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Figure 1: Approach overview: Given (a) a dataset of multi-view images and segmentation masks of a category-specific object, along

with (b) a single template mesh with UV coordinates, our method trains a network (c) exploiting information from multiple views using

reprojection cycles and learn an instance-specific mesh using deformations. (d) At test time, our model predicts an instance-specific mesh

and a surface mapping from a single image.

Abstract

We propose a weakly-supervised multi-view learning ap-

proach to learn category-specific surface mapping without

dense annotations. We learn the underlying surface geom-

etry of common categories, such as human faces, cars, and

airplanes, given instances from those categories. While tra-

ditional approaches solve this problem using extensive su-

pervision in the form of pixel-level annotations, we take ad-

vantage of the fact that pixel-level UV and mesh predictions

can be combined with 3D reprojections to form consistency

cycles. As a result of exploiting these cycles, we can estab-

lish a dense correspondence mapping between image pix-

els and the mesh acting as a self-supervisory signal, which

in turn helps improve our overall estimates. Our approach

leverages information from multiple views of the object to

establish additional consistency cycles, thus improving sur-

face mapping understanding without the need for explicit

annotations. We also propose the use of deformation fields

for predictions of an instance specific mesh. Given the lack

of datasets providing multiple images of similar object in-

stances from different viewpoints, we generate and release

a multi-view ShapeNet Cars and Airplanes dataset created

by rendering ShapeNet meshes using a 360◦ camera tra-

jectory around the mesh. For the human faces category,

we process and adapt an existing dataset to a multi-view

setup. Through experimental evaluations, we show that,

at test time, our method can generate accurate variations

away from the mean shape, is multi-view consistent, and

performs comparably to fully supervised approaches.

1. Introduction

Understanding the structure of objects and scenes from

images has been an intensively researched topic in 3D com-

puter vision. Classically, researchers applied Structure from

Motion (SfM) and multi-view stereo techniques to sets of

images to obtain point clouds [10], which could be con-

verted to meshes using triangulation techniques [28, 16].

Later, representing object shapes as PCA components [1,

2, 22] or as 3D-morphable models [3] gained popularity.

Unlike SfM techniques, the benefit was the ability to gen-

erate a mesh even from a single image, as mesh generation

was reduced to a model fitting problem [20, 27].
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Subsequently, with the rise of CNNs [17] and their im-

pressive performance in image-to-image tasks [12], many

explored the possibility of generating 3D point clouds

[25, 26] and meshes [9, 34] with CNNs. However, most of

these approaches relied on extensive supervision and well-

curated datasets [4, 38, 37], thus requiring a lot of effort

to extend them to work on new object categories. Instead of

having fully annotated data, unsupervised or self-supervised

techniques aim to reduce the amount of data and priors that

is needed for training. Among those, some works targeted

category-specific reconstruction [14, 13, 36]. Unfortu-

nately, these approaches still rely on moderate supervision,

in particular in the form of labelled keypoints [13], which

are often hard to compute or require expert annotation. The

work of Kulkarni et al. [19] dismissed this requirement, but

only for computing dense pixel correspondences or surface

mappings without actually predicting a mesh. Their ap-

proach relies on an underlying static mesh which leads to

an approximate surface mapping learning. More recently,

[18] relaxed these constraints by allowing articulation for

the meshes which alleviates this issue to some extent. How-

ever, using unrestrained meshes has not been explored yet.

We claim that multi-view cues can provide a useful learning

signal for such a setup.

We build on the aforementioned works and predict dense

surface mappings along with a 3D mesh. We train our net-

work to be multi-view consistent by taking advantage of

multi-view cycles and using a novel reprojection loss which

results in improved performance. To the best of our knowl-

edge, utilizing instance specific deformation to learn using

self-consistency in a multi-view setting has not been ex-

plored yet. Since we only use cycles, i.e., reprojections

updates of the current prediction, our method is computa-

tionally more efficient than other approaches that require

differentiable renderings [34] or iterative processing ap-

proaches [6]. Our method does not necessarily require mul-

tiple views, and it can also work with single-view images.

Our approach is weakly-supervised as it only requires weak

labels like rough segmentation masks, camera poses and an

average per-category mesh for training. We discuss how to

compute these weak labels for new categories and datasets

in section 5.

As our approach relies on exploiting multi-view corre-

spondences, we need a dataset consisting of multiple im-

ages or a video of object instances of a given category. For

faces, we adapt and use the 300W-LP [43] dataset. For cars

and airplanes, we render and release our own dataset, filter-

ing out degenerate meshes from ShapeNet [4]. Besides the

weak labels required for our method, we also release ad-

ditional data like depth maps, origin-centered meshes and

images rendered at high resolution to promote research in

multi-view computer vision tasks. This task also has several

applications as dense mappings are useful, for example, in

Figure 2: Illustration of a single reprojection cycle. For any im-

age pixel, we: 1. Jump from RGB to UV space (via fuv i.e., a

neural network); 2. Jump from UV space to 3D space (via pre-

defined category specific mesh using interpolation); 3. Project the

3D point back into RGB image space and take the displacement

of reprojected pixel location against starting pixel location as our

error signal for learning better UV predictions. We refer to this

procedure as reprojection consistency loss.

localizing or replacing certain parts of an object, like license

plates for cars, or pasting tattoos/filters onto faces.

The key contributions of our work are:

1. a novel weakly-supervised approach which learns the

surface mapping and 3D structure of a category from a

collection of multi-view images.

2. a training regime exploiting cycle consistency across

different views learning instance-specific meshes by

modelling deformations. Provided with an image at

test time, we can produce a unique mesh along with a

dense correspondence surface map.

3. a multi-view dataset of ShapeNet cars and ShapeNet

airplanes created by rendering a smooth camera tra-

jectory around the ShapeNet meshes and an adaptation

of the 300W-LP dataset so that it is suited for our ap-

proach.

2. Related Work

There has been a lot of research on mesh reconstruction,

learning dense correspondences and multi-view constraints.

In this section, we focus on the recent approaches which

exploit deep architectures.

DNNs for 3D geometry: Recently, there has been a push

towards learning novel ways of using neural networks by

imparting prior knowledge to solve specific tasks. One such



problem is learning 3D geometry from images. Some ini-

tial works in this direction are transform-invariant networks

[25, 26]. These works are dealing with point clouds, hence

they lack the connectivity information needed for mesh-

ing. Subsequent works tried to address this by proposing

iterative deformation of an ellipsoid [34, 9] to generate a

mesh matching a given shape. Alternatively, there has also

been research into estimating the mesh by encoding it as

an image-like position map, like in [7], where the mesh is

represented as a function of UV space. Similarly, [30] en-

code the mesh in a normalized object coordinate system as

an X-NOCS map which is a function of image space. These

mesh encoding maps are great for solving category-specific

tasks, as these maps are a function of UV space [7], and

the same UV can be considered for all instances of a given

category. Our work builds over this position map idea (see

D in Fig. 2) to express a 3D mesh. More recently, works

exploiting differentiable rendering [6, 21] or differentiable

ray-marching [29, 23] also seem to be promising. In our

work, we try to bypass these expensive differentiable ren-

dering computations by exploiting cycle consistency.

Cycle Consistency: The idea of using cycles or rela-

tionships between pixels has been extensively exploited for

object tracking, reconstruction and alignment. Its success

has been marked by notable works such as unpaired image-

to-image translation [42], SfM [40], depth estimation [8]

and dense correspondences [41]. Cycle consistency has

also been applied in time for learning correspondences in a

video [35]. More recent works by [19, 18] use pixel corre-

spondences to form a cycle and establish dense correspon-

dences of a given mesh. We build on this idea by cycling

through different views of an object and allowing deformed

3D meshes to improve our generated dense mappings.

Deformations: Representing variation in a given cate-

gory’s instance has been a popular idea. The seminal work

by Blanz et al. [3] tries to represent any given face as a de-

formed version of a common face model. Similarly, there

have been many works which try to represent a shape us-

ing PCA shape models [1, 2, 22]. With the popularity of

neural networks, several works started using them to esti-

mate these deformation parameters [39, 31, 32, 33, 13]. We

build on such ideas and integrate mesh deformation along-

side multi-view cycles to improve model performance.

Surface Mapping Understanding: Recent works [19,

18] have attempted to assign semantically consistent mean-

ing to points on objects. A popular approach has been to

utilize UV parametrization to create this mapping. While

earlier approaches relied on dense supervision, using geo-

metric consistency has been shown to be a promising alter-

native. However, the use of static underlying meshes ham-

pers the mapping performance when using a consistency

loss. Existing approaches do not utilize multi-view signals

to improve performance.

Category-Specific Reconstruction: The aim of

category-specific reconstruction is to obtain a shape model

of an object when provided with a number of images of

its instances. Previous works [13, 15] solve this by us-

ing extensive pixel-level annotations as supervision. Recent

work by Kulkarni et al. [19, 18] attempts to relax these con-

straints. Our work extends them by employing multi-view

consistency in order to produce a novel/unique mesh per in-

stance. However, our approach targets a different use-case

compared to [18] as they focus on articulation while we at-

tempt to model size and modest shape variations as well.

3. Approach

Our goal is to extract the underlying surface mapping of

an object from a 2D image without having explicit annota-

tions during training. We predict an instance-specific shape

with a common topology during inference while training the

model in a weakly-supervised manner without using dense

pixel-wise annotations. We utilize segmentation masks,

camera poses and RGB images to learn to predict the 3D

structure. We exploit information present in multi-view im-

ages of each instance to improve our learning. For each cat-

egory, we utilize a single mesh as depicted in Fig. 1. Note

that we only require a single 2D RGB image for inference.

3.1. Preliminaries

UV Parametrization: Using UV s (refer to Fig. 2) as a

parametrization of the mesh onto a 2D plane is an effective

technique to represent texture maps of a mesh. We represent

the mesh as a function of UV space, i.e., as a position map

similar to the representation used in [7]. Given a pixel in

the image, instead of directly predicting its 3D position on

a mesh, we map each pixel to a corresponding UV coordi-

nate and in turn map each UV coordinate onto the position

map (which is equivalent to a mesh). The key difference

between the position map used by us and [7] is that our po-

sition maps represent a frontalized mesh located in a cube at

the origin, whereas the position map used by [7] represents

a mesh projected onto the image. We refer to this position

map as D(I) which maps UV points to their 3D locations,

i.e., D(I) ∈ R
2
→ R

3. D represents an NN which takes

an image I as input and predicts a position map. Similarly,

we represent the function mapping image locations to their

UVs by fuv(I) ∈ R
2
→ R

2. fuv represents a NN which

takes an image I as input and predicts the UV location of

each pixel. For brevity, we write D(I) as D and fuv(I) as

fuv in the single-view case. Refer to Fig. 2, bottom right.

Reprojection Cycle: Since our mesh is frontalized and

located in a cube at origin, we represent the transformation

from this frontalized coordinate system to the mesh in im-

age by a transformation matrix φπ , where π represents the

camera parameters corresponding to this matrix. The cycle

starting from pixel p ∈ I , going through UV and 3D and



back to UV would be represented by p = φπ ∗D(fuv(p)).
This single reprojection cycle is depicted in Fig. 2 and holds

true if we have the ground truth fuv , D and φπ .

3.2. Reprojection Consistency

We train a CNN fuv(.), which predicts a UV coordinate

for each input image pixel. Similar to [19], our approach

derives the learning signal from the underlying geometry

via the reprojection cycle. Starting from a pixel p ∈ I , we

can return back to the image space by transitioning through

UV , 3D and back to image using the transformation matrix

φπ to result in a pixel p′. Finally, the difference between

p′ and p gives us the supervisory signal for learning the in-

volved components:

Lrepr =
∑

p∈I

(p− p′)2; p′ = φπ ∗D(fuv(p)) (1)

An issue with the cycle defined above is it does not han-

dle occlusion, resulting in occluded points being mapped

onto the pixel in front of it. We handle this by the use

of an additional visibility loss as proposed in [19]. We

consider a point to be self-occluded under a camera π if

the z-coordinate of the pixel when projected into camera

frame/image space is greater than the rendered depth at the

point. To compute the rendered depth map Dπ for the given

mesh instance under camera π, we use the average mesh

Davg . The visibility loss Lvis is defined as:

Lvis =
∑

p∈I

max(0, p′[2]− p′avg[2])

p′avg = φπ ∗Davg(fuv(p))

(2)

Here, p′[2] represents the z coordinate of the pixel when

the corresponding point in 3D is projected into image space.

In accordance with earlier works [19] and also our own find-

ings, we utilize segmentation masks to mask the points for

which we compute Lrepr and Lvis. This leads to greater

stability and performance during training.

3.3. Learning Shape Deformations

To allow for learnable deformations, we learn residuals

over an average category-specific mesh Davg . We model

this residual as a deformed position map ∈ R
2

→ R
3

which is predicted by a CNN (d). We represent the actual

position map D(.) ∈ R
2
→ R

3 as D(I) = Davg + d(I).
We add a regularizing loss to enforce smoothness

over the predictions. The final loss becomes Ldef =
Smoothness(d(I)) + L2Reg(d(I)).

3.4. Multi­view Cycle Consistency

[19, 18] have looked at independent instances to learn

effective surface mappings in the absence of dense labels.

However, there have not been many attempts to exploit mul-

tiple views of an instance in such a weakly supervised set-

ting. Utilizing multiple views of an instance allows exten-

sion to new modalities such as videos as well. We explore

the setup where we have multiple corresponding views of

an object along with the associated camera poses.

In order to exploit multi-view information during train-

ing and learn effective fuv(.) and D(.), we propose to in-

troduce a multi-view consistency loss which goes from a

pixel from one view and jumps into another view (refer to

the red and blue correspondences in Fig 1 Middle). Take

two images from different views of the same object, I1 and

I2, which have camera parameters π1, π2. φπ represents

the transformation from 3D space to the image space with

camera parameters π. D1, D2 represents D(I1) and D(I2).
Then, we can define preliminaries for UV consistency loss

as follows:

p̃1→2 = φπ2
∗D1(fuv1

(p1)), where p1 ∈ I1

p̃2→1 = φπ1
∗D2(fuv2

(p2)), where p2 ∈ I2
(3)

Note that p̃1→2 refers to the projection of point p1 from

image space I1 to I2. Assuming correct predictions, it

should map p1 to its corresponding semantic location in

I2. Therefore, the UV prediction of the corresponding point

in I2 should remain the same as the one in I1. We follow

the same route in the opposite direction to get an additional

error signal. We summarize the above in 5. fuv1(.) and

fuv2
(.) represent the learnt functions mapping pixel loca-

tions in image I1, I2 to their corresponding UV s respec-

tively.

L(1→2)
uv =

∑

p1∈I1

(fuv1(p1)− fuv2
(p̃1→2))

2

L(2→1)
uv =

∑

p2∈I2

(fuv2(p2)− fuv1
(p̃2→1))

2

Luv = L(1→2)
uv + L(2→1)

uv

(4)

3.5. Overall Model

In this section, we put all the above components together

and summarize the overall model. We use Deeplab V3+

[5] with more skip connections and a Resnet 18 encoder

to model fuv(.) and D(.). We have a separate decoder

sub-network for each task (UV prediction, segmentation,

deformation-field prediction). We train our system end-to-

end to optimize the combination of the losses discussed ear-

lier:

L = λrepr ∗ Lrepr + λvis ∗ Lvis

+ λdef ∗ Ldef + λuv ∗ Luv

(5)

We use λrepr = 1, λvis = 1, λuv = 1, λdef = 0.025
in our experiments. Although it is preferred to have multi-



Dataset Num Imgs Num. RGB D. Front. ST.

300WLP 550,878 13000 ✓ ✓ ✓

WSM-Faces 50,000 13000 ✓ ✓ ✓ ✓

XNOCS 102,000 5100 ✓ ✓ ✓

WSM-Cars 50,000 500 ✓ ✓ ✓ ✓

WSM-Planes 50,000 500 ✓ ✓ ✓ ✓

Table: Statistics for comparable datasets. Num. refers to number of

unique instances. D. refers to the depth. Front. refers to frontalized

meshes; ST. refers to having smooth multi-view transitions.

Figure 3: Data from WSM-Planes and WSM-Cars being released.

We also release camera poses and origin-centered ShapeNet meshes

along with segmentation mask, image and depth maps.

Figure 4: Figure illustrating data being released as part of face

dataset. The first row is the input 2D image, segmentation mask

and the corresponding fuv map. The second row is the depth map,

frontalized mesh and the corresponding frontalized position map D.

Beside this, we also release the transformation matrix for projecting

mesh into image space.

view instances in our dataset, our model extends to datasets

without multiple instances as well.

4. Experiments

The goal of our framework is to train a model to in-

fer underlying instance-specific geometry without explicit

pixel-level labels. In this section, we look at various exper-

iments to individually validate the effectiveness of our pro-

posed modules. We measure the performance of our models

using ground-truth annotations present in our face dataset.

We objectively measure model performance of the predicted

instance-specific mesh and surface mapping.

4.1. Datasets

Our framework attempts learning instance-specific ge-

ometry by exploiting multi-view consistency. To perform

evaluation in a fair manner, we propose a multi-view dataset

of RGB images, segmentation masks and their correspond-

ing camera poses. Our dataset contains instance from three

categories: faces, cars and airplanes.

Faces: For faces, an existing dataset 300WLP [43] con-

tains RGB images, 3D facial mesh and 3D morphable

model (3DMM) parameters. For our work, we adapt the

300WLP [43] by frontalizing all the meshes and the cor-

responding position maps. We also generate ground truth

depth and fuv to help in evaluating supervised baselines.

Cars and Airplanes: Our dataset consists of manually

selected 500 high-quality car and airplane meshes. For

each instance, we generate 100 view-points per instance

in a 360◦ smooth camera trajectory around the mesh (refer

Fig. 3). We use Blinn-Phong shading model for rendering

in OpenGL, along with 8 point lights and one single direc-

tional light attached to the virtual camera looking direction.

We plan to release all of our datasets containing multi-

view images, segmentation masks, depth maps, mesh, and

camera poses. For faces, we also provide UV maps and

position maps in frontalized coordinate system. We believe

that apart from solving category-specific reconstruction, our

dataset would be useful in propelling research in multi-view

supervised as well as weakly-supervised tasks such as im-

age segmentation, depth prediction and mesh estimation.

Because our camera trajectory is smooth, it also has appli-

cations in turntable and handheld multi-view captures.

4.2. Implementation Details

We implement our network in PyTorch [24] and its ar-

chitecture is based on DeepLabV3+ [5]. UV and position-

map prediction have separate decoders. All our training and

testing experiments are performed on an NVIDIA GeForce

GTX 1080 Ti GPU with 8 cores each running @ 3.3 GHz.

4.3. Evaluation Metrics

We evaluate our approach by computing the Percent-

age of Correct Keypoints (PCK). We focus our quantitative

evaluations and loss ablations on face dataset, because this

is the only dataset with dense UV annotations and ground-

truth position maps.

4.4. Quantitative Results

We analyze various aspects of our approach through ab-

lation studies, experiments on the multi-view datasets, and

controlled variation of settings to understand the individ-

ual effectiveness of the proposed modules. In the follow-

ing sections, we aim to understand: 1) the effectiveness of

reprojection loss and its utility as a self-supervised signal;

2) the effectiveness of our deformation module and impact



on performance; 3) the effectiveness of multi-view training

compared to the single-view model; 4) the effectiveness of

our overall model.

4.4.1 Effectiveness of Reprojection

We start off by considering scenarios where we initially

utilize ground truth annotations to learn each component.

Specifically, ’Learning only UVs’ refers to learning UV

mapping while using ground truth meshes for each instance;

’Learning only PosMaps’ refers to learning meshes while

using ground truth UV mapping for each instance. We then

move on to the weakly supervised setting where we do not

have pixel-level labels. ’Learning UVs with fixed mesh’ in-

volves learning the UV mapping with an average mesh in-

stead of an instance-specific ground truth mesh. Finally, we

use supervision with pixel-level annotations to get an upper

bound for performance. ’Learning with dense labels’ in-

volves learning the UV mapping and PosMap using direct

supervision from the labels.

To gain a holistic understanding of model performance,

we consider evaluations on both UV and PosMap. We per-

form evaluation on multiple thresholds to gain both fine-

and coarse-grained understanding. Table 1 and Table 2

contain UV and PosMap evaluations respectively and sum-

marize our results when comparing training with only re-

projection to other approaches.

Approach
UV-Pck@

0.01 0.03 0.1 AUC

Learning UVs with fixed mesh 5.3 32.2 90.6 94.0

Learning only UVs 12.1 48.6 91.1 94.8

Learning with dense labels 55.1 94.9 99.5 98.7

Table 1: Comparison of UV performance. We notice sharp degra-

dation in performance while looking at smaller Pck thresholds

when only using reprojection. The biggest performance gap be-

tween supervised and weakly-supervised models emerge at finer

scales, suggesting that reprojection is a good signal to give rough

predictions but not enough for finer-grained ones.

Table 1 shows the effectiveness of reprojection as a su-

pervisory signal even in the absence of dense labels. Our

approach is comparable to the supervised baseline at coarse

α’s despite not having any dense label supervision at all.

Table 2 shows the effectiveness of reprojection in learn-

ing the underlying 3D structure without having the under-

lying geometry during training. We observe higher Pck-

PosMap values when using ground truth UVs, as the net-

work optimizes for the ideal mesh based on the provided

UV mapping, leading to a slight boost in performance com-

pared to the weakly-supervised variant.

Approach
PosMap-Pck@

0.01 0.03 0.1

Learning UVs with fixed mesh 56.3 71.7 98.6

Learning only PosMaps 56.9 72.2 99.5

Learning with dense labels 59.0 82.0 99.8

Table 2: Comparison of PosMap performance. We are able to

approach coarse-level supervised performance (at α = 0.1) with

reprojection while lagging at finer scales.

4.4.2 Effectiveness of Deformation

In the previous section, we observed an improvement in

UV performance with accurate underlying meshes. Now

we investigate the effectiveness of learning deformations for

better position maps along with their effect on UV perfor-

mance.

With Pixel-Level Supervision: We first evaluate the ef-

fectiveness of our deformation module by studying its im-

pact on performance in a supervised setting. We consider

two variants, 1) Unconstrained: our position map predic-

tion head directly predicts a 256 × 256 × 3 position map

with around 43k valid points; 2) Deformed Mesh: we pre-

dict a 256× 256× 3 ’residual’ position map and combine it

with the mean mesh.

We summarize our results in Table 5. We see improved

performance when learning deformations instead of an un-

constrained position map. Overall, we observe that 1) our

modules lead to improved performance, especially at finer

scales; 2) using such deformations allow us to converge

much more quickly compared to the unconstrained coun-

terpart. We argue this is due to the intuitive nature of the

formulation as well as the ease of predicting residuals over

inferring an unconstrained position map.

Without Pixel-Level Supervision: After seeing the ef-

ficiency of residual deformation learning, we proceed to

study its effectiveness in the absence of pixel-level labels.

For these experiments, we perform only single-view train-

ing and only utilize the components proposed in Sections

3.2 and 3.3. We evaluate the effectiveness of both the

proposed deformation residual formulations. ’Reprojection

with Deformed Mesh’ utilizes direct prediction of position

map residuals. Both approaches are discussed in Section

3.3. We use ’Reprojection with Fixed Mesh’ as a baseline.

Table 3 summarizes the results and shows the benefit of

utilizing deformations over a fixed mesh. We observe con-

siderable performance improvement, especially for UV pre-

dictions.

4.4.3 Effectiveness of Multi-View Training

So far, we have demonstrated the effectiveness of reprojec-

tion and mesh deformation for a single-view setting. We



Approach
UV-Pck@ PosMap-Pck@

0.01 0.03 0.1 AUC 0.01 0.03 0.1

Reprojection with Fixed Mesh 5.3 32.2 90.6 94.0 35.8 58.8 98.1

Reprojection with Deformed Mesh 13.5 57.8 96.0 95.7 35.8 59.3 97.9

Table 3: Performance of de-

formed models. We notice a

considerable increase in UV

performance when allowing

deformed meshes.

Approach
UV-Pck@ PosMap-Pck@

0.01 0.03 0.1 AUC 0.01 0.03 0.1

Single-view Reprojection with Fixed Mesh 5.3 32.2 90.6 94.0 56.3 71.7 98.6

Multi-view Reprojection with Fixed Mesh 5.8 34.0 90.8 94.2 56.3 71.7 98.6

Deformed Single-view Reprojection 13.5 57.8 96.0 95.7 56.4 72.4 98.5

Deformed Multi-view Reprojection 13.4 58.4 96.2 95.9 56.5 72.7 98.6

Table 4: Comparison of Single-View

and Multi-View Training. We ob-

serve consistently improved UV per-

formance with multi-view training

with both fixed and deformed meshes.

We also notice a slight improvement in

position map performance.

Approach
PosMap-Pck@

AUC 0.1 0.03

Mean-Fixed Mesh 96.2 97.6 42.7

Unconstrained 97.6 99.8 74.8

Deformed Mesh 98.0 99.9 82.0

Table 5: Performance comparison between different approaches

for 3D mesh prediction. We notice that residual mesh learning ap-

proaches perform much better than the unconstrained prediction.

Approach
UV-Pck@ PosMap-Pck@

0.03 0.1 0.03 0.1

CSM* 32.2 90.6 71.7 98.6

Our Approach 58.4 96.2 72.7 98.6

Fully Supervised 94.9 99.5 82.0 99.8

Table 6: Comparison of Single-View and Multi-View Training

now compare the single-view training with the multi-view

training setting. We consider performance with both a fixed

and deformed mesh. We first consider the fixed mesh set-

ting, where ’Single-view Reprojection with Fixed Mesh’ and

’Multi-view Reprojection with Fixed Mesh’ are the single

and multi-view training settings. We then consider our

overall model with deformations on top, where ’Deformed

Single-view Reprojection’ and ’Deformed Multi-view Re-

projection’ refer to the single and multi-view settings for

training with deformed meshes.

Table 4 summarizes our results and demonstrates consis-

tent performance gains with the usage of multi-view train-

ing, proving the effectiveness of our approach. We see rel-

atively lower gains in our position map performance as we

directly optimize for consistency of our UV predictions.

4.4.4 Comparison with Existing Approaches

We summarize comparisons of our overall approach to

the only directly comparable state-of-the-art approach, i.e.,

CSM [19] in Table 6. CSM is functionally the same as

’Single-view Reprojection with Fixed Mesh’ described in

the previous section. Note that performance metrics for

CSM on our dataset has been computed using our re-

implementation of CSM. We have closely followed the im-

plementation of CSM except for performing optimization

in 2D space as opposed to 3D space. We also consider

the fully-supervised baseline, i.e., ’Learning with Dense La-

bels’, to give an estimate of how our approach compares to

it.

4.5. Qualitative Results

Fig. 5 shows a few instances of our predicted surface

mappings of a model trained with a reprojection cycle. The

model predicts smooth dense correspondences between dif-

ferent instances.

Fig. 6 shows a few examples of instance-specific defor-

mations. We can see that both the supervised and weakly-

supervised networks learn to predict open/closed mouth,

elongated/rounded, bigger/smaller face shapes. The weakly

supervised model shown is trained with multi-view repro-

jection consistency cycle. We did not add any symmetry

constraints. We can see that the supervised approach learns

implicit symmetry, whereas the weakly-supervised one fo-

cuses only on the visible parts of the face (note that even a

sun hat covered portion is ignored). This is expected as the

supervised network could see the full position map during

training, while the reprojection-cycle-trained model had er-

ror signal only for the foreground (because of the visibility

loss described earlier). While the predictions make intuitive

sense, we also notice a significant increase in PCK UV as

shown in Table 5.

4.6. Learning on new datasets

In order to train on a new dataset, we require segmenta-

tion masks, camera poses and, optionally, multiple views of

different instances. Camera poses can be inferred in case we

have a few keypoint annotations provided by methods like

PnP (Perspective-n-Point). Segmentation masks for a given



Figure 5: Figure illustrating

images and the learnt UV

mappings overlaid on top.

Predictions shown are from

the model trained with the

reprojection cycle.

Figure 6: Figure illustrating im-

ages and the corresponding predicted

meshes color-coded by deformation

magnitude with respect to the mean

mesh. Top row shows weakly-

supervised model predictions, bottom

row shows supervised predictions. We

can see that both the supervised and

weakly-supervised networks learn to

predict open/closed mouth and elon-

gated/rounded face shapes.

category can be inferred via an off-the-shelf model [11].

Alternatively, for any new multi-view dataset or other cate-

gories, we can run SfM [28] on the images to compute poses

and a point cloud. These point clouds can then be aligned

to each other to ensure that all the point clouds are in a sin-

gle common coordinate system. Finally, we can scale these

point clouds to ensure that they are in a unit cube.

5. Conclusion

We propose a framework to learn surface mapping and

category-specific geometric reconstruction in a weakly su-

pervised setting. By modelling the underlying instance-

specific deformations along with utilizing multi-view cues,

we allow our model to learn consistent UV mappings with-

out explicit annotations for the same. We demonstrate the

effectiveness of each of the proposed modules through con-

trolled experiments and see a significant improvement in

performance. We believe that our approach is the first to

exploit multi-view cycle consistencies to generate instance-

specific meshes by modelling deformations. We term our

approach geometric reconstruction, as our meshes can also

be surface-mapped back onto the images. We also present

and release a new multi-view dataset of ShapeNet Cars and

Airplanes generated by rendering filtered ShapeNet meshes

with a smooth camera trajectory and an adapted 300WLP

dataset with frontalized face meshes and position maps. We

hope these contributions will spark interest in multi-view

approaches to learn geometry without the need for labels.
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