarf the advances

made by previous attempts at engineering customized ar-

chitectures for small datasets. In particular, we believe the

diversity of labels to play a pivotal role.

In order to investigate these questions, we introduce

the LVIS-OneShot dataset which is a variant of the LVIS

dataset [7], originally intended for long-tail instance seg-

mentation. Contrary to previous one-shot segmentation

datasets, it combines a large number of samples with a

large number of classes. Furthermore, we intentionally

place all PASCAL-5i classes into the test set to simplify

evaluating performance on PASCAL-5i. In addition to the

dataset, we present the primitive baseline model MaRF

without bells and whistles which relies on very simple de-

sign: ResNet backbones [9], masked (global) pooling and

feature-wise linear modulation (FiLM) [6]. Based on both,

LVIS-OneShot dataset and MaRF baseline, as well as avail-



Mechanism Used by

modeling of object parts [14, 30]

graph attention on regions/ parts [4, 31]

multi-scale features / feature pyramid [26, 1, 31, 4]

high-level feature similarity prior [26]

metric learning & prototype alignment loss [27]

Table 1: Overview of mechanisms used for one-shot seg-

mentation.
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Figure 2: Distribution of the class frequencies in LVIS-
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Figure 3: Average images of 5,000 random ground

truth segmentations of FSS-1000, PASCAL-5iand LVIS-

OneShot reveal dataset bias.

able datasets we conduct extensive experiments seeking to

understand the role of data in one-shot segmentation.

2. A Diverse Dataset: LVIS-OneShot

With COCO-20i[18] there already exists a large-scale

one-shot (and few-shot) segmentation dataset. However,

the small number of classes limits the utility of this dataset

and, due to an overlap between PASCAL-5i and COCO-20i

splits, transfer learning is cumbersome since a new model

needs to be trained for each split. We address both short-

comings with a novel dataset (Fig. 2) based on the recently

proposed LVIS [7] labels for COCO images [13].

PASCAL-5i Overlap As a first step, we identify all

classes in LVIS that overlap with Pascal. To automate this

process, we make use of the WordNet [16] synset assign-

ments of LVIS. First, we manually assign the correspond-

ing synset for all 20 Pascal classes. For each LVIS class we

recursively traverse the set of hypernyms (i.e. more general

meanings) and check if it has an intersection with the Pascal

synsets.

3. Complex and Simple Models

Arguably the best performing model for one-shot seg-

mentation is PFENet [26]. It contains several custom mech-

anisms, e.g. multi-scale processing and a prior based on

high-level feature similarity. Contrary, our baseline model

(Fig. 4) relies on only three basic and well-known compo-

nents: Masked pooling [32], the ResNet architecture [9]

and the FiLM conditioning mechanism [6], hence we call it

MaRF. It is meant as a low-modelling, generic counterpoint

to the complex architecture defined by PFENet. Query and

support branch only interact through a single vector.

Support encoding The support encoder s takes the sup-

port tuple t, containing an image with corresponding seg-

mentation, and encodes it into a conditional vector c. For

this, features from a ResNet50 or ResNet18 [9] are ex-

tracted at the 3rd or 4th residual block. Then, masked

pooling transforms these feature maps into a single vec-

tor by averaging all feature vectors that pertain to the ob-

ject (indicated by the support segmentation map). Given

a support image, segmentation pair t = (timg, tseg) and

an operator which resizes tseg to match the spatial size of

the output of senc, we obtain the conditional vector c =
AvgPool(senc(timg) ⊙ resize(tseg)), where ⊙ is the point-

wise multiplication.

Query processing The query network q takes the query

image x and the generated conditional vector c and out-

puts a binary segmentation mask y. q consists of a CNN

encoder which generates a high level representation of the

query image and a decoder which forms the output using

skip connections, similar to the U-Net [22]. The condi-

tional vector c is fused into the query network qenc at layer l

through feature-wise linear modulation [6]. Afterwards, us-

ing information from the support image/segmentation, the

decoder generates an output tensor of the same spatial size

as the input. It consists of four blocks with channel sizes of

128, 128, 128 and 32, each incorporates a skip connection

from the encoder. Instead of using transposed convolutions,

spatial resolution is increased using bilinear interpolation

followed by a 5× 5 convolution. We can describe the com-

putation of a segmentation mask y by:

y = qdec(q
[L:]
enc (q

[0:L]
enc (x)φ(c) + π(c)) (1)

where the query network qenc is be decomposed into layers

before (q
[0:L]
enc ) and after (q

[L:]
enc ) conditioning layer L where

information from the support image is fused. Analogously

to the support encoder s, the query encoder qenc is im-

plemented by a ResNet with 18 or 50 layers. Following

Tian et al. [26], we replace the standard ResNet50 with a

ResNet50 from PSPNet [33] in both encoder and query net-

work. If not stated otherwise, ImageNet weights are frozen

in both encoders up to the 4th residual block.

4. Experiments

Datasets and Metrics We perform our analysis on three

datasets: LVIS-OneShot, FSS-1000 [29] and PASCAL-
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Figure 4: Overview of MaRF (with

FiLM at 3): An encoder-decoder net-

work (blue) processes the query im-

age and generates an output segmenta-

tion. Information about the search target

is introduced through another encoder

(yellow) which uses masked pooling.
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5i[23]. These datasets vary strongly in the average size and

position of the object to be segmented (see Fig. 3). If not

stated otherwise, both encoders qenc and senc are initialized

with weights obtained through ImageNet-pretraining as this

is a common practice in one-shot segmentation. We exclu-

sively use binary segmentation problems which have only a

single foreground class, i.e. one-shot, one-way segmenta-

tion. We use the intersection over union-based (IoU) met-

rics mean IoU (mIoU), binary (or foreground-background)

IoU and foreground IoU.

LVIS-OneShot Training Instead of a fixed assignment of

training image pairs, we randomly sample pairs of one cat-

egory during training. Images are scaled to have a mini-

mal side length of 480px and are then cropped to a square-

shaped image. We apply mild augmentation [3] to the im-

ages involving horizontal flip as well as HSV and gamma

change. For validation and test, 1000 and 10,000 fixed pairs

are used without augmentation to reduce variance.

Technical Details We use PyTorch [19], Adam optimizer

[10] with varying learning rates (LR), batch sizes (BS) and

early stopping patience (ES) as shown below:

dataset epochs ES LR BS

LVIS-OneShot 70 9 0.0001 32

PASCAL-5i 2 - 0.0003 32

FSS-1000 25 5 0.0001 64

4.1. MaRF Configurations

We find that early conditioning (FiLM at layer 3) yields

slightly better results on LVIS-OneShot than late condition-

ing (layer 5). For the smaller PASCAL-5i dataset, the op-

posite is true. This means a network relying on earlier con-

Backbone FiLM IoUBIN mIoU

LVIS-OneShot RN50 5 68.2 38.7

RN50 3 71.4 42.0

RN50 (no freeze) 3 67.1 35.9

RN50 (original) 3 66.3 35.1

PASCAL-5i RN50 3 58.3 33.3

RN50 5 59.4 35.6

Table 2: Performance on different configurations of MaRF.

FiLM: conditioning layer L.
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Figure 5: A larger number of samples (left) as well as more

classes (right) have a positive impact on one-shot segmen-

tation performance of MaRF (training on LVIS-OneShot).

ditioning is generally favorable but more data is required to

learn such a mechanism. This insight would not be visi-

ble if only a small dataset was used. Also freezing weights,

like in [26], improves the performance compared to train-

ing all weights. This is likely because it prevents overfitting

as LVIS-OneShot is still much smaller than image classifi-

cation datasets the ResNets are normally trained on. The

PSPNet [33] modification of ResNet50 turns out to be an

important factor as it performs much better than conven-

tional ResNet50 (labeled “original” in Table 2). The quality

of features is an essential predictor of final performance.

4.2. Sampleefficiency and label diversity

LVIS-OneShot is larger than competitive datasets in

terms of the number of categories contained. This allows us

to analyze the effect of label diversity for one-shot segmen-

tation: Given a fixed budget of samples, is there an advan-

tage of having a diverse set of images? In order to answer

this question we generate a set of categories C containing a

specific number of samples using an iterative algorithm.

Regarding number of samples (Fig. 5, left), we find a

positive relationship between number of samples and per-

formance, which was expected as more samples generally

improve performance. We observe a similarly strong cor-

relation between performance and sample diversity (Fig. 5

right), even when the number of samples is kept constant.

This result supports our intuition that not only sample size

but also label diversity is crucial. The fine-grained division

of classes conveys additional information useful for one-

shot segmentation.

4.3. Comparison with Stateoftheart

PASCAL-5i For evaluation, we use the PASCAL-5i im-

plementation provided by Tian et al. [26] using their train-

3



Method Backbone IoUBIN mIoU

Trained on PASCAL-5i

DAN [4] RN101 71.9 58.2

PFENet [26] RN50 73.3 60.8

PFENet [26] RN50 71.2* 60.6*

RPMM [30] RN50 - 56.3

RePRI [2] RN50 - 59.7

MaRF (FiLM 3, ours) RN50 58.3 33.3

Trained on FSS-1000

FSS Basel. [29] VGG16 - - 58.6

MaRF (FiLM 3, ours) RN50 67.3 45.4

Trained on LVIS-OneShot

PFENet [26] RN50 78.5 64.3

MaRF (FiLM 3, ours) RN50 77.4 61.1

Table 3: One-shot segmentation performance on PASCAL-

5i. *using weights provided by the PFENet authors.

10% of data 100% of data ∆

Model IoUBIN mIoU IoUBIN mIoU IoUBIN mIoU

PFENet 71.7 45.1 72.3 46.6 0.6 1.5

MaRF 64.4 31.8 71.4 42.0 7.0 10.2

Table 4: Comparison between PFENet and MaRF (RN50)

on the new LVIS-OneShot dataset

ing and validation sets. We find our MaRF model to perform

quite poorly when it was trained on PASCAL-5i. This is ex-

pected due to its simplicity without explicit mechanisms (or

inductive biases) for one-shot segmentation and the small

size of the dataset.

Transfer Learning LVIS-OneShot → PASCAL-5i All

existing approaches on PASCAL-5iare outperformed by

training MaRF LVIS-OneShot (without fine-tuning), de-

spite the distribution shift (Fig. 3). The results on PASCAL-

5i (Table 3) show the utility of training on LVIS-OneShot

for the simple MaRF model. With an mIoU score of 61.1

and IoUBIN of 77.4, we clearly outperform the best reported

result: PFENet trained on PASCAL-5i. Also PFENet bene-

fits from training on LVIS-OneShot, establishing a slightly

better score. However, its improvements are much smaller

than those of MaRF.

4.3.1 LVIS-OneShot

As shown in Table 4, PFENet exhibits a better performance

on LVIS-OneShot than MaRF. However, MaRF achieves a

greater performance gain from using more samples (also see

Fig. 1). On one hand, this gain supports our intuition that

data can outweigh model design to some extent. On the

other hand, there remains a gap to PFENet, suggesting that

the inductive biases of PFENet are generally useful for one-

shot segmentation and are not overfit to the classes present

in small segmentation datasets.

Model Backbone mIoU mIoUneg IoUBIN IoUFG

Trained on FSS-1000

PFENet [26] RN50 - - - 80.8*

DAN [4] RN101 - - - 85.2

MaRF (FiLM 3) + aug. RN50 81.2 42.3 88.9 83.3

MaRF (F. 3) (no support) RN50 79.5 41.1 87.5 81.2

Trained on LVIS-OneShot

PFENet [26] RN50 76.8 55.3 85.5 78.2

MaRF (FiLM 3, ours) RN50 70.6 51.7 81.5 72.1

Table 5: Performance on FSS-1000 in comparison with

state-of-the-art methods.

4.3.2 FSS1000

The results on FSS-1000 (Table 5) show that MaRF outper-

forms earlier work, except for the DAN model [4] which

uses a larger encoder. This supports the claim that simple

models match state-of-the-art performance with sufficient

training data, evading the need of model design.

Surprisingly, a baseline of our model that did not receive

a support image/segmentation (labeled “no support” in Ta-

ble 5) achieved decent performance, and even outperformed

all previously published approaches except DAN [4]. This

result suggests that FSS-1000is strongly biased towards

centered objects and has little variation in object size and

location.

To further investigate the biases of FSS-1000, we in-

troduce 50% negative samples to the test set. We ob-

serve a strong drop in performance, while the models

trained on LVIS-OneShot cope best with this setting. Pos-

sibly due to these different statistics, transfer learning from

LVIS-OneShot does not work as well for FSS-1000 as for

PASCAL-5i.

5. Discussion and Conclusion

Large-scale training can replace model design and strong

inductive biases in one-shot segmentation. This result

is consistent with previous findings in computer vision

[24, 20, 15] and NLP [8, 21]. We find conceptually simple

models to profit to a much greater extent from more sam-

ples and more diverse samples than the complex PFENet.

The latter achieved only small gains from a substantial in-

crease of dataset richness. However, PFENet performance

remains slightly better than our baseline, suggesting that in-

ductive biases still matter in the large data-regime (although

to a smaller extent) and PFENet modeled the right ones. For

future research in one-shot semantic segmentation, our find-

ings represent a strong argument in favor of using large and

diverse datasets. We recommend to consider PASCAL-5i

primarily a test dataset.
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