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Abstract

Virtually all of deep learning literature relies on the as-

sumption of large amounts of available training data. In-

deed, even the majority of few-shot learning methods rely

on a large set of “base classes” for pre-training. This as-

sumption, however, does not always hold. For some tasks,

annotating a large number of classes can be infeasible, and

even collecting the images themselves can be a challenge in

some scenarios. In this paper, we study this problem and

call it “Small Data” setting, in contrast to “Big Data.” To

unlock the full potential of small data, we propose to aug-

ment the models with annotations for other related tasks,

thus increasing their generalization abilities. In particular,

we use the richly annotated scene parsing dataset ADE20K

to construct our realistic Long-tail Recognition with Di-

verse Supervision (LRDS) benchmark, by splitting the ob-

ject categories into head and tail based on their distribu-

tion. Following the standard few-shot learning protocol, we

use the head classes for representation learning and the tail

classes for evaluation. Moreover, we further subsample the

head categories and images to generate two novel settings

which we call “Scarce-Class” and “Scarce-Image,” respec-

tively corresponding to the shortage of training classes and

images. Finally, we analyze the effect of applying vari-

ous additional supervision sources under the proposed set-

tings. Our experiments demonstrate that densely labeling

a small set of images can indeed largely remedy the small

data constraints. Our code and benchmark are available at

https://github.com/BinahHu/ADE-FewShot.

1. Introduction

The availability of big data is the cornerstone of deep

learning research. From early successes on image classi-

fication that were enabled by ImageNet [5], to more recent

progress in object detection driven by the large-scale COCO

dataset [31], thousands of carefully curated and accurately

annotated images are essential to outperform the classical,

heuristic-based approaches. Indeed, even the latest unsu-
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Figure 1. “Small Data” settings and the effect of using diverse su-

pervision. Left: We visualize the category-level instance distribu-

tion of “Small-Data” regimes. Specifically, Scarce-Class picks the

frequent classes and Scarce-Image randomly removes a portion of

images. Right: Baseline represents the models trained with clas-

sification labels only. By incorporating additional supervision, we

achieve competitive performance with less data. The types of su-

pervision used: Bounding Box (BBox), Attributes (Attr), Scene

Labels (Scene), Segmentation (Seg), and Class Hierarchy (Hie).

pervised learning methods rely on availability of millions

of images from the target domain [18]. This requirement,

however, cannot always be fulfilled.

First, in many domains the category distribution is highly

skewed, with a few categories covering most of the data

(so-called head of the distribution), and the rest having only

several examples per category (so-called tail) [16, 14]. This

setting limits the performance of the methods that rely on

a large set of head categories for representation learning.

Second, the collection of raw images themselves can be dif-

ficult. For instance, in face recognition privacy concerns

can limit the data collection [7, 34], and in medical imaging

the amount of examples is constrained by the high cost of

the image acquisition devices [70, 39].

The problem of learning under data sparsity constraints



has been mostly studied in the few-shot learning setting.

Earlier works used toy datasets, like Omniglot [27], or mini-

ImageNet [63]. These benchmarks, however, were not re-

alistic both in terms of content, featuring small, object-

centric images, and in terms of data distribution, with cat-

egories being artificially balanced and randomly split into

head and tail. The issue of content realism was partially

addressed in the full ImageNet [17], and more recently in

MetaDataset [60]. In addition to content realism, the lat-

ter benchmark attempted to achieve distribution realism as

well by avoiding artificially balancing the categories. Both

of these datasets, however, still remain object-centric, and

ignore the role of context in recognition. More importantly,

by virtue of their size, they have set a new standard of pre-

traing representations on a large collection of head classes,

which, as we have described above, is not always possible

in practice.

In this work, we address the limitation of existing few-

shot learning benchmarks by introducing a new, realistic

dataset – Long-tail Recognition with Diverse Supervision

(LRDS). Instead of collecting such a dataset from scratch,

we re-purpose the existing ADE20K dataset [71], originally

for scene parsing. This dataset was collected by labeling all

the objects in a diverse set of images with an open vocab-

ulary, which resulted in a natural long-tail distribution of

categories (see Figure 2, left). Moreover, since the objects

were labeled in context, we are able to sample them together

with a significant portion of the background, removing the

object-centric bias of existing benchmarks (see Figure 3).

To better emulate the real-world challenges of learning

from small data, we propose two new evaluation settings in

LRDS: Scarce-Class and Scarce-Image, which are illus-

trated in the left column of Figure 1. The former emulates

the heavy skew towards the tail categories by removing the

least frequent classes from the head, whereas the latter tar-

gets the difficulty of image collection by randomly subsam-

pling images in the training set of the head categories. As

can be seen in the right column of Figure 1, both these set-

tings lead to a significant performance degradation on the

tail classes with respect to the baseline trained on the full

head set, emphasizing the difficulty of the problem.

To unlock the full potential of small data, we explore ad-

ditional sources of supervision that can be helpful to enrich

the representations without the need to collect new images

or labels for the main task (such additional supervision can

be a lot easier to obtain – one can always annotate bounding

boxes in existing images, whereas collecting new images

may be infeasible). These experiments are enabled by the

wide variety of annotations available in ADE20K. In partic-

ular, we study the effect of localization supervision in the

form of object masks and bounding boxes, background seg-

mentation, scene-level labels, and object part annotations,

as well as semantic supervision in the form of attributes and

class hierarchy (see Figure 2, right). In addition, we show

that these forms of supervision can be combined to further

improve the performance. As illustrated in the right column

of Figure 1, diverse supervision can cover up the degrada-

tion from lacking training data to some extent.

To sum up, our contributions are three-fold: (1) We

propose a novel benchmark for evaluating long-tail and

few-shot learning in a realistic setting. It is based on the

ADE20K dataset for scene parsing and features a natural

long-tail distribution of object categories; (2) We introduce

two new evaluation settings – Scarce-Class and Scarce-

Image, which emulate the realistic issues of class and image

scarcity; (3) We demonstrate that incorporating diverse su-

pervision can help unlock the full potential of small data by

enriching the learned representations, thus increasing their

generalization abilities.

2. Related Work

Related visual benchmarks. Our proposed LRDS

benchmark aims to facilitate further investigation on few-

shot learning (FSL) and long-tail learning (LTL). Most

of the existing benchmarks for FSL and LTL are con-

structed from balanced datasets like ImageNet [5]. Then

the data distribution is manually modified to simulate the

data imbalance and/or scarcity, by splitting the classes into

head and tail and subsampling the tail classes. Repre-

sentative benchmarks include mini-ImageNet [63], tiered-

ImageNet [44], and CUB [64] for FSL, Places-LT [32] and

ImageNet-LT [32] for LTL, and BSCD-FSL [15], Meta-

Dataset [60], and [61] that involve multiple datasets for

cross-domain FSL. Despite the progress made possible by

these benchmarks, they are still not practical – their ran-

dom splitting and subsampling strategies fail to properly re-

flect how the visual concepts are naturally organized. Also,

either common or rare categories have inherent properties

(e.g., scale, context, or super-category), but these important

properties are lost during such process. Our LRDS instead

captures the real-world frequency from ADE20K [71], and

is thus more natural and realistic for both FSL and LTL. In

addition, no existing benchmark investigates the practical

settings with Scarce-Class and Scarce-Image.

Most relevant to our benchmark, iNaturalist [66] is also a

realistic long-tail dataset [21]. However, it only contains an-

imals, while our LRDS benchmark has 482 categories cov-

ering diverse concepts of living and non-living, objects in-

door and outdoor. Moreover, LRDS also exhibits a more se-

vere head/tail imbalance, with the frequencies ranging from

15 to more than 20,000, which poses serious challenge to

existing long-tail techniques. LVIS [16] is a recent dataset

also capturing a natural long-tail distribution. However,

LVIS does not have additional annotation information, and

is thus not suitable for our exploration. By contrast, our

LRDS contains rich annotations reflecting the complexity



of the visual world.
Multi-task learning (MTL) is also related. To the best of

our knowledge, current MTL benchmarks [51, 49, 8] focus

on pixel-level RGBD tasks with relatively abundant data.

Our benchmark is the first to incorporate the few-shot clas-

sification problem into the context of MTL.
Few-shot learning. FSL is a classical problem of rec-

ognizing novel objects from few training examples [57,

36, 38, 28, 67, 40, 46]. Some representative approaches

include metric learning [24, 63, 50, 55], meta-learning

[9, 41, 65], and their combination [60]. However, some

most recent work [11, 3, 58] shows that the performance of

these complex models can be matched by simple represen-

tation learning on base classes and classifier fine-tuning on

novel classes. Consistent with and further supportive to this

observation, in the paper we mainly focus on the incorpora-

tion of supervision with the linear classifier baseline [3, 58],

though we also provide results for representative FSL meth-

ods on our LRDS benchmark.
Some FSL work improves feature learning with external

cues, which is the most relevant to ours. [10, 6, 53] use self-

supervised tasks. [66, 30] utilize localization information.

Many others explore semantic information: [29] uses the

hierarchical structure of concepts, [59, 22] use attributes,

and [47, 68, 37] exploit more extensive semantic informa-

tion. However, ours is the first that systematically investi-

gates extensive and diverse sources of supervision and fur-

ther addresses their combination, thus pushing the state of

the art in this research direction.
Multi-task learning. MTL aims at learning a single

model to handle multiple tasks [1]. Most of the work

seeks to jointly maximize the performance of each indi-

vidual task. Existing approaches can be mainly grouped

into two categories: balancing the weights of loss func-

tions [48, 23, 4] and introducing better feature sharing and

transferring mechanisms [62, 52, 2, 35, 42, 43, 69, 25].

In contrast to their objective of boosting all the involved

tasks, we combine multiple sources of supervision to im-

prove the representation learning for classification. In our

experiments, we show that a simple sequential and multi-

task training approach achieves competitive performance

under this objective.

More broadly, our work is related to the general inves-

tigation of learning with varying amount of data and an-

notation, including fully-supervised learning [5, 26], semi-

supervised learning, and self-supervised learning. While

such work [54, 13] is still in the regime of big data with

weak or no annotation, here we in particular focus on the

“opposite” direction: “Small Data” with rich supervision.

3. The LRDS Benchmark

In this section, we construct a new benchmark for recog-

nizing rare categories in the wild. The benchmark features

a realistic and diverse class distribution, with objects cap-
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Figure 2. Our LRDS benchmark. Left: LRDS is constructed by

turning the scene parsing dataset ADE20K into a long-tailed image

classification benchmark. Right: We present three types of super-

vision for example: Attributes, Segmentation, and Parts, which are

used for learning rich features in the “Small Data” regime.

tured in context. Additionally, we use this benchmark to

study Scarce-Class and Scarce-Image regimes, and inves-

tigate to what extent can diverse supervision help alleviate

the issues caused by data insufficiency. Below, we describe

the steps we take to satisfy these objectives.

3.1. Data Selection and Splitting

We choose the ADE20K [71] dataset as the basis for con-

structing our few-shot learning benchmark, due to its di-

versity and richness of the vocabulary. ADE20K has more

than 3,000 classes, covering objects, object parts, and back-

ground. It also exhibits a highly imbalanced category dis-

tribution shown in the left column of Figure 2. Below we

summarize the filtering steps to select the categories for our

benchmark.

First, we manually split the classes into objects, parts,

and stuff. Since we want to focus on object classification,

only the corresponding categories are included in our label

set, resulting in 1,971 classes. The part and stuff labels are

instead used as additional sources of supervision.

Second, we further filter the object categories based on

their frequency. In particular, we only keep the classes with

at least 15 instances in the dataset, resulting in 482 cate-

gories. While this excludes the most challenging classes

from the benchmark, we argue that including them would

introduce significant noise in the evaluation. Indeed, mea-

suring performance on 2-3 images is dominated by noise

and is not informative of the model’s recognition ability.

Finally, to mimic the typical setup in the few-shot clas-

sification benchmarks, we split the categories into base and

novel subsets, where the former is used for representation

learning, and the latter for evaluation. Instead of splitting

the categories at random, we follow the natural distribution

of objects in the world, and select the classes that have more

than 100 instances in the dataset as base and the remaining

ones as novel. This results in a realistic few-shot learning

benchmark to date, where the natural regularities between

frequent and infrequent categories are captured.
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Figure 3. Converting ADE20K into an image classification bench-

mark. With the original segments annotated in ADE20K, we first

crop out every object using tight bounding boxes. Then we imitate

realistic data distribution by enlarging the boxes with context and

applying random jitter to avoid center bias.

Overall, our dataset contains 189 base and 293 novel cat-

egories. For each of the categories in the base set, 1/6 of the

data is held out for validation. In the novel set, we ran-

domly select 5 instances in each category for training and

the rest are used for evaluation. We further divide the novel

set into 100 novel-val and 193 novel-test categories at ran-

dom, where the former is used for hyper-parameter selec-

tion, and the latter for reporting the final performance.

3.2. Adapting ADE20K for Classification

We convert the original ADE20K designed for scene

parsing into a classification dataset to serve our needs. Since

ADE20K provides instance-level masks for the objects, it

can be easily transformed by cropping the regions around

the masks and treating them as independent images. How-

ever, using tight bounding boxes is an unrealistic data distri-

bution, since objects typically appear in context. Therefore,

we simulate a more realistic distribution by box enlarge-

ment and random jitter. In particular, we compute the av-

erage context ratio (area of context divided by area of tight

bounding box) in the ImageNet [5] dataset and expand the

original bounding boxes accordingly. We then apply a ran-

dom shift to the box to avoid center bias (see Figure 3).

3.3. Defining the Small Data Regimes

To experiment under the “Small Data” settings, we

propose two new evaluation regimes, Scarce-Class and

Scarce-Image, to simulate the corresponding real-world

constraints. For the former, we sort the base categories ac-

cording to the number of instances, and remove the lower

25%, 50%, and 75% for varying degrees of class sparsity.

This indeed corresponds to highly-skewed long-tailed dis-

tributions in the real world when increasingly fewer cate-

gories occupy a larger fraction of the data. For the latter,

we simply remove the images from the training set of the

base categories at random using the same ratios as for the

Scarce-Class regime. This approach simulates scenarios in

which the images are hard to obtain, while preserving the

natural, long-tailed category distribution.

Importantly, these two settings have a different effect on

the overall size of the training set. Recall that in Scarce-

Class the least frequent categories are removed first, which

constitute only a small fraction of the dataset (see Figure 1,

top left). Removing images, on the other hand, has a more

monotonous effect on the dataset size, as shown in the bot-

tom left part of Figure 1. As a results, the two settings have

a different effect on the model’s performance, with Scarce-

Image being harder in the most constrained scenario, when

only 25% of the data is preserved (see Figure 1, right).

3.4. Collecting Diverse Supervision

Evaluating the effect of diverse supervision on the

model’s few-shot classification ability is one of the main

goals of this work. To this end, we accumulate all the labels

provided in ADE20K, which include localization supervi-

sion for the object categories (both in the form of masks

and bounding boxes), object part annotations, stuff category

segmentation, as well as scene labels. In addition, inspired

by [59], we collect category-level attribute annotations by

inheriting the same attribute set defined on ImageNet [5],

and manually assigning attributes for each base category.

Finally, we collect class hierarchy labels by extracting the

WordNet Tree provided by ADE20K. Notice that no addi-

tional annotations are used for the novel categories.

Combining all these diverse forms of supervision in a

single image classification framework is non-trivial. In the

next section we discuss our experimental setup as well as

evaluation protocol.

4. Experimental Protocol

The pipeline and setup of our experiments are demon-

strated in Figure 4, where the standard few-shot learning

protocol in [3] is adopted. We first learn the feature extrac-

tor F , such as a ResNet-18 [20], on the training set of base

classes. Then F is frozen and evaluated on novel classes

for few-shot learning. The accuracy on the test set of novel

classes indicates the generalization of the learned feature.

The evaluation focuses on both 1-shot and 5-shot settings.

Note that, different from [3], we perform classification on

the full set of classes (100-way for the validation set and

193-way for the test set).

During both training and evaluation, a model takes as in-

put a region B in a scene image I , and outputs the category

C of the object in that area. Therefore, our backbone is

identical to the classification branch of Faster R-CNN [45],

which performs object classification on the input image re-

gions. The scene image I is propagated through F , produc-

ing a feature map. Then the feature map of the region B is

fed into an RoI-Align layer [19], whose output is the feature
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Figure 4. Pipeline for training and evaluation with diverse supervision. Left: We learn the feature extractor F on base classes and evaluate
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Right: We show some representative examples of introducing supervision at different levels. Self-supervision modifies the input image,

image-level supervision operates on the entire feature map, and object-level supervision focuses on the feature vectors of the objects.

vector f of the region. Finally, the model predicts the cate-

gory C with a classifier, denoted as FB
cls

and FN
cls

for base

and novel classes, respectively. More formally, assume that

the image I consists of object set OI ; then the classification

loss for the base objects is as Eq. (1), where LCE and RA

denote the cross-entropy loss and the RoI-Align operation:

Lcls(I) =
∑

o∈OI

LCE(F
B
cls

◦ RA(F (I), Bo), Co). (1)

When combining different types of supervision, each

type of supervision s has its own task head Fs, supervision

label Cs, and task-specific metric Ms. Taking the Scene

Label supervision as an example, we have a classifier, scene

label, and cross-entropy loss.

The object-level supervision applies Fs on top of the fea-

ture vectors of objects. This set of supervision includes At-

tributes, Class Hierarchy, Parts, and Bounding Box. For an

arbitrary supervision s, the loss on image I is computed as:

Ls(I) =
∑

o∈OI

Ms(Fs ◦ RA(F (I), Bo), Co,s). (2)

For the type of image-level supervision which is relevant

to the entire image, such as Scene Label and Segmentation,

we apply Fs on top of the feature map F (I). Their loss

functions are in the form of

Ls(I) = Ms(Fs ◦ F (I), Cs). (3)

In addition, we further consider using pretext tasks as

self-supervision [10, 6]. This type of supervision defines

an editing operation E on the images, and predicts labels

corresponding to E. The losses for self-supervision s are

Ls(I) = Ms(Fs ◦ F ◦ Es(I), Cs). (4)

When multiple types of supervision are combined, the

final loss function L becomes the weighted sum of each

individual loss term. The combination weights are hyper-

parameters that balance different supervision and are se-

lected on the validation set. We elaborate on this and other

implementation details in the appendix.

5. Experimental Evaluation

We begin by evaluating state-of-the-art approaches for

few-shot learning on our benchmark in Section 5.1. Then

we use the full training set of the base classes to study

the effect of using additional sources of supervision in Sec-

tion 5.2 and lowering the cost of supervision in Section 5.3.

In advance, we explore the optimal ways of combining

them in Section 5.4. Finally, we evaluate the best combi-

nations in the very challenging Scarce-Class and Scarce-

Image regimes in Section 5.5 (more analysis is reported in

the appendix).

5.1. Benchmarking Fewshot Learning Methods

We begin by providing an evaluation of several recent

few-shot learning methods on LRDS. In particular, we fo-

cus on the best performing approaches from the recent study

of Chen et al. [3], and report the results of prototypical

networks [50], relational networks [55], and the linear and

cosine classifier baselines that have shown promising re-

sults in [3]. In addition, we evaluate the very recent Proto-

MAML approach [60] which achieves top performance on

the realistic MetaDataset. We train all the models under the

full data setting and report 5-shot accuracy on the novel set

in Table 1.

Similar to [3], we observe that prototypical networks



Model Top-1 Top-5

Linear Classifier [3] 17.10 34.46

Prototypical Networks [50] 17.14 33.81

Relational Networks [56] 8.34 25.53

Cosine Classifier [3] 13.65 32.33

Proto-MAML [60] 14.54 30.37

Table 1. Benchmarking few-shot learning methods. 5-shot accu-

racy for models trained with full data is reported.

show strong results; however, the gap between prototypical

and relational networks is more significant on our bench-

mark. We hypothesize that this is due to the fact that re-

lational networks do not generalize well to more realistic

data distributions. A similar observation can be made for

Proto-MAML. While this complex approach outperforms

the linear classifier baseline on MetaDataset, it struggles

LRDS, further illustrating the unique challenges presented

by our benchmark. Based on these observations, we use

linear classifier for the rest of the experiments in the paper.

5.2. Exploration of Individual Supervision Sources

We now explore a diverse set of supervision sources on

the proposed LRDS benchmark, while using the full train-

ing set of the base classes. In Table 2 we report results for

5 types of supervision, including attributes, class hierarchy,

bounding boxes, segmentation, and scene labels. In addi-

tion, we report results for a few more sources of supervi-

sion, including self-supervised objectives like rotation and

relative patch location in the appendix.

Attributes. Following [59], we use a multi-label classi-

fication loss for the attributes as shown in Figure 4. The

results in the second row of Table 2 demonstrate that this

approach indeed improves the performance on the novel

classes. In particular, top-5 classification performance in

the 5-shot scenario is increased by more than 3%, and the

improvements on the base set are a lot less significant, con-

firming the observations of [59].

Class Hierarchy. We first try to incorporate the hierarchi-

cal structure of categories into the feature space. Follow-

ing [29], we utilize a hierarchical embedding space, trans-

forming the feature representation to different levels of se-

mantic hierarchy to classify corresponding concepts.

We further experiment with a simplified version of class

hierarchy supervision, that is, classifying an object on mul-

tiple concept levels. For instance, we can classify a cat as

cat, mammal, and animal. In implementation, we split

the WordNet of ADE20K [71] into four levels and learn four

independent classifiers on each of the levels. This naive ap-

proach outperforms the hierarchical embedding on LRDS,

and we use it for the rest of the experiments.

Bounding Boxes. Unlike [66], we study the effect of pro-

viding bounding box labels for the training on base classes.

The intuition is that this will allow the object representa-

tion to focus on the objects and not on the background, thus

generalizing better to unseen object distributions. To this

end, we add a bounding box regression layer identical to R-

CNN [12] after the RoI-Align stage. As can be seen from

the corresponding row of Table 2, this results in a significant

performance improvement on the novel categories, confirm-

ing our intuition.

Segmentation. We experiment with two variants of pro-

viding segmentation supervision. The first version follows

the protocol in Mask R-CNN [19], where we predict a bi-

nary mask inside an RoI-Aligned region. The second ver-

sion operates in the semantic segmentation regime [33], ap-

pending an additional convolutional layer after the feature

map. Notice that we only apply segmentation supervision

to the objects of base classes in the training set and ignore

the other pixels. The numbers in Table 2 demonstrate that

both approaches result in an improvement over the baseline

and the semantic segmentation model achieves top perfor-

mance. We hypothesize that the problem of semantic label-

ing of the pixels in a large feature map is more difficult than

the alternative formulation of binary pixel classification in

a cropped region, providing a stronger regularization signal

for representation learning.

Scene Labels. As shown in Figure 4, we supervise scene

labels by applying a global pooling layer and linear scene

classifier after the feature map of the image. Although scene

labels are not directly related to the object categories, we

observe a significant improvement in the novel classifica-

tion performance. We attribute it to the fact that scenes are

correlated with certain groups of object categories in the

same way as class attributes or elements of the class hierar-

chy, regularizing learning of object representation.

Overall, the effect of additional supervision sources on

the training process varies significantly with their types. We

hypothesize that the difficulty of a supervisory task is di-

rectly related to how useful it is for learning generalizable

representations. For instance, segmentation labels seem to

be more useful than bounding boxes, as learning to predict

the precise boundaries of the objects is harder than approxi-

mately localizing them with a box. The main implication of

this observation is that investing in more expensive annota-

tions does pay off when used for representation learning.

5.3. Varying the Amount of Supervision

After observing that providing diverse sources of su-

pervision can bring significant improvements in few-shot

learning performance, we want to explore whether these im-

provements can be obtained at a lower cost. In this section,

we explore the effect of the fraction of data for which addi-

tional labels are provided on the quality of learned represen-

tation. In particular, we experiment with three kinds of su-

pervision that have shown strong improvement: attributes,

class hierarchy, and segmentation, varying the proportion of

labeled data, and report the results in Figure 5.



Type of

supervision
Model Base-Val

Novel-test set

1-shot 5-shot

Top-1 Top-5 Top-1 Top-5

Baseline 44.13 7.00 16.36 17.10 34.46

Attributes +Attribute 45.38 7.56 17.00 19.66 37.62

Class

Hierarchy

+Hierarchy Embedding 44.57 7.48 17.34 19.12 36.93

+Hierarchy Classifier 46.43 7.83 17.97 19.57 37.19

Bounding Box +Bounding Box 45.97 7.14 17.16 19.64 37.40

Segmentation
+Segmentation Region 45.68 7.68 17.35 18.95 37.46

+Segmentation FCN 45.82 7.84 17.53 20.02 38.26

Scene Label + Scene 45.03 7.37 18.08 18.26 36.45
Table 2. Comparison of different supervision sources on the base-validation set and novel-test set of LRDS. For clarity, the models are

trained with full data.

Performance with Varied Amount of Supervision

Figure 5. Varying the amount of supervision. The performance

increases when additional labels are available even for as little as

25% of the instances.

Model Method Top-1 Top-5

Baseline \ 17.10 34.46

+Seg MTL 18.43 35.49

+Seg CL 20.02 38.26

+Seg+Attr MTL 19.59 37.99

+Seg+Attr CL 20.96 39.41

+Seg+Hier CL 21.02 39.31

+Seg+BBox CL 20.98 39.14

+Seg+Hier+Attr CL 20.40 39.40

+Seg+Attr+Hier CL 21.18 39.99

Table 3. Combining multiple types of supervision. We compare

both methods for training on multiple tasks (MTL and CL), as

well as different task combinations on the novel set of LRDS.

We can observe that for all three types of supervision,

labeling as little as 25% of the data already results in sig-

nificant improvements over the baseline. Indeed, labeling

25% of instances already covers a lot of categories as well

as different scenarios, providing a sufficiently strong regu-

larization signal for representation learning. These results

demonstrate that the benefits of diverse supervision can be

obtained at a relatively low cost. For the rest of the pa-

per, however, we use the full set of of annotations for each

source of supervision to demonstrate the full potential of

this approach.

5.4. Combining Multiple Sources of Supervision

It is natural to ask whether combining multiple sources

of supervision can lead to further improvements. We an-

swer this question in Table 3, and begin by exploring two

settings: multi-task learning (MTL), where all types of su-

pervision are applied at once, and curriculum learning (CL),

where the additional types of supervision are added one

by one (the details of each setting are reported in the ap-

pendix). We observe that both for segmentation alone (com-

bined with the main task of object classification), and for a

combination of segmentation with attributes, CL achieves

a better performance compared to MTL, demonstrating the

complexity of multi-task learning. We thus use CL for com-

bining multiple sources of supervision in the rest of the pa-

per.

Next, we notice that combining diverse sources of su-

pervision can indeed have an additive effect on the general-

ization abilities of the learned representation. For instance,

adding both semantic and localization tasks on top of se-

mantic segmentation noticeably improves the performance

on the novel set. Moreover, combining three types of super-

vision results in further improvements, though the returns

tend to diminish as more sources of supervision are added.

Finally, the orders in which the sources of supervision

are added in our CL framework influence the final perfor-

mance. In Table 3, two different ways of combining seg-

mentation, attributes, and class hierarchy result in a notice-

ably different results on the novel set. Overall, we observe

that adding stronger forms of supervision first leads to bet-

ter results in our framework. We hypothesize that this is

due to the fact that earlier stages of representation learning

are more important, and later fine-tuning stages have only a

minor influence. However, optimal rules for selecting this

order remain to be thoroughly explored.

5.5. Effect of Diverse Supervision on Small Data

Finally, we answer the question raised at the beginning of

this paper: “Can diverse supervision remedy the small data

constraints?” To this end, we first establish the baselines



Scarce-Class

Scarce-Image

Figure 6. Effect of diverse supervision on small data. We follow

the notation introduced in Figure 1. Additional sources of super-

vision consistently improve the performance under all settings.

for each setting (Scarce-Class and Scarce-Image) and each

data ratio (75%, 50%, and 25%) by training on classification

labels alone, and then augment those with different combi-

nations of supervisory sources. The particular settings are

chosen based on an extensive study of the optimal combi-

nations in the appendix, and include both the most effective

but expensive types of supervision (such as bounding box

and segmentation) and more cost-effective labels (such as

attributes and scene classes). The results are reported in

Figure 6.

First, we observe that decreasing both the number of

base classes and the number of images results in a signif-

icant drop in the performance of the baseline, confirming

the complexity of the small data setting studied in this pa-

per. It is worth noting that the drop in performance is not

uniform across the settings. Instead, the lack of images has

a larger effect on the model’s performance than the lack of

classes. As discussed in Section 3.3, this is due to the fact

that removing images reduces the actual number of training

instances by a large margin, compared to removing the least

frequent classes. We quantify this observation in Table 4.

Next, we can see that various combinations of diverse

supervision can indeed significantly improve the baseline

performance in these challenging scenarios. For instance,

in the Scarce-Class setting, our best combination of super-

visory sources (Seg + Attr + Hier) outperforms the model

trained on the full base training set by using only 50% of

the classes. As discussed above, the Scarce-Image setting

is more challenging; however, diverse supervision still pro-

vides noticeable improvements, nearly reaching the the full

data performance by only using half of the images.

Overall, using both expensive and cheap sources of su-

pervision results in improvements across the board. That

said, we also observe that in the most challenging scenario,

Settings Remaining Instance Portion

25% Images 25.14%

50% Images 49.79%

75% Images 75.00%

25% Classes 80.87%

50% Classes 92.73%

75% Classes 97.39%

Table 4. The portion of remaining samples under Scarce-Class and

Scarce-Image settings. The former retains significantly fewer in-

stances than the latter.

where only 25% of the images are available, all the models

struggle to learn a generalizable representation, emphasiz-

ing the complexity of the problem. In future work this lim-

itation can be addressed by combining a small number of

densely labeled images, with a large collection of unlabeled

ones, using recent advances in self-supervised learning [18].

6. Conclusion and Discussion

In this paper we have introduced LRDS – a realistic few-

shot learning benchmark with rich annotations. In addition,

we have proposed two new evaluation regimes – Scarce-

Class and Scarce-Image, which emulate the real-world is-

sues of class and image scarcity, respectively. We have then

explored how these challenging scenarios can be remedied

by using diverse supervision available in LRDS. Our ex-

periments have shown that a variety of supervision sources,

as well as their combinations, are in fact helpful for the

task. When combining multiple sources of supervision,

those who are most different in nature, such as semantic

and localization cues, are most complementary. However,

we have also encountered some open problems which we

discuss below.

First, the performance quickly saturates as more supervi-

sion sources are added. This is a common problem in multi-

task learning, and a subject of an active research. We expect

that as better approaches to training multi-task models are

developed, they will automatically increase the value of di-

verse supervision for learning generalizable representations

in the small data regime.

Second, as is discussed in Section 5.4, the order in which

multiple sources of supervision are applied has a notice-

able effect on performance. As the number of supervision

sources grows, finding the optimal order in a naive way

will become prohibitively expensive. Devising principled

or heuristic rules to guide the search is thus very impor-

tant. While we provide some preliminary intuition into this

problem (i.e., “harder” tasks need to be learned first), it still

remains to be thoroughly explored.
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