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Figure 1: Our network, BalaGAN, translates a dog to a cat, based on a reference image. We train the network on 4739

dog images and decreasing number of cat images, from full domain (5153 cats) down to 125, leading to more and more

imbalanced domain pairs. Quality of the translated images remains high, even when the two domains are highly imbalanced.

Abstract

State-of-the-art image translation methods tend to strug-

gle in an imbalanced domain setting, where one image do-

main lacks richness and diversity. We introduce a new

unsupervised translation network, BalaGAN, specifically

designed to tackle the domain imbalance problem. We

leverage the latent modalities of the richer domain to turn

the image-to-image translation problem, between two im-

balanced domains, into a multi-class translation problem,

more resembling the style transfer setting. Specifically, we

analyze the source domain and learn a decomposition of

it into a set of latent modes or classes, without any super-

vision. This leaves us with a multitude of balanced cross-

domain translation tasks, between all pairs of classes, in-

cluding the target domain. During inference, the trained

network takes as input a source image, as well as a ref-

erence style image from one of the modes as a condition,

and produces an image which resembles the source on the

pixel-wise level, but shares the same mode as the reference.

We show that employing modalities within the dataset im-

proves the quality of the translated images, and that Bal-

aGAN outperforms strong baselines of both unconditioned

and style-transfer-based image-to-image translation meth-

ods, in terms of image quality and diversity.

1. Introduction

Image-to-image translation is a central problem in com-

puter vision and has a wide variety of applications in-

cluding image editing, style transfer, data enrichment, im-

age colorization, etc. Acquiring labeled pairs of source

and target domain images is often hard or impossible,

thus motivating the development of unsupervised methods

[27, 8, 10, 23, 14, 16, 4]. However, these methods are often

lacking in quality or robustness to domain variations. In-

deed, in most unsupervised approaches, there is an implicit

assumption of “approximate symmetry” between the trans-

lated domains, in term of data quantity or variety. With this

assumption, the source and target domains are treated each

as one-piece, without fully leveraging the variety within ei-

ther of them. In reality, most datasets are imbalanced across

different categories, e.g., ImageNet [5] contains many more

images of dogs than of wolves. As image-to-image transla-

tion can be used to enrich some domains by utilizing others,

improving these methods, in the imbalanced setting in par-

ticular, can play a critical role in resolving the ubiquitous

“data shortage” problem in deep learning.

In this paper, we present BalaGAN, an unsupervised

image-to-image translation network specifically designed to

tackle the domain imbalance problem where the source do-

main is much richer, in quantity and variety, than the target

one. Since the richer domain is, in many cases, multi-modal,
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Figure 2: Our image translation network, BalaGAN, is designed to handle imbalanced input domains, e.g., a set of dog images

that is much richer than that of wolves. We decompose the source domain into multiple modes reflecting the images “styles”

and train a GAN over all mode pairs to learn a multitude of intra- and inter-mode cross-translations. During inference, the

network takes a source (e.g., a dog) and a reference image (e.g., a wolf) to produce a new image following the “style/mode”

of the reference while resembling the source in a pixel-wise manner.

we can leverage its latent modalities. To do this, we turn

the image-to-image translation problem, between two im-

balanced domains, into a multi-class and reference-guided

translation problem, akin to style transfer. Our key observa-

tion is that the performance of a domain translation network

can be significantly boosted by (i) disentangling the com-

plexity of the data, as reflected by the natural modalities in

the data, and (ii) training it to carry out a multitude of var-

ied translation tasks instead of a single one. BalaGAN ful-

fills both criteria by learning translations between all pairs

of source domain modalities and the target domain, rather

than only between the full source and target domains. This

way, we are taking a more balanced view of the two other-

wise imbalanced domains. More importantly, enforcing the

network to learn such a richer set of translations leads to im-

proved results, and in particular, a better and more diverse

translation to the target domain.

Specifically, let us assume that the source domain A,

which is significantly richer than the target domain B, con-

sists of multiple mode classes. We train a single GAN

translator G with respect to all pairs of modes (see Fig-

ure 2). During inference, the trained network takes as input

a source image x, as well as a reference image y from one of

the modes as a condition, and produces an image G(x, y).
This image resembles x on the pixel-wise level, but shares

the same mode (or style) as y. To realize our approach,

we develop means to find the latent data modalities with-

out any supervision and a powerful generator for the task

of conditional, multi-class image-to-image translation. Our

translator is trained adversarially with two discriminators,

each aiming to classify a given image to its corresponding

mode, with one trained on real images only. The generator

is trained to produce meaningful content and style represen-

tations, and combine them through an AdaIN layer. While

this architecture bears resemblance to multi-class transla-

tion networks such as FUNIT [16] and StarGAN [4], it

should be emphasized that unlike these methods, we learn

the latent modalities, and use transductive learning, where

the target domain participates in the training.

We show that reducing the imbalanced image translation

problem into a cross-modal one achieves comparable or bet-

ter results compared to any unsupervised translation method

we have tested, including the best performing and most es-

tablished ones, since they do not exploit the latent modali-

ties within the source domain. We analyze the impact of the

extracted latent modalities, perform ablation studies, and

extensive quantitative and qualitative evaluations, which are

further validated through a perceptual user study. We fur-

ther show the potential of our cross-modal approach for

boosting the performance of translation in balanced setting.

Our main contributions can be summarized as follows:

(i) we present a unique solution to the image translation

problem that is tailored to the imbalanced domain setting;

(ii) we introduce a new approach which converts a single

translation problem into a multitude of cross-modal transla-

tion problems; and (iii) we demonstrate competence of our

approach also under the general domain setting.
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Figure 3: An illustration of BalaGAN’s architecture.

2. Related Work

Modern unsupervised image-to-image translation meth-

ods use GANs [6] to generate plausible images in the tar-

get domain, conditioned on images from a source domain.

Such methods are unsupervised in the sense that no pairs be-

tween the source and target domain are given. Some works

[27, 15, 9, 14, 23] propose to learn a deterministic genera-

tor, which maps each image of the source domain to a cor-

responding image of the target domain. These works often

use a cycle consistency constraint, which enforces the gen-

erator to be bijective, thus preventing mode collapse. With

this approach, the amount of possible target images one can

generate per input image is often limited.

Other works [8, 12] propose to view image-to-image

translation as a style transfer problem, where the content

is an image from the source domain, and the style is taken

from the target domain. The style can be either a random

noise from the desired style space or taken from some spe-

cific reference image in the target domain. By doing so,

the number of possible target images that one can generate

significantly increases. These works are multi-modal in the

sense that a given image can be translated to multiple im-

ages in the target domain. This multi-modality can also be

achieved in other approaches [21].

While the aforementioned methods require training a

generator for each pair of domains, some other works

[16, 4] combine style transfer with a training scheme that

results in a single generator that can translate between any

pair of domains or styles that appear during training. More-

over, Liu et al. [16] show that their method is capable of

translating to styles that were unseen during training as long

as the GAN was trained on closely-related styles.

In our work, we adopt the style transfer approach and use

the training scheme that enables one generator to translate

between multiple pairs of domains. While previous works

focus on learning the translation between the desired do-

mains, we also learn translations between modalities of the

source domain, thus leveraging its richness. This makes our

method multi-modal in the sense that it utilizes the modal-

ities of the source domain for the training of the transla-

tion task. Although the apparent resemblance, the meaning

of multi-modal (or cross-modal) in our work is fundamen-

tally different than its meaning in MUNIT, in which multi-

modality refers to the ability to translate a given image into

multiple images in the target domain. Conversely, in our

work, we refer to the latent modalities in the source domain.

Recently, it has been shown that the latent modalities of a

dataset can assist in generating images, which belong to that

dataset distribution [17, 24]. The premise of these works

is that real-world datasets cannot be well-represented using

a uniform latent space, and information about their latent

modalities helps to model the data distribution better. In our

work, we exploit these modalities to improve the generator

by training it to translate between them.

3. Method

BalaGAN aims at translating an image between the un-

paired, rich source domain A, and a data-poor target domain

B. As A is rich, it is likely to have a complex distribution,

consisting of multiple modes. To perform the translation,

our method receives a source image, and a reference im-

age from the target domain. The source image is translated

such that the output image appears to belong to the target

domain. The training of our model consists of two steps: (i)

finding k disjoint modalities in the source domain, where

each modality is a set of images, denoted by Ai; (ii) training

a single model to perform cross-translations among all pairs

in (A1, ..., Ak, B), see Figure 2. By learning all these cross

translations, the performance of the network is significantly

improved, which results in a higher quality of translation

from A to B, in particular.



3.1. Finding Modalities

To find the modalities of a given domain, we train an

encoder that yields a meaningful representation of the style

for each image. Then, we cluster the representations of all

source domain images, where each cluster represents a sin-

gle modality.

We train our encoder following Chen et al. [2], where

contrastive loss is applied on a set of augmented images.

Given a batch of images, we apply two randomly sampled

sets of augmentations on each image. Then, we apply the

encoder, and attract the result representations of augmented

images if both were obtained from the same source im-

age, and repel them otherwise. Choosing a set of augmen-

tations that distort only content properties of the images,

yields representations that are content agnostic and reflect-

ing of the style. We use the normalized temperature-scaled

cross-entropy loss [2, 25, 26, 22] to encourage a large co-

sine similarity between image representations with similar

styles. As the dot product between such representations is

small, spherical k-means allows for clustering images by

their styles. We denote the clusters by A1, ..., Ak, where

k is chosen such that |B| ≥ |A|/k resulting in modalities

which are relatively balanced. Analysis of different values

of that k is given in Section 4.2.

3.2. Translation Network

Our translation network is a multi-class image-to-image

translation network, where the classes (A1, ...Ak, B) are

the clusters obtained above. The network cross-translates

between all the (k + 1)2 pairs in (A1, ...Ak, B). The net-

work’s architecture and training procedure are built upon

FUNIT [16]. We train the translation network G, and a dis-

criminator D in an adversarial manner. A high-level dia-

gram of our architecture is shown in Figure 3.

G consists of source encoder Esource, reference encoder

Eref, and decoder F . Given a source image x, and a refer-

ence image y, the translated image is given by:

x′ = G(x, y) = F (Esource(x), Eref(y)). (1)

To train G, we sample two images from (A1, ..., Ak, B),
a source image x, and a reference image y. The network

receives these two images and generates a new image which

resembles x on the pixel-wise level, but shares the same

mode as y. At test time, we translate images from domain

A to domain B by taking a source image from A and a

reference image from B. Note that the trained network can

translate any image from A without its cluster (modality)

label.

Our discriminator consists of two sub-networks, which

have shared weights in the initial layers, denoted by Df .

Each sub-network corresponds to a different task that the

discriminator performs. The first sub-network, denoted by

Dadv, aims to solve an adversarial task, in which it classifies

each image to one of (A1, ..., Ak, B). That is, Dadv(·) is a

k+1-dimensional vector with score for each modality. The

translation network aims to confuse the discriminator, that

is, given a source image x and a reference image y, G aims

at making Dadv predict the modality of y for G(x, y). For

such a generated image, Dadv aims to predict any modal-

ity, but the modality of y, while for a real image it aims at

predicting its correct modality. The requirement of predict-

ing any modality but the one of the reference image for a

generated image is a rather weak requirement, which weak-

ens the discriminator. To strengthen the discriminator, we

introduce the additional sub-network, Dcls, which presents

a stronger requirement. Hence, the shared weights of the

two sub-networks learn stronger features. Dcls is trained

to predict the modalities of real images only. As shown

in previous works, e.g.[3], defining additional meaningful

task for the discriminator helps the stability of the training,

and eventually strengthens the generator. In Section 4.4 we

show that this additional sub-network significantly outper-

forms the FUNIT architecture.

Losses. We use a weighted combination of several objec-

tives to train G and D. First, we utilize the Hinge version of

the GAN loss for the adversarial loss [13, 20, 1]. It is given

by

LGAN(D) = Ex[max(0, 1−Dadv(x)m(x))]+ (2)

Ex,y[max(0, 1 +Dadv(G(x, y))m(y)],

LGAN(G) = −Ex,y[Dadv(G(x, y))m(y)],

where Dadv(·)i is the i-th index in the k + 1-dimensional

vector Dadv(·) and m(x) is the modality of the image x. To

encourage content-preservation of the source image and to

help in preventing mode collapse we use a reconstruction

loss. It is given by

LR(G) = Ex[||x−G(x, x)||1]. (3)

Additionally, to encourage the output image to resemble the

reference image, we utilize the feature matching loss. It is

given by

LFM(G) = Ex,y[||Df (G(x, y))−Df (y)||1]. (4)

For the classification task of the discriminator, we use cross-

entropy loss, defined by

LCE(D) = CrossEntropy(Dcls(x),1m(x)), (5)

where 1m(x) is a one-hot vector that indicates the modality

of the image x. Gradient penalty regularization term [19]

is also utilized, given by R1(D) = Ex[||∇Dadv(x)||
2
2]. The



total optimization problem solved by our method is defined

by

min
D

LGAN(D) + λCELCE(D) + λregR1(D), (6)

min
G

LGAN(G) + λRLR(G) + λFLFM(G).

Balanced setting. While the main motivation for the

cross-modal translation is for the imbalanced translation

setting, our method also shows effectiveness in translation

between two balanced domains, A and B. In such a setting,

we split both A and B into modalities. Then, instead of

defining the classes as (A1, ..., Ak, B), we define the classes

to be (A1, ..., Aks
, B1, ..., Bkt

) and train the translation net-

work with all (ks + kt)
2 pairs.

4. Evaluation

We evaluate our cross-modal translation method in a se-

ries of experiments. We first show the effectiveness of our

method in the imbalanced setting, by evaluating its perfor-

mance when training it with a decreasing the number of im-

ages in the target domain. Next, we explore the influence of

the number of modalities, k, on the result. Then, we show

that our method can also be effective in the balanced set-

ting. Finally, we perform an ablation study to compare our

architecture with other alternative architectures and study

the importance of finding effective modalities. To evalu-

ate the results, we show a variety of visual examples, use

the FID [7] measurement, and perform a human perceptual

study to validate the quality of the results obtained by our

method compared to results of other leading methods.

Datasets. We use the CelebA dataset [18] and set the

source and target domains to consist of 10,000 and 1000

images of women and men, respectively. We additionally

use the Stanford Cars Dataset [11], and translate a range

of different colored cars to red cars. There, the training

set consists of 7500 non-red cars, and 500 red cars. From

the AFHQ dataset [4] we take all the 4739 images of dogs

as the source domain, and all the 5153 images of cats as

the target domain. Furthermore, we use the Animal Face

Dataset (AFD) [16] and set the source domain to be a mix

of 16 breeds of dogs and the target domain to be a mix of

three breeds of wolves. Our training set consists of 10,000

dog images and 1000 wolf images. It should be noted that

among the above, the Animal Face Dataset is the most chal-

lenging due to the wide range of poses and image quality.

4.1. Effectiveness in the Imbalanced Setting

We compare our approach with other methods: Cycle-

GAN [27], CUT [23], U-GAT-IT [10], MUNIT [8], Star-

GAN2 [4]. We first train a number of methods on the AFD

dataset. For our method, we used 40 modalities to train the

translation network. Quantitative results are presented in

Table 1.

[27] [23] [10] [8] [4] Ours

77.8 108.64 97.16 83.38 211.77 60.88

Table 1: FID (↓) results of CycleGAN, CUT, U-GAT-IT,

MUNIT, StarGAN2, and BalaGAN (marked by their ref-

erences) applied on AFD, translating dogs to wolves in an

imbalanced setting. For BalaGAN we use 40 modalities.

For the above leading methods, we perform additional

experiments over multiple datasets to show the effect of de-

creasing the number of training images in the target domain.

Quantitative results over AFD, CelebA, Stanford Cars, and

AFHQ are presented in Table 3. As can be seen, CycleGAN

and BalaGAN are the leading methods, and the image qual-

ity produced by BalaGAN is more stable as the size of the

target domain decreases. Visual results are shown in Figure

4 for these two methods, and in the supplementary material

for the other methods.

We further compare BalaGAN and CycleGAN through

a human perceptual study, in which each user was asked

to select the preferred image between images generated by

these two methods. The images were generated by models

that were trained using 1000 target domain images. 50 users

participated in the survey, each answered ten random ques-

tions out of a pool of 200 questions for each dataset. As can

be seen in Table 2, BalaGAN outperforms CycleGAN on

both datasets even though CycleGAN achieves lower FID

for the women→men translation task.

4.2. Influence of Modalities Number

The number of modalities that our translation network is

trained on, k+1, is an important factor for the success of our

method. For k = 1, our method is reduced to the common

setting of image-to-image translation, and as we increase k,

our network is enforced to train and learn more translation

tasks, resulting in more accurate translation. Here we show

that the value of k influences the quality of the generated

images. Visual results that were obtained on the dog→wolf

translation task are shown in Figure 6 and quantitative re-

sults are provided in Figure 5. As can be seen, as k in-

creases, FID decreases, i.e., the images quality is improved.

Task CycleGAN BalaGAN

dogs → wolfs 16.7 83.3

women → men 33.6 66.4

Table 2: Percentage of users that chose the corresponding

image as the preferred one in imbalanced setting.
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Source Ref CycleGAN BalaGAN

Figure 4: Applying CycleGAN and BalaGAN on the dog→wolf, woman→men, car→red-car, and dog→cat translation tasks,

by training with decreasing number of images in the target domain. The numbers above the table indicate the number of target

domain images that were used for training. For the cars, we have less than 1000 red car images overall, and thus training

with 1000 images in the target domain is not applicable.

|B|
dogs→wolves women→men car→red-car dog→cat

CycleGAN CUT MUNIT Ours CycleGAN CUT MUNIT Ours CycleGAN Ours CycleGAN Ours

1000 77.80 108.64 83.38 60.88 28.33 55.04 42.35 33.42 N/A N/A 29.64 26.21

500 99.80 166.36 103.07 72.46 38.59 61.08 47.51 39.95 33.38 37.02 30.71 28.71

250 136.00 225.35 123.88 102.35 54.95 82.26 53.81 38.99 40.46 40.38 38.61 37.89

125 202.61 226.97 162.97 157.67 155.60 274.53 58.48 49.42 51.17 40.25 49.58 45.14

Table 3: FID results (↓) applied on AFD, CelebA, Stanford Cars, and AFHQ datasets in the imbalanced setting. |B| denotes

the number of images in the target domain that were used during training.



Figure 5: FID (↓) of our method applied on AFD in an im-

balanced setting. The number of modalities is k + 1.

2 5 10 17 20 40 80

Figure 6: Results of BalaGAN applied with varying values

of k. Below each column we specify the number of modali-

ties that the translation network was trained on, that is k+1.

Note, however, that once k goes beyond 16, the number of

dog breeds, the improvement of the results is rather moder-

ate.

4.3. Effectiveness in the Balanced Setting

Here we present results on a balanced dataset. We

choose the AFHQ dataset, translating dogs to cats. We

train BalaGAN using latent modalities extracted in both the

source and target domain. For this dataset, we extracted

30 modalities in each domain. We compare our method

with five strong baseline methods: CycleGAN [27], CUT

[23], GANHopper [14], MUNIT [8], and StarGAN2 [4].

For MUNIT, we show results when the style is taken from a

reference image (denoted by MUNITr), and from a random

noise vector (denoted by MUNITn). We denote the Star-

GAN2 that is trained on the two domains as StarGAN21,

and StarGAN2 that is trained to translate between each pair

of the 60 modalities that we find as StarGAN230. Figure

7 shows a random sample of results from this comparison,

and in Table 4 we present a quantitative comparison. As can

be observed, our method outperforms other methods both

visually and quantitatively.

As the leading methods according to the FID measure

are BalaGAN and StarGAN2, we further compared them

through a human perceptual study. Similarly to the imbal-

anced user study, each user answered 10 random questions

out of a pool of 200 questions. Here, the user was asked

[27] [23] [14] [8]r [8]n [4]1 [4]30 Ours

29.98 27.37 33.79 35.80 27.11 29.56 25.89 19.21

Table 4: FID (↓) results of applying CycleGAN,

CUT, GANHopper, MUNITr, MUNITn, StarGAN1,

StarGAN230, and BalaGAN over AFHQ dataset.

AFD GT mVE Ours

A 49.89 151.27 62.97

B 72.87 190.33 100.67

C 168.94 202.90 187.76

Table 5: FID(↓) of our ablation study applied on the

dog→wolf translation task with k = 16 which is the num-

ber of dogs’ breeds. Notations are explained in 4.4

StarGAN230 StarGAN21 BalaGAN

27.4 28.7 43.9

Table 6: Users preferences for the AFHQ dataset in a bal-

anced setting. We present the percentage of users that chose

the corresponding image as the preferred one.

to choose between images of BalaGAN, StarGAN230 and

StarGAN21. As observed in Table 6, most users chose im-

ages of BalaGAN, where the scores of StarGAN230, and

StarGAN21 are similar.

4.4. Diversity and Ablation Study

The diversity of generated images that is achieved by

our method, is shown in Figure 8 (see additional results in

the supplementary material). We also perform an ablation

study, in which we examine the results obtained by various

combinations of modified translation network and source

domain decomposition. For the ablation of the translation

network, let A denote our BalaGAN method, then (i) in B

we removed the Dcls loss, and (ii) in C, we additionally do

not use the target domain images during training. Note, that

the setting in C degenerates into FUNIT [16]. For the ab-

lation of the source’s decomposition, let AFD GT denote

the dogs’ breeds ground truth class labels, that is, this de-

composition is a natural one, and requires supervision. Let

mVE denotes the modalities that are obtained by clustering

representations achieved by a variational autoencoder. The

results presented in Table 5 and Figure 9 show that Dcls sig-

nificantly improves FUNIT, even in a transductive setting.

In the following, we show that the core idea of training

a translation network with cross-modalities, can contribute

to different translation network architectures, other than the

one that we have presented above. However, unlike Cycle-

GAN and MUNIT, the translation network needs to support

translation between multiple domains or classes, like Star-



Source Ref CycleGAN CUT Hopper MUNITr MUNITn StarGAN1 StarGAN30 BalaGAN30

Figure 7: Various methods applied on AFHQ dataset, which is balanced, to translate dogs to cats. Notations for MUNIT and

StarGAN are explained in 4.3. Additional results are shown in the supplementary material.
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Figure 8: BalaGAN on the AFD trained on 1000 wolves

using 40 modalities.

C/Ours B/Ours A/Ours C/GT B/GT A/GT

Figure 9: Visual results of ablation study. A, B, and C cor-

respond to the architecture versions of the translation net-

work as explained in 4.4. “Ours” corresponds to the Bala-

GAN domain decomposition, and “GT” corresponds to the

ground-truth labels of the AFD.

GAN2. We demonstrate it on StarGAN2 architecture and

compare the results of two variations of it, one is trained on

the source and target domains, and the other on our modali-

ties, denoted by StarGAN21 and StarGAN230, respectively.

The results are shown in Figure 7 and Table 4. As one can

see, training StarGAN2 to translate between modalities im-

proves the network’s ability to translate between the two

domains. Therefore, we conclude that the benefit of train-

ing on modalities is not specific to our architecture, and can

be utilized by other multi-class image-to-image translation

methods.

5. Conclusion

We have presented an image-to-image translation tech-

nique that leverages latent modes in the source and target

domains. The technique was designed to alleviate the prob-

lems associated with the imbalanced setting, where the tar-

get domain is poor. The key idea is to convert the imbal-

anced setting to a more balanced one, where the network

is trained to translate between all pairs of modes, includ-

ing the target one. We have shown that this setting leads to

better translation than strong baselines. We further showed

that analyzing and translating at the mode-level, can benefit

also in a balanced setting, where both the source and target

domains are split and the translator is trained on all pairs. In

the future, we would like to use our technique to re-balance

training sets and show that downstream applications, like

object classification and detection, can benefit from the re-

balancing operation. We believe our work to be a step in

the direction of analyzing domain distributions and learning

their latent modes, and would like to reason and apply this

idea on a wider range of problems beyond image-to-image

translation.



References

[1] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale GAN training for high fidelity natural image synthesis.

In International Conference on Learning Representations,

2019.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. arXiv preprint arXiv:2002.05709,

2020.

[3] Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic,

and Neil Houlsby. Self-supervised gans via auxiliary ro-

tation loss. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June

2019.

[4] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.

Stargan v2: Diverse image synthesis for multiple domains.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2020.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR09, 2009.

[6] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Proceedings

of the 27th International Conference on Neural Information

Processing Systems - Volume 2, NIPS’14, page 2672–2680,

Cambridge, MA, USA, 2014. MIT Press.

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In Advances in neural information processing systems,

pages 6626–6637, 2017.

[8] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.

Multimodal unsupervised image-to-image translation. In

ECCV, 2018.

[9] Oren Katzir, Dani Lischinski, and Daniel Cohen-Or. Cross-

domain cascaded deep feature translation. In ECCV, 2020.

[10] Junho Kim, Minjae Kim, Hyeonwoo Kang, and Kwang Hee

Lee. U-GAT-IT: Unsupervised generative attentional net-

works with adaptive layer-instance normalization for image-

to-image translation. In International Conference on

Learning Representations, 2020.

[11] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3d object representations for fine-grained categorization. In

4th International IEEE Workshop on 3D Representation and

Recognition (3dRR-13), Sydney, Australia, 2013.

[12] Hsin-Ying Lee, Hung-Yu Tseng, Qi Mao, Jia-Bin Huang,

Yu-Ding Lu, Maneesh Kumar Singh, and Ming-Hsuan Yang.

Drit++: Diverse image-to-image translation viadisentangled

representations. arXiv preprint arXiv:1905.01270, 2019.

[13] J. H. Lim and J. C. Ye. Geometric gan. ArXiv,

abs/1705.02894, 2017.

[14] Wallace Lira, Johannes Merz, Daniel Ritchie, Daniel Cohen-

Or, and Hao Zhang. Ganhopper: Multi-hop gan for unsuper-

vised image-to-image translation, 2020.

[15] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsuper-

vised image-to-image translation networks. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural

Information Processing Systems 30, pages 700–708. Curran

Associates, Inc., 2017.

[16] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo

Aila, Jaakko Lehtinen, and Jan Kautz. Few-shot unsuper-

vised image-to-image translation. In IEEE International

Conference on Computer Vision (ICCV), 2019.

[17] Steven Liu, Tongzhou Wang, David Bau, Jun-Yan Zhu,

and Antonio Torralba. Diverse image generation via

self-conditioned gans. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 14286–14295, 2020.

[18] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In Proceedings of

International Conference on Computer Vision (ICCV), De-

cember 2015.

[19] Lars M. Mescheder, Andreas Geiger, and Sebastian

Nowozin. Which training methods for gans do actually con-

verge? In ICML, 2018.

[20] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and

Yuichi Yoshida. Spectral normalization for generative ad-

versarial networks. In International Conference on Learning

Representations, 2018.

[21] Ori Nizan and Ayellet Tal. Breaking the cycle-colleagues are

all you need. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 7860–

7869, 2020.

[22] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018.

[23] Taesung Park, Alexei A. Efros, Richard Zhang, and Jun-

Yan Zhu. Contrastive learning for unpaired image-to-image

translation. In European Conference on Computer Vision,

2020.

[24] Omry Sendik, Dani Lischinski, and Daniel Cohen-Or. Un-

supervised k-modal styled content generation. ACM Trans.

Graph., 39(4), July 2020.

[25] Kihyuk Sohn. Improved deep metric learning with multi-

class n-pair loss objective. In D. D. Lee, M. Sugiyama,

U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances

in Neural Information Processing Systems 29, pages 1857–

1865. Curran Associates, Inc., 2016.

[26] Zhirong Wu, Yuanjun Xiong, X Yu Stella, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018.

[27] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Computer Vision

(ICCV), 2017 IEEE International Conference on, 2017.


