
 

 

 

Abstract 

 

When creating a new labeled dataset, human analysts or 

data reductionists must review and annotate large numbers 

of images. This process is time consuming and a barrier to 

the deployment of new computer vision solutions, 

particularly for rarely occurring objects. To reduce the 

number of images requiring human attention, we evaluate 

the utility of images created from 3D models refined with a 

generative adversarial network to select confidence 

thresholds that significantly reduce false alarms rates. The 

resulting approach has been demonstrated to cut the 

number of images needing to be reviewed by 50% while 

preserving a 95% recall rate, with only 6 labeled examples 

of the target. 

 

1. Introduction 

Satellites capture the majority of the planet’s surface 
every day, generating millions of images. Even knowing 
regional boundaries or terrain classification, searching such 
volumes of data for specific objects is impossible without 
computer image recognition. For objects that already have 
large supporting labeled training data, there are many 
existing solutions. But what if a human analyst needs to find 
a new class of object without an existing labeled dataset? 
Often, the simplest answer is to capture new imagery and 
label them by hand. But if the object is rare or new imagery 
cannot be captured, then it is very difficult to build a reliable 
model. Active learning [1] is one solution whereby people 
are still involved to label reduced numbers of images during 
training; algorithms cut the load by selecting images for 
human labeling with high potential gain. While much 
improved, these solutions still often require significant 
initial training data (e.g. 50 images) that may be impossible 
to acquire for some objects. In this paper, we detail the 
effectiveness of data reduction techniques that augment 
small numbers of labeled images (6 or 10) with 3D models 
modified with generative adversarial networks (GAN) to 
both classify images and detect objects within. In the longer 
term, this initial bootstrapping can support active learning to 
build up more capable models over time. 

Ideal training data for deep neural network based 
classification models includes examples of an object in all 
environments of interest, with many variations in pose, 
lighting conditions, and levels of occlusion. But for many 
rare objects, that option simply does not exist. And unlike 
ground data, it is difficult to capture your own training data 
from satellites. One solution is to create synthetic images 
blending 3D models of the object of interest with a variety 
of backgrounds [2], using random selection to decide model 
location and background choice. We will demonstrate, 
however, that with only 6 labeled real examples the 
classification model quickly learns to recognize synthetic 
imagery without improving performance on real imagery.  

One approach to improve the utility of 3D models is to 
employ generative adversarial networks. Generative 
adversarial networks like Cycle-GAN [3] can be used to 
transform existing images into something else. The classic 
examples are to convert an image of a horse into a zebra, or 
convert a summer driving image into winter [4]. The training 
process for a GAN is to provide examples of both media, 
training a set of networks to convert in both directions. By 
training a GAN on a multitude of related objects with more 
labeled training data, we aim to introduce common 
atmospheric distortion to our synthetic imagery. Although 
visually improved, we will demonstrate on the xView 
dataset [5] that the impact on training a convolutional neural 
network-based object detection network such as RetinaNet 
[6] with such synthetic images is not significant. However, 
such GAN-modified imagery will be demonstrated to be 
valuable as verification data for selecting the best training 
epoch and setting detection thresholds prior to real 
deployment. Furthermore, an additional value of this 
approach is that it contributes both to image level 
classification and bounding box detection based methods. 

2. Related Work 

Training image recognizers usually involves using large 
numbers of labeled samples. The major thrust of this paper 
deals with cases where we have a very limited number of 
samples; the so-called few-shot learning problem. In the 
image domain this topic breaks down into two related 
scenarios: few-shot classification and few-shot object 
detection.  

In the few-shot classification scenario each image is an 
example of one of N classes, and the job is to recognize 

 

Training Rare Object Detection in Satellite Imagery with Synthetic GAN Images 
 

Eric Martinson, Bridget Furlong, Andy Gillies 

Soar Technology 

3600 Green St, Ste 600, Ann Arbor, MI, USA 

{eric.martinson, bridget.furlong, andy.gillies}@soartech.com 

 

 



 

 

which class each image belongs to. This area has been 
studied extensively, although the authors of [7] argue that 
implementation details have prevented a fair comparison 
between competing methods. Some of the approaches in this 
area use samples from abundant classes to first train a base 
recognizer, and then extend that recognizer using samples 
from the rare classes [8]. Another theme in this area involves 
using a cosine-similarity-based distance metric [8]. 

The tasks addressed in this paper require using few-shot 
object detection. In this scenario, each image may contain 
objects of many classes (or none) and the recognizer must 
localize each object in addition to identifying its class. This 
is a much more difficult problem, both because the system 
must produce bounding boxes as well as classes, and 
because the recognizer must reject background areas of the 
image which contain none of the classes under study. 

In the few-shot object detection scenario the strategy of 
first training on abundant classes is also common [9] [10] 
[11] [12]. The cosine similarity distance metric [11] [7] is 
also used, as is a more general concept of distance metric 
learning [13] [12]. The notion is that placing objects and 
classes in an embedding space where members of a class are 
close to one another and far from other classes will lead to 
better generalization which can be exploited when extending 
the recognizer to the rare classes. Some of these methods use 
triplet loss [14] and related loss functions [13] [12] in the 
training process. In these systems, points in the embedding 
space (or metric space) become prototypes [15] which are 
either single class examples or the centroid of a class or 
subclass. 

3. Creating Synthetic Imagery 

Generating synthetic imagery requires the use of 3D 

models. We obtained a range of 3D models for 3 different 

categories of objects (at least 3 models each):  

• Construction Equipment: Cement Mixer, Dump Truck, 

Excavator, Front Loader, Haul Truck, Scrapper Tractor  

• Marine Vessels: Ferry, Fishing Vessel, Maritime Vessell, 

Tugboat  

• Aircraft: Cargo Plane, Fixed-wing Aircraft, Helicopter, 

Small Aircraft  

 3D models were obtained from the TurboSquid.com 

commercial repository. Although free 3D models existed 

for both objects, they were generally of poorer visual 

quality than the commercial options. 

After models were acquired, Blender3D was used to 

generate images from 3D models that contain a specified 

(1) viewing angle, (2) lighting condition, and (3) shadow. 

Figure 1 demonstrates examples with different object 

rotations and shadow positions. The black and white images 

display the masks that will actually be inserted into satellite 

imagery for training object recognition. 

The next step is to merge one of these model images with 

a designated satellite chip (300x300 pixels). Currently, 

image synthesis takes as parameters: model name, 

background chip id, sun position (theta and phi), and model 

pose (x, y, theta), and scale. Note that we do not currently 

“recognize” proper lighting conditions for each satellite 

image, instead manually identifying the proper sun/shadow 

positioning for each image. This is not an unreasonable 

requirement, as sun position should be determinable from 

other, publicly available data sources, given a known 

satellite position and time, but is information that was not 

released with the xView dataset. Scale is also a known 

factor, as the distance to the ground is known, and the size 

of the object is also known. However, we do allow scale to 

fluctuate +/- 10% around the target. All remaining 

parameters are randomized.  

The actual insertion process is illustrated in Figure 2. The 

first step is to use the mod-Poisson [16] function to blend 

the masked model together in the target position. We use an 

open-source implementation [17] for this purpose. Figure 3 

shows examples of the result.   

Next, the region surrounding the target can be extracted 

and passed to a trained CycleGAN for improvement. Only 

a 64x64 pixel region of the image is modified by the 

CycleGAN (Tugboats, Fishing Vessels, and Helicopters 

 
Figure 1. Images created from 3D models with specified rotation 

and sun positioning 
  

Figure 2. Inserting the 3D model into the selected background 

chip is a multi-step process. 

 



 

 

use a 128x128 region due to object size). Note that only the 

RGB image is modified, with the original mask image 

preserved to maintain object contours when it is reinserted 

in the final step using mod-Poisson back into the image. 

4. Training and Validation Process 

In our satellite image processing application, we fully 

expect human data analysts to remain involved in the 

process of finding rare objects. The automation goal is not 

to remove people entirely, but make them more effective 

with support from computer vision in two ways: (1) reduce 

the volume of images requiring human attention (e.g. image 

filtering); and (2) provide visual cues on remaining images 

to speed up analysis (e.g. target cueing). To build a real 

system, this means we need to both train models for rare 

object detection and determine thresholds for classification 

of images and detection of objects within them. This 

process is described in greater detail in Figure 4. The 

remainder of this section describes the methods for training 

the GAN and RetinaNet layers as part of this process.  

4.1. GAN Layer 

We use a publicly available Cycle-GAN implementation 
[3] to support rare object detection. Cycle-GAN is an image-
to-image translation method that is trained in an 
unsupervised fashion without paired examples. An example 
application of the Cycle-GAN method was to translate 
photographs of horses to zebras and vice versa by giving it 
sets of horse images and sets of zebra images and having it 
learn the modifications to make them more similar to each 
other. A similar process was applied to turn summer roads 
into winter [17]. 

In our application, the GAN will be taught to convert 
images between two domains: synthetic models, and real 
satellite images. Because we have very limited real data for 
the target class, we need to use related classes of vehicles to 
train the GAN. For each object of interest, we used 3-5 
related “contrast classes” from the xView dataset.  
• Front Loader: Cement Mixer, 

Dump Truck, Excavator, Haul Truck, Scraper Tractor  

• Excavator: Cement Mixer, Dump Truck, Front Loader, 

Haul Truck, Scraper Tractor  

 
Figure 3. Stages of CycleGAN output for 4 different objects 

 



 

 

•  Cement Mixer: Dump Truck, Excavator, Front Loader, 

Haul Truck, Scraper Tractor  

• Haul Truck: Cement Mixer, Dump Truck, Excavator, 

Front Loader, Scraper Tractor  

• Tugboat: Ferry, Fishing Vessel, Maritime Vessel  

• Fishing Vessel: Ferry, Maritime Vessel, Tugboat  

• Helicopter: Cargo Plane, Fixed-wing Aircraft, Small 

Aircraft  
Therefore, with Front-loaders, we used real imagery 

from other construction equipment and 3D models from the 
same contrast class set plus available Front-loader models. 
Figure 3 illustrates example results for four different target 
classes. All GAN models were trained with zero real 
examples of the target. 

In our example, the GAN can be used to generate either 
training or verification data. When generating verification 
data, additional background images with neither synthetic 
nor real examples of the target class are added to the 
verification dataset to set detection thresholds. 

4.2. RetinaNet Layer 

In this work, we used RetinaNet [6] to both filter images 
unlikely to contain a rare object and detect rare objects in the 
remaining images. Note that because the purpose of this 
work was to supplement human analysis rather than replace 
it, we made the detection problem simpler than standard by 
increasing all bounding box sizes in the training/testing data 
to a minimum of 60-pixels. This adjustment allows an 
automated process to highlight areas most in need of human 
attention before moving on to the next image. 

To train RetinaNet to detect the target object, we first 
trained a multi-class recognition network on 19 alternative 
classes from the xView dataset. Training was run for 100 
epochs with Adam optimization. A held-out verification set 
identified the network with the greatest mean average 
precision, which was then used to initialize weights of the 
ResNet layers within a new, single class RetinaNet instance 
(RetinaNet extends the original ResNet classification 
network). This new network is then trained with all available 
rare object instances for a fixed number of epochs (20), 
again using an Adam optimizer. During this training step, 
randomly generated GAN imagery can be included, but as 

will be demonstrated in Section 5.1, this is not a significant 
performance booster in this domain. 

Once the network is trained, we evaluate performance 
characteristics such as mean average precision and false 
alarm rates on the test set, but for a real deployment, we also 
need to specify a threshold at which to reject images and/or 
bounding boxes. There are actually two rejection thresholds 
of interest:  

• Image Filtering Threshold – if all bounding boxes 
evaluated as part of this image have confidence scores 
below the specified image threshold, then the image is 
rejected and not shown to the data analyst. 

• Target Cueing Threshold – an image threshold may 
be set low to achieve high recall, but a separate 
threshold can be used to reduce the number of cues 
shown to the data analyst. 

The standard approach for estimating these thresholds is 
to use a holdout set of real images never included in training 
to construct precision/recall statistics for different threshold 
values. Armed with these statistics, the user can select the 
values most appropriate for the application. Unfortunately, 
with rare objects, we may have 10 images or less. Splitting 
these data into training and validation sets is impractical. As 
we will demonstrate in Section V, GAN images can be used 
in place of a validation set, leaving all real data available for 
training the RetinaNet model 

5. Results 

The xView dataset consists of high-resolution imagery 
(>HD) of variable sizes. The objects of interest (cement 
mixer, excavator, fishing vessel, front loader, haul truck, 
helicopter, tugboat) generally ranged in size from 20-100 
pixels. With such small objects, high-res images were 
broken into smaller 300x300 chips for analysis. Labeled 
instances of each object were split into train and test using a 
2:1 split, with additional rules: (1) in the event that there 
were more than 600 labeled instances, only 400 were set 
aside as dedicated training data, (2) all chips from the same 
high resolution image had to go into either test or train. The 
goal of both of these rules was to separate enough training 
data from which to sample rare objects while preserving a 
distinct, but large test set. Additional “empty” background 
images were added to each test set to create a 1:10 ratio of 
images with valid objects to images without valid objects. 

 
Figure 4. Training process illustrating creation and use of GAN imagery 
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As this was a rare object detection challenge, training 
data were re-sampled after the split to create 10 subsets each 
of 6 and 10 labels for use in training detection. Note that a 
training subset of 6 labels could have fewer than 6 images if 
there were more than 1 instance of the target class in an 
image (same for 10 images). We then used two different 
RetinaNet initialization procedures with these images:  

• Baseline networks used the default training process in 
our implementation of RetinaNet [19]. ResNet models 
were initialized from pretrained weights available on 
torch model zoo, with all other layers randomly 
initialized. The entire network was then retrained for 20 
epochs on either 6 or 10 images of the target class.  

• LargeNet models were trained similarly to Baseline, 
except that a ResNet model trained on 19 other classes 
of vehicles in the xView dataset was used for 
initialization before retraining with the 6 or 10 real 
images.  

For each of these network initialization methods, we also 
explored adding either an additional 30 GAN images or an 
additional 30 synthetic images without using the GAN, 
making a total of 36 and 40 training images respectively. We 
chose 30 images after evaluating different numbers. These 
results align with [18] [2] which show that training sets with 
around 75-90% synthetic imagery get optimal results.  

To estimate image filtering and target cueing thresholds, 

we used separate validation sets comprised of 150 synthetic 

images (with or without GAN) and 1500 background 

images. This ratio of 1:10 images was the same ratio used 

to construct a test set. To calculate confidence thresholds, a 

minimum score threshold of 0.01 was investigated, and a 

successful detection was classified as an Intersection Over 

Union (IOU) score > 0.3. 

5.1. Using GAN Images to Train Object Detection 

We tested all 6 methods of training using the target 
objects’ test set. Mean average precision (MAP) results 
averaged across the seven objects are found in Table 1.  Per 
object results for 10 training images are in Figure 5. 

Table 1. Mean average precision for each training method 

across all 7 objects. 

Initializatio

n 

Baseline LargeNet 

# Labels Onl

y 

Real 

30 

GA

N 

30 

Synt

h 

Onl

y 

Real 

30 

GA

N 

30 

Synt

h 

6 0.15 0.19 0.21 0.21 0.22 0.24 

10 0.19 0.21 0.25 0.28 0.25 0.28 

 
As expected, the Baseline training method demonstrates 

significantly worse MAP with either 6 or 10 training images 
than the LargeNet initialized with a model trained on xView 
data. Furthermore, in general, although the GAN step 
generates more visually appealing training data, it actually 
decreases MAP compared to synthetic images created from 
models without a GAN.  

Specific objects, however, show some interesting trends. 
The Haul Truck, in particular, has an inverted trend line.  
Baseline with no additional training images outperforms all 
other methods, with added training data through either 
synthesis or initialization actually decreasing MAP. Other 
objects like Front Loader and Tugboat show LargeNet 
approach to be best, outperforming all added training 
images.  

More generally, the impact of synthetic images with or 

without the GAN is greatest with only 6 real labeled 

examples. With 10 labels, Baseline initialization improves 

with added images, but LargeNet initialization either 

decreases or stays about the same. 

5.2. Using Synthetic Images to Set Image Filtering 

Threshold 

Improving MAP scores is only one potential use of 
synthetic imagery. Once the model has been created, we also 
need to establish the confidence_score threshold for 
detection. More specifically, we are building a system to 
help human analysts reduce the volume of data needing to 
be examined. Because we are searching for rare objects with 
models that demonstrate low average precision, we will 
focus first on reducing the set of images (not bounding 
boxes) to be displayed while still hitting a target recall (e.g. 
95%). A synthetic validation set was used to identify the 
confidence_score that achieves this target recall. Synthetic 
imagery with and without the GAN step were evaluated. 

The question when using an artificial validation set is 
how closely it tracks performance with real data. Starting 
with the LargeNet initialization and only 6 training labels, 
Figure 6 demonstrates that synthetic validation data (with and 
without GAN) track surprisingly close to real imagery 
across all objects. In general, the synthetic image data 
underestimate recall on the test set. But even though these 
data have little or no impact on training with LargeNet, they 
are still highly predictive of system recall.  

Table 2 illustrates this relationship, detailing the image 
filtering recall and false alarm rate achieved on the test set 
when using a confidence threshold derived from a synthetic 
validation set and target recalls of either 80% or 95%.  

 
Figure 5. Average precision per object with 10 training images. 
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Averaging across all 7 objects, there are two standout 
statistics. First, regardless of which synthetic image set used, 
most LargeNet models trained without any synthetic data 
averaged within 5% of the target recall. However, these 
models also demonstrated higher false alarm rates than other 
methods because they were trained with less data. The 
second standout is training with 30 synthetic images, but 
testing with a GAN validation set. This approach achieves a 
target recall within 5% of target on average for both 

initialization methods and both recalls evaluated. It also 
achieves the lowest false alarm rate, eliminating >80% of 
images with an 80% recall target, and ~50% of images with 
a 95% recall target. By contrast, using GAN images for both 
training and validation only reached the target recall only 
25% of the time. And validating with synthetic after training 
with either GAN or synthetic demonstrated very large 
reductions in recall, reaching only 4% recall on the test set 
when trained and validated with synthetic (no GAN) images. 

This relationship between validation set type and 
training method is further illustrated in Figure 7. There were 
280 models created per training method to generate the 
statistic in Table 2. If we count the number of models per 
method that crossed the target recall threshold, the GAN 
validation set clearly improves model reliability more than 
the Synthetic validation set across all 6 training methods 

5.3. Target Cueing 

Up to this point, we have demonstrated training and 
validation methods for reducing the number of images 
requiring human attention by 50% with only 6 real training 
examples. Our networks, however, are localizing objects in 
addition to classifying images. We want to use that 
information speed up analysis through target cueing – 
indicating regions of greatest interest first. But if we use the 

 
Figure 6. Recall vs score threshold for the LargeNet models with 6 real training labels. Both synthetic image validation sets 

generally underestimate recall on the test, but otherwise follow the same recall curve. 

 Table 2. Image filtering recall and (false alarm rate) achieved on a test set of real images using either synthetic or GAN validation 

sets against each of the 6 model types. Highlighted entries are within 5% of the target recall. 

 

Target 

Recall 

# Real 

Labels 

Baseline Initialization LargeNet 

None Added 30 GAN 30 Synth None Added 30 GAN 30 Synth 

S
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ic

 

Im
a

g
es

 0.8 6 0.721 (0.255) 0.407 (0.07) 0.038 (0.001) 0.838 (0.229) 0.45 (0.091) 0.07 (0.002) 

0.8 10 0.654 (0.291) 0.409 (0.067) 0.049 (0.002) 0.848 (0.21) 0.484 (0.103) 0.082 (0.002) 

0.95 6 0.901 (0.477) 0.683 (0.185) 0.232 (0.024) 0.944 (0.395) 0.686 (0.222) 0.347 (0.035) 

0.95 10 0.795 (0.506) 0.693 (0.191) 0.294 (0.029) 0.951 (0.368) 0.723 (0.221) 0.382 (0.032) 

G
A

N
 

Im
a

g
es

 0.8 6 0.836 (0.371) 0.44 (0.078) 0.752 (0.183) 0.931 (0.326) 0.531 (0.068) 0.794 (0.171) 

0.8 10 0.856 (0.351) 0.484 (0.083) 0.778 (0.182) 0.93 (0.314) 0.565 (0.067) 0.814 (0.167) 

0.95 6 0.954 (0.609) 0.83 (0.293) 0.94 (0.461) 0.98 (0.601) 0.91 (0.327) 0.968 (0.512) 

0.95 10 0.964 (0.591) 0.864 (0.305) 0.949 (0.459) 0.985 (0.59) 0.913 (0.326) 0.976 (0.517) 

 

 
Figure 7. Across all objects, the number of objects achieving the 

target recall is significantly higher when using the GAN 

validation set across a number of model training methods. 
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same threshold as was used for image filtering, we 
demonstrate an average precision of <5%. With such a low 
precision, we are concerned that analysts will simply turn 
off target cueing, and, worse yet, also associate that 
performance with image filtering. Therefore, in this section, 
we evaluate our ability to set additional confidence 
thresholds to support target cueing, by achieving precision 
targets. 

Figure 8 demonstrates the variability of the challenge 
with only 6 training examples. Precision was only 
predictable out to ~30%. In general, the GAN validation set 
was more predictive of precision (~33%) than without it 
(27%), where predictability was measured as being within 
5%. Some objects were significantly less (Haul Truck-3%, 
Fishing Vessel-15%), while others were higher (Helicopter-
60%, Tugboat-60%). We hypothesize that this is reflective 
of category variability. Haul Truck and Fishing Vessel seem 
to have many more variations of type, scale, and other 
distinctive features within the same category as opposed to 
helicopter or Tugboat.  

Table 3 details per object target cueing test precision and 
recall for a targeted precision of 30% with 10 training labels. 
The variability is much greater than with image filtering, but 

the two training methods that are closest to achieving the 
target are LargeNet and LargeNet + 30 Synthetic.  

6. Conclusion 

In summary, we have evaluated the utility of synthetic 
imagery for supporting the recognition of rare objects in 
satellite images. We have initialized models with two 
different training sets (ImageNet and xView) and tested 
synthetic imagery with and without the use of a generative 
adversarial network (GAN). For training purposes, the 
proposed synthetic images created from 3D models without 
the use of a GAN demonstrated the greatest improvement on 
mean average precision. However, this improvement was 
limited when the model was initialized with highly related 
imagery (e.g. xView).  

With rare objects, where labeled examples are at a 
premium, synthetic imagery can also be used as a validation 
set to identify a good confidence threshold, leaving all real 
data available for training the RetinaNet model. In this work, 
we have demonstrated that synthetic images generated with 
the use of a GAN are best for this purpose. With only 6 
training images, a GAN validation set was used to select a 
threshold that averaged 95% recall, while still eliminating 
%50 of the background images. Precision targets are more 
difficult with these rare object models, but when aiming for 
30% precision, we could still achieve an average of 25% on 
a test set with a 1:10 real vs background image ratio.  

We find it very interesting that synthetic imagery 
without a GAN are better for training, but adding the GAN 
step create better validation imagery. This may suggest that 
our GAN step is introducing too much noise into the training 
process – we are not training our GAN on the target rare 
images because we have too few of them and instead using 
objects with similar properties (e.g. other construction 
equipment). However, while the GAN is not creating ideal 
training imagery, it is still modeling noise that the synthetic 
validation step otherwise lacks. 

In the future, we intend to integrate these training and 

threshold estimation steps into an active learning cycle  

(Figure 9). With both a model and a threshold, we can create 

a deployable system for use by a human analyst. After they 

have identified some small number of new examples of the 

 
Figure 8. Precision vs score threshold data with the LargeNet training method and only 6 labeled examples. 

 

Table 3. Target cueing precision and (recall) achieved on the test 

set with a targeted precision of 0.3 and 10 training labels. Yellow 

highlights indicate within 5% of target. Red highlights indicate 

higher precision. 

 Model Training Method 

Target 

Object 

LargeNet LargeNet + 

30 GAN 

Baseline + 

30 Syn 

LargeNet + 

30 Syn 

Front 

Loader  
0.37 (0.34) 0.27 (0.42) 0.25 (0.42) 0.26 (0.44) 

Cement 

Mixer  
0.07 (0.38) 0.11 (0.19) 0.08 (0.14) 0.13 (0.23) 

Excavator  0.26 (0.48) 0.23 (0.54) 0.18 (0.40) 0.55 (0.22) 

Haul Truck  0.10 (0.81) 0.19 (0.38) 0.29 (0.53) 0.23 (0.41) 

Fishing 

Vessel  
0.07 (0.75) 0.15 (0.42) 0.20 (0.30) 0.15 (0.43) 

Tugboat  0.62 (0.28) 0.21 (0.51) 0.20 (0.58) 0.21 (0.61) 

Helicopter  0.42 (0.46) 0.23 (0.65) 0.21 (0.72) 0.22 (0.74) 

Average 0.27 (0.50) 0.2 (0.44) 0.19 (0.44) 0.25 (0.44) 

 



 

 

target using this system (as few as 1), models can re-trained, 

thresholds can be re-evaluated, and a new, improved system 

is ready for the analyst to use. In this way, we will create a 

virtuous update cycle for detecting rare objects 
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Figure 9. Proposed active perception training cycle uses the 

LargeNet + 30 Synth initial training, then applies the GAN 

validation set to determine thresholds before showing images 

to the analyst. 

 


