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Abstract

We are interested in learning data-driven representa-

tions that can generalize well, even when trained on inher-

ently biased data. In particular, we face the case where

some attributes (bias) of the data, if learned by the model,

can severely compromise its generalization properties. We

tackle this problem through the lens of information theory,

leveraging recent findings for a differentiable estimation of

mutual information. We propose a novel end-to-end opti-

mization strategy, which simultaneously estimates and mini-

mizes the mutual information between the learned represen-

tation and specific data attributes. When applied on stan-

dard benchmarks, our model shows comparable or superior

classification performance with respect to state-of-the-art

approaches. Moreover, our method is general enough to be

applicable to the problem of “algorithmic fairness”, with

competitive results.

1. Introduction

The need for proper data representations is ubiquitous in

machine learning and computer vision [7]. Indeed, given a

learning task, the competitiveness of the proposed models

crucially depends upon the data representation one relies

on. In the last decade, the mainstream strategy for design-

ing feature representations switched from hand-crafting to

learning them in a data-driven fashion [11, 25, 40, 32, 18,

19, 45]. In this context, deep neural networks have shown

an extraordinary efficacy in learning hierarchical represen-

tations via backpropagation [37]. However, while learning

representations from data allows achieving remarkable re-

sults in a broad plethora of tasks, it leads to the following

Figure 1: Problem setting. When learning a feature rep-

resentation from the data itself (top), we may undesirably

capture the inherent bias of the dataset (here, exemplified

by colors), as opposed to learning the desired patterns (here,

represented by shapes). This results in models that poorly

generalize when deployed into unbiased scenarios (bottom).

shortcoming: a representation may inherit the intrinsic bias

of the dataset used for training.

This is highly undesirable, because it leads a model to

poorly generalize in scenarios different from the training

one (the so-called “domain shift” issue [41]).

In this paper, we are interested in learning representa-

tions that are discriminative for the supervised learning task

of interest, while being invariant to certain specified biased

attributes of the data. By “biased attribute”, we mean an in-

herent bias of the dataset, which is assumed to be known and

follows a certain distribution during training. At test time,

the distribution of such attribute may abruptly change, thus

tampering the generalization capability of the model and af-

fecting its performance for the given task [4, 33, 21].

One intuitive example is provided in Figure 1: we seek to



train a shape classifier, but each shape has a distinct color

– the biased attribute. Unfortunately, a model can fit the

training distribution by discriminating either the color or the

shape. Among the two options, we are interested in the lat-

ter only, because the first one does not allow generalizing

to shapes with different colors. Thus, if we were capable

of learning a classifier while unlearning the color, we posit

that it would better generalize to shapes with arbitrary col-

ors. Like other prior works [29, 33, 21, 4], we operate in a

scenario where the labels of biased attributes are assumed to

be known. An example of application domain in which the

hypothesis of having known labels for the bias holds, is al-

gorithmic fairness [24, 14, 46, 44], where the user specifies

which attributes the algorithm has to be invariant to (e.g.,

learning a face recognition system which is not affected by

gender or ethnicity biases).

In this paper, we tackle this problem through the lens of

information theory. Since mutual information can be used

to quantify the nonlinear dependency of the learned feature

space with respect to the dataset bias, we argue that a good

strategy to face the aforementioned problem is minimizing

the mutual information between the learned representation

and the biased attributes. This would result in a data repre-

sentation that is statistically independent from the specified

bias, and that, in turn, would generalize better.

Unfortunately, the estimation of the mutual information

is not a trivial problem [35]. In the context of represen-

tation learning, two bodies of work proposed solutions to

the problem of learning unbiased representations via in-

formation theoretic measures: one that relies on adversar-

ial training [4, 21], and one based on variational infer-

ence [33]. Adversarial methods [4, 21] learn unbiased rep-

resentations by “fooling” a classifier trained to predict the

attribute from the learned representation. Such condition

is argued to be a proxy for the minimization of the mutual

information [21]. Other approaches rely on variational in-

ference, which properly formalizes the prior and the condi-

tional dependences among variables. However, when im-

plementing those methods in practice, approximations need

to be done to replace the computationally intractable poste-

rior with an auxiliary distribution, but at the cost of several

assumptions of independence among the variables. More-

over, such methods are more problematic to scale to com-

plex computer vision tasks, and have been applied mostly

on synthetic or toy datasets [29, 33].

Due to the aforementioned difficulties, in this paper, we

leverage the mathematical soundness of mutual information

to design a computational pipeline that is alternative to stan-

dard adversarial training. We rely on a neural estimator for

the mutual information (MINE [6]). This module provides a

more reliable estimate of the mutual information [35], while

still being fully differentiable and, therefore, trainable via

backpropagation [37].

Endowed with this model, we propose a training scheme

where we alternate between (i) optimizing the estimator and

(ii) learning a representation that is both discriminative for

the desired task and statistically independent from the speci-

fied bias. A key strength of the proposed approach is that the

module that estimates the mutual information is not com-

peting with the feature extractor (differently from existing

adversarial methods [21]). For this reason, MINE can be

trained until convergence at every training step, avoiding

the need to carefully balance between steps (i) and (ii), and

guaranteeing an updated estimate of the mutual informa-

tion throughout the training process. In adversarial meth-

ods such as [21], where the estimate for the mutual in-

formation is modeled via a discriminator that the feature

extractor seeks to fool [15, 16], one cannot train an opti-

mal discriminator at every training iteration. Indeed, if one

trains an optimal bias discriminator, the feature extractor

will no longer be able to fool it, due to the fact that gradi-

ents will become too small [5] – and the adversarial game

will not reach optimality. This difference is a key novelty

of the proposed computational pipeline, which scores fa-

vorably with respect to prior work on different computer

vision benchmarks, from color-biased classification to age-

invariant recognition of people attributes.

Furthermore, a critical aspect of this line of work [4, 21]

is how to balance between learning the desired task and “un-

learning” the dataset bias, which is a core, open issue [46].

The training strategy proposed in this paper allows for a

very simple solution to this important problem. Indeed, as

we will show later in the experimental analysis, a very ef-

fective approach is selecting the models whose learned rep-

resentation distribution has the lowest mutual information

with that of the biased attribute. We empirically show that

these models are also the ones that better generalize to un-

biased settings. Most notably, this also provides us with

a simple cross-validation strategy for the hyper-parameters:

without using any validation data, we can select the optimal

model as the one that achieves the best fitting to the data,

while better minimizing the mutual information. The im-

portance of this contribution is that, when dealing with bi-

ased datasets, also the validation set will likely suffer from

the same bias, making hyper-parameter selection a thorny

problem. Our proposed method properly responds to this

problem, whereas former works have not addressed the is-

sue [21].

2. Related Work

The problem of learning unbiased representations has

been explored in several sub-fields. In the following sec-

tion, we cover the most related literature, with particular fo-

cus on works that approach our same problem formulation,

highlighting similarities and differences.

In domain adaptation [20, 8, 38], the goal is learn-

ing representations that generalize well to a (target) do-



main of interest, for which only unlabeled – or partially la-

beled – samples are available at training time, leveraging

annotations from a different (source) distribution. In do-

main generalization, the goal is to better generalize to un-

seen domains, by relying on one or more source distribu-

tions [34, 28]. Adversarial approaches for domain adapta-

tion [15, 16, 42, 43] and domain generalization [39, 47] are

very related to our work: their goal is indeed learning repre-

sentations that do not contain the domain bias, and therefore

better generalize in out-of-distribution settings. Differently,

in our problem formulation we aim at learning representa-

tions that are invariant towards specific attributes that are

given at training time.

A similar formulation is related to the so-called

“algorithmic fairness” [24]. The problem here is learn-

ing representations that do not rely on sensitive attributes

(such as, e.g., gender, age or ethnicity), in order to pre-

vent from learning discriminant capabilities towards pro-

tected categories. Our methods can be applied in this set-

ting, in order to minimize the mutual information between

the learned representation and the sensitive attribute (whose

distribution might be biased for what concerns the training

set). In these settings, it is important to notice that a “fairer”

representation does not necessarily generalize better than a

standard one: the trade-off between accuracy and fairness is

termed “fairness price” [24, 14, 46, 44].

There is a number of works that share our same goal

and problem formulation. Alvi et al. [4] learn unbiased rep-

resentations through the minimization of a confusion loss,

learning a representation that does not inherit information

related to specified attributes. Kim et al. [21] propose to

minimize the mutual information between learned features

and the bias. However, they face the optimization prob-

lem through standard adversarial training: in practice, in

their implementation [2], the authors rely on a discrimina-

tor trained to detect the bias as an estimator for the mu-

tual information, and learn unbiased representations by try-

ing to fool this module, drawing inspiration from the so-

lution proposed by Ganin and Lempitsky [15] for domain

adaptation. Moyer et al. [33] also introduce a penalty term

based on mutual information, to achieve representations

that are invariant to some factors. In contrast with related

works [4, 21, 33], it shows that adversarial training is not

necessary to minimize such objective, and the problem is

approached in terms of variational inference, relying on

Variational Auto-Encoders (VAEs [23]). Closely related to

Moyer et al., other works [29, 12] impose a prior on the rep-

resentation and the underlying data generative factors (e.g.,

feature vectors are distributed as a factorized Gaussian).

Our proposed solution provides several advantages to

existing adversarial approaches [4, 21] and VAE based

ones [33]. With respect to adversarial strategies, our

method has the advantage of relying on a module estimat-

ing the mutual information [6] that is not competing with

the network trained to learn an unbiased representation.

In our computational pipeline, we do not learn unbiased

representation by “fooling” the estimator, but by minimiz-

ing the information that it measures. The difference is

subtle (for instance, we also end up approaching a minmax

optimization problem), but brings a crucial advantage: in

standard adversarial methods, the discriminator (estimator)

cannot be trained until convergence at every training step,

otherwise gradients flowing through it would be close

to zero almost everywhere in the parameter space [5],

preventing from learning an unbiased representation. In our

case, the estimator can be trained until convergence at every

training step, improving the quality of its measure without

any drawbacks. Furthermore, our solution can easily scale

to large architectures (e.g., for complex computer vision

tasks) in a straightforward fashion. While this is true also

for adversarial methods [4, 21], we posit that it might not

be the case for methods based on VAEs [33], where one

has to simultaneously train a feature extractor/encoder and

a decoder.

3. Problem Formulation

We operate in a setting where data are shaped as triplets

(x,y, c), where x represents a generic datapoint, y denotes

the ground truth label related to a task of interest and c en-

codes a vector of given attributes. We are interested in learn-

ing a representation z of x that allows performing well on

the given task, with the constraint of not retaining informa-

tion related to c. In other words, we desire to learn a model

that, when fed with x, produces a representation z which

is maximally discriminative with respect to y, while being

invariant with respect to c.

In this work, we formalize the invariance of z with re-

spect to c through the lens of information theory, impos-

ing a null mutual information I . Specifically, we constrain

the discriminative training (finalized to learn the task of in-

terest) by imposing I(Z,C) = 0, where Z and C are the

random variables associated with z and c, respectively. In

formulæ, we obtain the following constrained optimization

min
θ,ψ

Ltask(θ, ψ), s.t. I(Z,C) = 0 (1)

where θ and ψ define the two sets of parameters of the ob-

jective Ltask, which can be tailored to learn the task of in-

terest. With θ, we refer to the trainable parameters of a

module gθ that maps a datapoint x into the corresponding

feature representation z (that is, z = gθ(x)). With ψ, we

denote the trainable parameters of a classifier that predicts

ỹ from a feature vector z (that is, ỹ = fψ(z)). The con-

straint I(Z,C) = 0 does not depend upon ψ, but only upon

θ, since z obeys to pZ and z = gθ(x).
In order to optimize the objective in (1), we must adopt

an estimator of the mutual information. Before detailing



our approach, in the following paragraph we cover the

background required for a basic understanding of mutual

information estimation, with focus on the path we pursue

in this work.

Background on information theory. The mutual infor-

mation between two random variables X,Z is given by

I(X,Z) =

∫
pX,Z(x, z) log

pX,Z(x, z)

pX(x) · pZ(z)
dxdz,

where pX,Z denotes the joint probability of the two vari-

ables and pX , pZ represent the two marginals. As an alter-

native to covariance and other linear indicators of statisti-

cal dependence, mutual information can account for generic

inter-relationships between X,Z, going beyond simple cor-

relation [10, 9].

The main drawback with mutual information relates to

its difficult computation, since the probability distributions

pX , pZ and pX,Z are not known in practice. Recently, a

general purpose and efficient estimator for mutual informa-

tion has been proposed by Belghazi et al. [6]. They propose

a neural network based approximation to compute the fol-

lowing lower bound for the mutual information I:

Lne := E(z,c)∼p̂Z,C
[Tφ(z|c)]+ (2)

− logEz∼p̂Z ,c̃∼p̂C [expTφ(z|c̃)]

When implementing Tφ as a feed-forward neural net-

work, the maximization in Eq. (2) can be efficiently solved

via backpropagation [6].

As a result, we can approximate I(X,Z) with Îφ(X,Z),
the so-called “Mutual Information Neural Estimator”

(MINE [6]). An appealing aspect of MINE is its fully

differentiable nature, that enables end-to-end optimization

of objectives that rely on mutual information computations.

4. Method

In the following, we detail how we approach Eq. (1),

both in terms of theoretical foundations and practical im-

plementation.

4.1. Optimization problem

In order to proceed with a more tractable problem, we

consider the Lagrangian of Eq. (1)

min
θ,ψ

L := Ltask(θ, ψ) + λI(Z,C) (3)

where the first term is a loss associated with the task of in-

terest, whose minimization ensures that the learned repre-

sentation is sufficient for our purposes. The second term is

the mutual information between the learned representation

and the given attributes. The hyper-parameter λ balances

the trade-off between optimizing for a given task and mini-

mizing the mutual information.

Concerning the first term of the objective, we will con-

sider classification tasks throughout this work, and thus we

assume that our aim is minimizing the cross-entropy loss

between the output of the model ỹ and the ground truth y.

Ltask :=
1

N

N∑

i=1

yTi log s(ỹi) (4)

where s is the softmax function and N is the number of

given datapoints.

Concerning the second term of the objective in Eq. (1),

as already mentioned, the analytical formulation of the mu-

tual information is of scarce utility to evaluate I(Z,C). In-

deed, we do not explicitly know the probability distributions

that the learned representation and the attributes obey to.

Therefore, we need an estimator for the mutual information

Î(Z,C), with the requirement of being differentiable with

respect to the model parameters θ.

In order to attain our targeted goal, we take advantage of

the work by Belghazi et al. [6], and exploit a second neu-

ral network Tφ (“statistics network”) to estimate the mu-

tual information. We therefore introduce the additional loss

function Lne (Eq. (2)) that, once maximized, provides an

estimate of the mutual information

Îne(Z,C) = max
φ

Lne. (5)

In Eq. (2), the notation p̂ reflects that we rely on the empir-

ical distributions of features and attributes, the operator “|”
indicates vector concatenations and “ne” stands for “neu-

ral estimator” [6]. The loss Lne also depends on θ, since

Eq. (2) depends on z. Combining the pieces together, we

obtain the following problem:

min
θ,ψ

{Ltask(θ, ψ) + λÎne(Z,C)} = (6)

= min
θ,ψ

{Ltask(θ, ψ) + λmax
φ

Lne(φ, θ)

︸ ︷︷ ︸
MI estimation︸ ︷︷ ︸

Representation learning

}

Intuitively, the inner maximization problem ensures a

reliable estimate of the mutual information between the

learned representation and the attributes. The outer mini-

mization problem is aimed at learning a representation that

is at the same time optimal for the given task and unbiased

with respect to the attributes.

4.2. Implementation Details

Concerning the modules introduced in Section 3, we im-

plement the feature extractor gθ (which computes features



Figure 2: Model overview. The neural network devised for the given task is the concatenation of the blue module (feature extractor gθ) and the green

module (logit layer fψ). Solid lines indicate the forward flow, dashed lines indicate gradient backpropagations. The feature extractor takes in input samples

x and outputs feature vectors z. The logit layer takes in input the feature vectors and outputs predictions ỹ. To optimize for the given task, these modules

can be trained by minimizing the cross-entropy between predictions and labels y. The orange module [6] estimates the mutual information between the

feature vectors z and the attributes c. To estimate the mutual information, Tφ processes the concatenation of feature vectors and attributes from the joint

distribution and the marginals. Following Belghazi et al. [6], we approximate sampling from the marginal by shuffling the batch of attributes (c̃). The

estimation of the mutual information is the maximum w.r.t. φ of the output of the orange module Lne.

z from datapoints x) and the classifier fψ (which predicts

labels ỹ from z) as feed-forward neural networks. The clas-

sifier fψ is implemented as a shallow logit layer to accom-

plish predictions on the task of interest. As already men-

tioned, the model Tφ is also a neural network; it accepts

in input the concatenation of feature vectors z and attribute

vectors c, and through Eq. (2) allows estimating the mu-

tual information between the two random variables. The

nature of the modules allow to optimize the objective func-

tions in (6) via backpropagation [37]. Figure 2 portrays the

connections between the different elements, and how the

losses (4) and (2) originate.

A crucial point that needs to be addressed when jointly

optimizing the two terms of Eq. (6) is that, while the

distribution of the attributes p̂C is static, the distribution of

the feature embeddings p̂Z depends on θ, which changes

throughout the learning process. For this reason, the mutual

information estimator needs to be constantly updated

during training, because an estimate Îne(Zt, C), associated

with θt at step t, is no longer reliable at step t+ 1. To cope

with this issue, we devise an iterative procedure where,

prior to every gradient descent update on (θ, ψ), we update

MINE on the current model, through the inner maximizer

in Eq. (6). This guarantees a reliable mutual information

estimation. One key difference with standard adversarial

methods[21, 4] is that we can train MINE until convergence

prior to each gradient descent step on the feature extractor,

without the risk of obtaining gradients whose magnitude is

close to zero [5], since our estimator is not a discriminator

Algorithm 1 Learning Unbiased Representations

1: Input: Dataset {(x(i),y(i), c(i))}Ni=1, initialized weights θ0,

ψ0, φ0, learning rates α, η, hyper-parameters λ,K, T .

2: Output: learned weights θ, ψ

3: Initialize: θ ← θ0, ψ ← ψ0, φ← φ0

4: for t = 1, ..., T do

5: for k = 1, ...,K do (estimate MI)

6: sample mini-batches {(x(i), c(i))}mi=1, {c̃(i)}mi=1

7: evaluate Lne (Eq. (2))

8: φ← φ+ η∇φLne

9: sample mini-batches {(x(i),x(i), c(i))}ni=1, {c̃(i)}ni=1

10: evaluate Ltask (Eq. (4)) and Lne (Eq. (2))

11: θ ← θ − α∇θ(Ltask + λLne)
12: ψ ← ψ − α∇ψLtask

(being the mutual information unbounded, sometimes

gradient clipping is actually beneficial [6]). The full

training procedure is detailed in Algorithm 1.

Training techniques. We list some techniques that we

could appreciate to generally increase the stability of

the proposed training procedure. While code and hyper-

parameters can be found in the Supplementary Material,

we believe that the reader can benefit from the discussion.

(a) Despite MINE [6] can estimate the mutual infor-

mation between continuous random variables, we observed

that the estimation is eased (in terms of speed and stability)



Figure 3: Left: digit examples for each class from training (here with

σ = 0.02) and test set. Right: Women and Men images from the two

splits of the training set of the IMDB dataset.

if the attribute labels c are discrete. (b) We observed

an increased stability in training MINE [6] for lower-

dimensional representations z and attributes c. For this

reason, as we will discuss in Section 5, feature extractors

with low-dimensional embedding layer are favored. (c)

The feature extractor g receives gradients related to both

Ltask and Lne: since the mutual information is unbounded,

the latter may dominate the former. Following Belghazi et

al. [6], we overcome this issue via gradient clipping (we

refer to original work for details). (d) We observed that

training MINE requires large mini-batches: when this was

unfeasible due to memory issues, we relied on gradient

accumulation. (e) We observed that using vanilla gradient

descent over Adam optimizer [22] eases training MINE [6]

in most of our experiments.

5. Experiments

In the following, we show the effectiveness of models

trained via Algorithm 1 in a series of benchmarks. First,

we report results related to the setup proposed by Kim et

al. [21] – learning to recognize color-biased digits with-

out relying on color information. Next, we show that our

proposed solution can scale to higher-capacity models and

more difficult tasks, through the IMBD benchmark [4, 21],

where the goal is classifying people gender without rely-

ing on the age bias. Finally, we show that our method can

also be applied as it is to learn “fair” classifiers, by train-

ing models on the two standard benchmarks for algorithmic

fairness [1, 3].

5.1. Digit Recognition

Experimental setup. Following the setting defined by

Kim et al. [21], we consider a digit classification task where

each digit, originally from MNIST [27], shows an artifi-

cially induced color bias. More specifically, in the train-

ing set (with 60, 000 samples), digit colors are drawn from

Gaussian distributions, whose mean values are different for

each class. In the test set (with 10, 000 samples), digits

show random colors. The benchmark is designed with seven

different standard deviation values σ (equally spaced be-

tween 0.02 and 0.05): the lower the value, the more difficult

the task, since the model can fit the training set by recogniz-

ing colors instead of shapes, thus poorly generalizing (see

Figure 3). To extract the color information (the attribute

c, recalling notation from Section 3), the maximum pixel

value is encoded in a binary vector with 24-bit (8 bits per

channel). Since the background is always black, the maxi-

mum value reflects the digit color.

Concerning the model, we exploit a convolutional neural

network [26] with architecture conv-pool-conv-pool-fc-fc-

softmax. The output of the second fully connected layer (z)

is given in input to both the logit layer and MINE (Figure 2).

The architecture of the statistics network Tφ in MINE is a

multi-layer perceptron (MLP) with 3 layers. More archi-

tectural details can be found in the Supplementary Mate-

rial. We compare models trained via Algorithm 1 with the

solutions proposed by Kim et al. [21] and Alvi et al. [4],

averaging across 3 runs and using accuracy as a metric. Be-

fore comparing against related work, we discuss how cru-

cial hyper-parameters can be selected in our setting.

Hyper-parameter choice. We discuss in the following the

model behavior as we modify λ, that governs the trade-off

between learning a task and minimizing the mutual infor-

mation between features and attributes.

Figure 4 reports the evolution of mutual information es-

timation (left), accuracy on test samples (middle) and ac-

curacy on training sample (right) for models trained with

λ = 0.0, 0.5, 1.0 in blue, orange and green, respectively,

for σ = 0.03, 0.045 (top and bottom, respectively). It can

be observed that the mutual information between embed-

dings z and color attributes c can be reduced by increasing

λ. Importantly, this results in a significantly higher accu-

racy on (unbiased) test samples. The importance of this

result is twofold: on the one hand, it is a proof of con-

cept of the intuition that lowering the mutual information

does help generalizing to unbiased sources; on the other,

it provides us a cross-validation strategy to pick a proper

λ value (the one that allows minimizing the mutual infor-

mation more efficiently). As can be observed in the plots

on the right, the training procedure becomes more unstable

when we increase λ. Therefore, in order to select the proper

hyper-parameter, we can choose the highest λ value that al-

lows the model fitting the data (i.e., minimizing Ltask) and

reducing the mutual information (i.e., minimizing Lne).

Another important hyper-parameter is the number of iter-

ations used to train MINE [6] prior to each gradient update

on the feature extractor (K in Algorithm 1). We observed

that, the higher the number of iterations the better (we set

K = 80). This was expected, because the MI estimation

becomes more reliable and therefore the removal of bias in-

formation is more accurate. The reader can refer to Figure

3 in the Supplementary Material for quantitative results.

Comparison with related work. We report in Table 1 the

comparison between our method with λ = 1.0 and related

works [21, 4]. We can observe consistently improved re-



Figure 4: Digit experiment – ablation study. Evolution of mutual information estimation (left), test accuracy (middle) and training accuracy (right) for

models trained on digits with σ = 0.03 and σ = 0.045 (top and bottom, respectively). Models are trained with Algorithm 1 with λ = 0.0 (baseline,

blue), λ = 0.5 (orange) and λ = 1.0 (green). Increasing the value of the hyper-parameter λ allows reducing the mutual information between the learned

representation (Z) and the attributes (C). In turn, models better generalize to unbiased samples (test set). Further plots in the Supplementary.

Digit experiment

Color variance

Training σ = 0.020 σ = 0.025 σ = 0.030 σ = 0.035 σ = 0.040 σ = 0.045 σ = 0.050

ERM (λ = 0.0) 0.476± 0.005 0.542± 0.004 0.664± 0.007 0.720± 0.010 0.785± 0.003 0.838± 0.002 0.870± 0.001
Alvi et al. [4] 0.676 0.713 0.794 0.825 0.868 0.890 0.917

Moyer et al. [33] 0.717 0.864 0.883 0.885 0.887 0.893 0.914
Kim et al. [21] 0.818 0.882 0.911 0.929 0.936 0.954 0.955

Ours (λ = 1.0) 0.864± 0.052 0.925± 0.020 0.959± 0.008 0.973± 0.003 0.975± 0.001 0.980± 0.001 0.982± 0.001

Table 1: Digit experiment – comparison with related work. Experimental results on colored digit classification for different levels of variance (σ) in the

color distribution. The first row reports results related to models trained via standard Empirical Risk Minimization (ERM). Below we report results obtained

by competitor methods [4, 33, 21]. The last row reports results achieved with our method (with λ = 1.0.)

sults in all splits (different σ’s). We emphasize that our

method is more effective as the bias is more severe (small

σ’s). It is also important to stress that other works [21, 33, 4]

do not introduce any strategy to tune the hyper-parameters,

whereas in this work the hyper-parameter search is effi-

ciently resolved. Furthermore, the authors do not report any

statistics around their results (e.g., average and standard de-

viation across different runs), making a fair comparison dif-

ficult.

5.2. IMDB: Removing the Age Bias

Experimental setup. Following related works [4, 21],

we consider the IMDB dataset [36] as benchmark. It con-

tains cropped images of celebrity faces with ground truth

annotations related to gender and age. Alvi et al. [4] con-

sider two subsets of the training set that are severely bi-

ased for what concerns age: the EB1 (“Extreme Bias”) split

(36, 003 samples) only contains images of women with an

age in the range 0-30, and men who are older than 40;

vice versa, the EB2 split (16, 799 samples) only contains

images of men with an age in the range 0-30, and women

IMDB experiment

Train on EB1 Train on EB2

Method EB2 Test EB1 Test

ERM (λ = 0.0) 0.650 ± 0.020 0.849 ± 0.007 0.576 ± 0.013 0.708 ± 0.008

Alvi et al. [4] 0.637 [21] 0.856 [21] 0.573 [21] 0.699 [21]

Kim et al. [21] 0.680 0.867 0.642 0.745

Ours (λ = 0.5) 0.691 ± 0.010 0.876 ± 0.010 0.651 ± 0.036 0.762 ± 0.022

Table 2: Experimental results from IMDB gender classification problem.

The first row reports results obtained by setting λ = 0.0 (ERM baseline).

The last row reports results obtained with our method (Ours); Each column

reports results associated with the indicated test set.

older than 40 (see Figure 3). The test set (22, 468 samples)

contains faces without any restrictions on age/gender (uni-

formly sampled). The goal here is learning an age-agnostic

model, to overcome the bias present in the dataset.

Following previous work [4, 21], we encode the age

attribute (our biased attribute, c) using bins of 5 years,

via one-hot encoding. We use a ResNet-50 [17] model

pre-trained on ImageNet [13] as classifier, modified with

a 128-dimensional fully connected layer before the logit

layer. This narrower embedding serves as our z, and the



Fairness experiment

Adult dataset German dataset

Method Acc ↑ EO ↓ Acc ↑ EO ↓

FERM [14] 0.81 0.01 0.73 ± 0.04 0.05 ± 0.03

NN [31] 0.84 0.14 0.74 ± 0.04 0.47 ± 0.19

NN + χ [31] 0.83 0.03 0.73 ± 0.03 0.25 ± 0.14

LAFTR [30] 0.84 0.10 − −

Ours (λ = 0.5) 0.85 ± 0.01 0.03 ± 0.02 0.74 ± 0.04 0.06 ± 0.05

Table 3: Fairness experiments – We compare against results on the two

datasets as reported in [14, 31, 30]. For accuracy, the higher the better.

For EO, the lower the better (i.e., the “fairer”). Our results were averaged

across 10 different runs.

Figure 5: The two considered metrics vary as we modify the hyper-

parameter λ on the German dataset. EO (Left) is significantly reduced as

we set higher values of λ. Vice versa, test accuracy (Right) is only slightly

affected.

reduced dimension eases the estimation of the mutual

information, while not causing any detrimental effect in

terms of accuracy. For each split (EB1 and EB2), we train

the model through Algorithm 1 and evaluate it on the test

set and on the split not used for training. We followed

the same procedure detailed in Section 5.1 to choose the

hyper-parameter λ; we set K = 40. We compare our

results with the ones published by related works [4, 21],

using accuracy as a metric. We limited the training sets to

only 2, 000 samples: this choice was due to the fact that

with the whole training sets we could observe baselines

(λ = 0.0) significantly higher than published results [21],

whereas they are comparable for models trained on a subset.

Results. Table 2 reports our results. In all our experi-

ments, we observe accuracy improvements with respect to

the baseline (λ = 0.0). In general, training on one split

and testing on the other is more challenging than testing on

the (neutral) test set, as confirmed by the baseline results

(ERM, first row). In all the different protocols, our method

(last row) has superior performance than Alvi et al. [4], and

comparable or superior performance with Kim et al. [21].

These results confirm that our method can effectively re-

move biased, detrimental information even when modeling

more complex data with higher-capacity models. In this

case though, the improvements are more limited than the

ones we showed in the digit experiment. One of the reasons

might be that age and gender cannot be decoupled as effi-

ciently as shape and color. In other words, removing age

information may not necessarily increase accuracy.

5.3. Learning Fair Representations

Experimental setup. We explored the potentiality of

our method in the context of algorithmic fairness with the

popular UCI datasets Adult [1] and German [3]. Both

datasets contains tabular data with categorical and contin-

uous attributes: Adult has ∼ 48, 000 US adult Census data

samples and the goal is to predict whether the person has a

annual salary> 50K$; German is composed of 1, 000 sam-

ples of bank customer descriptions and the binary, ground

truth label is the risk degree associated with a customer, ei-

ther good or bad. The goal is to learn a model to solve tasks

with the constraint of removing sensitive information about

gender in Adult and customer age in German. This problem

is different with respect to the previous ones: here the in-

variance towards sensitive attribute does not imply a better

generalization on the test set as it happens with, e.g., digit

recognition. The removal of the protected attribute is done

for the sake of learning a fair representation [24, 14, 46, 44].

Following previous works [30, 14], we implemented the

feature extractor as single-layer MLP’s. Additional details

can be found in the Supplementary Material. We evalu-

ate accuracy and “equal opportunity” (EO)1 as comparison

metrics, averaging across 10 different runs. The goal is to

find a balance between reducing EO (i.e., learning a fairer

representation) without observing a too severe decrease in

accuracy.

Results. In Figure 5, we show how the performance varies

when increasing λ from 0 (standard Empirical Risk Mini-

mization) to 1 for models trained on German. It can be ob-

served that our method allows training fairer models (i.e.,

reduced EO), while maintaining a good performance on

test. For λ = 0.5, the fairness price is close to zero (i.e.,

the accuracy does not decrease), while the fairness is sub-

stantially improved. We report the comparison with related

works in Table 3, for both datasets. These results show that

our method can be effectively used to tackle algorithmic

fairness: we achieve a favorable fairness trade-off, match-

ing or exceeding test accuracy while keeping EO lower than

the competitor methods.

6. Conclusions

We propose a training procedure to learn representations

that are not biased towards dataset-specific attributes in an

alternative fashion to existing adversarial approaches. We

leverage a neural estimator for the mutual information [6],

devising a method that can be easily implemented in arbi-

trary architectures and provides a robust strategy for hyper-

parameter tuning. We show competitive results on bench-

marks ranging from computer vision [4, 21, 33] to fair rep-

resentation learning [30, 14, 31].

1Equal Opportunity measures the discrepancy between the TP rates of

“protected” and “non-protected” populations. Here, EO = |TP(young)−
TP(not young)|.
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